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Abstract 
 
The heat conduction of a two dimensional anisotropic plate with non-homogeneous general boundary 
conditions is solved by using ANSYS Fluent in the cartesian coordinate system. It is assumed that the 
thermal conductivity and heat generation of the material arbitrarily change in the direction of the two 
space variables. Under these conditions, a variable coefficient differential equation is obtained. Analytical 
solutions of such equations cannot be obtained except for some simple material functions. The variable 
coefficient differential equation, which includes the heat conduction coefficient and volumetric heat 
generation depending on the two space variables and non-homogeneous boundary conditions, is handled 
numerically by ANSYS Fluent user-defined function (UDF). The accuracy of the numerical method is 
demonstrated by comparing analytical and numerical solutions using simple material functions. 
 
Keywords: Anisotropic heat conduction, Analytical solution, Finite element method, UDF 
 

İki Boyutlu Anizotropik Plakanın Isı İletim Analizi 
 

Öz 
 
Homojen olmayan genel sınır koşullarına sahip iki boyutlu anizotropik bir plakanın ısı iletim problemi, 
kartezyen koordinat sisteminde ANSYS Fluent kullanılarak çözülmüştür.  Malzemenin termal iletkenliği 
ve ısı üretiminin keyfi olarak iki uzay değişkeni yönünde değiştiği varsayılmıştır. Bu koşullar altında 
sistemi modelleyen değişken katsayılı diferansiyel denklem elde edilir. Bu tür denklemlerin analitik 
çözümleri, bazı basit malzeme fonksiyonları dışında elde edilemez. İki uzay değişkenine bağlı olarak 
değişen ısı iletim katsayısı ve hacimsel ısı üretimi ile homojen olmayan sınır koşullarını içeren değişken 
katsayılı diferansiyel denklem ANSYS Fluent kullanıcı tanımlı fonksiyon (UDF) ile sayısal olarak ele 
alınmıştır.  Sayısal yöntemin doğruluğu, basit malzeme fonksiyonları kullanılarak analitik ve sayısal 
çözümler karşılaştırılarak gösterilmiştir. 
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1. INTRODUCTION 
 
Anisotropic materials whose material properties 
change with the direction can be natural and 
synthetic such as, crystals, wood, sedimentary 
rocks, metals that have undergone heavy cold 
pressing, laminated sheets, cables, heat shielding 
materials for space vehicles and fiber reinforced 
composite structures. In aforementioned materials, 
thermal conductivity can change with the location 
of the material as well. The change in material 
properties such as thermal conductivity depends on 
the location throughout the medium are also 
examples of anisotropic materials which results in 
governing differential equations with variable 
coefficients. Due to the difficulties associated with 
the solution of these heat transfer problems with 
variable coefficients, simplifying assumptions are 
usually made. For example, in the case of materials 
that have thermal conductivity which varies 
slightly with location, constant thermal 
conductivity is generally assumed. This 
assumption leads errors in solution if the thermal 
conductivity of the material is affected greatly with 
location change throughout the material. 
Therefore, modelling and simulating temperature 
distribution for such problems linearities caused by 
location-dependent thermal conductivity have to 
be accounted by the numerical computation.  
 
There are various methods available in the 
literature to handle heat transfer problems with 
variable coefficients. The most commonly used 
engineering methods are Finite Difference Method 
(FDM) [1] and Finite Element Methods (FEM) [2]. 
The biggest advantage FEM over the FDM is its 
capability of handling irregular geometries and 
size can be changed over the region. Another 
method usually utilized in this kind of analyses is 
the (Boundary Element Method) BEM [3]. In this 
method the numerical solution of the continuum is 
performed with a reduction of dimensionality of 
the problem. The efficiency of BEM is that the 
number of the resulting simultaneous equations 
depends only upon the discretization of the 
boundary of the domain and that technique can be 
employed to represent the solution over the 
boundary elements. In this way, the problem can 

be treated with one less dimension. The most 
common used engineering solution for the linear 
heat transfer problem is FEM. 
 
Ma et al. [4] and [5] have proposed an analytical 
solution of heat conduction problem for an 
anisotropic medium; they employed a linear 
transformation to convert the original anisotropic 
problem to an equivalent isotropic problem with a 
same geometrical configuration. The accuracy 
improvement of the discontinuous boundary 
elements over the continuous boundary elements 
has been well established numerically in Mera et al 
[6], Florez and Power [7] and Tadeu and Antonio 
[8]. The anisotropy increases the number of heat 
conduction constants, which renders the derivation 
of fundamental solutions as difficult even in a 
homogeneous case. Sladek et al. [8] proposed the 
meshless method based on the local Petrov-
Galerkin approach to solve stationary and transient 
heat conduction problems in 2-D for anisotropic 
FGM. Wang et al. [9] developed a new meshless 
method based on the standard Laplacian operator 
and radial basis functions (RBFs) in order to solve 
steady-state heat conduction problems with 
arbitrarily spatially varying thermal conductivity in 
isotropic and anisotropic materials.  
 
In the scientific literature, many analytical works 
have focused on relevant anisotropic heat 
conduction problems. A linear coordinate 
transformation is well-known as it can be applied 
to solve the heat conduction problems for a thin-
layer medium and multi-layered media with 
anisotropic properties [11-16]. The effect of the 
contact resistance on the steady-state temperature 
in a multidimensional and multilayer body was 
studied by Haji-Sheikh et al. [12]. However, 
analytical treatments have been restricted within 
quite special or simple cases, because of the 
solution, especially for more complex geometry, 
poses mathematical difficulties. The boundary 
element method (BEM) was used for solving the 
multidimensional and multilayer anisotropic heat 
conduction problem by adopting the direct domain 
mapping and the coordinate transforms method 
[13]. The advantage of this approach is that the 
anisotropic problem can be efficiently and 
accurately solved with any numerical methods in 
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the literature, such as the finite difference method 
or the boundary element method for isotropic 
potential theory [14-16]. The coordinate 
transforms method can also efficiently be used for 
analysis of the anisotropic microscale heat transfer.  
 
 In this paper, numerical method with location 
dependent heat source and non-homogeneous 
boundary condition fields was extended to obtain 
solution of anisotropic linear heat transfer 
problems with variable coefficients. This study 
involved development and implementation of 
numerical algorithms and software. The research is 
focused on governing differential equations with 
variable coefficients caused by location 
dependency of thermal conductivity and 
volumetric heat generation. Analytical solution for 
simple material functions available in literature 
[17] are used to validate the numerical model. 
 

2. GOVERNING EQUATION 
 
Two-dimensional steady state conduction in a 
rectangular plate L×W at a uniform volumetric rate 
is considered for the thermal conductivity and 
energy generation varies arbitrary in two spatial 
directions shown in Figure 1. 
 

 
Figure 1. The geometry of 2D steady state                 

conduction in a rectangular plate L×W 
 
This non-homogeneous second order partial 
differential equation with variable coefficient is 
governed by Equation 1. 

∂
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with nonhomogeneous boundary conditions 
Equation 2: 
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where k(x,y),q(x,y) thermal conductivity and heat 
generation respectively. In the treatment, functions 
of spatial variables in three different case are 
assumed. 

Case-1: Thermal conductivity and heat generation 
are varied exponentially in one spatial variables 
Equation 3a, 

k(y)=k0e-γ
y

W,q(y)=q
0
e-γ

y

W (3a) 

 

Case-2: Thermal conductivity and heat generation 
are varied exponentially in two spatial variables, 
Equation 3b, 

   0 0, , ,
y yx x

W WL Lk x y k e e q x y q e e
   

   (3b) 

 
Case-3: Thermal conductivity and heat generation 
are varied exponentially and in power law, 
respectively in two spatial variables Equation 3c,  

       3 3
0 0, , , 1 1

yx

WLk x y k e e q x y q x x y y
 

   

 (3c) 
 
where, �� and �� are the thermal conductivity and 
internal heat generation at the ambient 
temperature, ��. And, �, �, � represents the 
variations of the thermal conductivity and internal 
heat generation. 
 
For simple representation, it is assumed that 
thermal conductivity and heat generation are 
varied exponentially in one spatial direction   
(Case-1). Therefore, the governing equation by 
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using the following dimensionless variables 
Equation 4, 
 

η=
x

L
,ξ=

y

W
,θ=

T-T∞

Tmax-T∞
 (4) 

 
renders eq. (1) in the form of nonhomogeneous 
ordinary differential equations with constant 
coefficients Equations 5 and 6, 
 
∂2θ

∂η2 -c2γ
∂2θ

∂ξ
+c2 ∂θ

∂ξ2 +d=0(0<η<1,0<ξ<1) (5) 

 
where  
 

c=
L

W
,d=

q0L2

k0(Tmax-T∞)
 (6) 

 
The non-dimensional nonhomogeneous boundary 
conditions turned into the following form 
Equations 7 and 8, 
 
∂θ

∂η
(0,ξ)=-aeγξ; θ(1,ξ)=g(ξ),

θ(η,0)=f(η);
∂θ

∂ξ
(η,1)=-eγBiθ(η,1)

  (7) 

 
with 
 

Bi=
hL

k0
,a=

q0
''L

k0(Tmax-T∞)
. (8) 

 
where �� is the Biot number. It is emphasized that 
the main aim of this paper is to obtain numerical 
solution of two dimensional thermal conduction 
equation with the given most general 
nonhomogeneous boundary conditions. 
 

3. NUMERICAL METHOD 
 
The governing partial differential equation 
mentioned earlier is solved by using the 
commercially available ANSYS FLUENT 
software. The foundation of physical problem, 
meshing the domain and application of the 
boundary conditions are all done with the 
preprocessor of the same software ANSYS ICEM 
CFD. It is well-known that the aforementioned 
software utilizes the widely used finite element 
and finite volume modeling for the heat transfer 

and mechanics. The results are comprehended in 
the post processor module of the ANSYS 
Workbench CFD software. 
 
Although the ANSYS FLUENT is very capable of 
solving physical problems, in some cases the 
standard interface cannot be programmed to 
address the problems with complicate boundary 
conditions and variable parameters such as the 
problem studied in this paper. Due to the 
customized boundary conditions presented in this 
paper, a User Defined Function [19] is inevitable 
to be employed for numerical solution. The UDF is 
a C routine programmed by the user which can be 
dynamically linked with the solver. The 
conduction differential equation with location 
dependent heat conduction coefficient, volumetric 
heat generation and nonhomogeneous boundary 
conditions require the employment of UDFs by 
developing codes in C. The simultaneous 
processing of the UDFs with FLUENT model 
deploys accurate results for the demanded 
boundary temperature profile and the heat flux. 
The input parameters for UDFs were taken as 
α=2,				β=4,				γ=0.5,			L=0.2,				W=0.2,				Tmax=500, 
T∞=300,	k0=0.2. 
 
3.1. Mesh Sensitivity Analysis 
 
The numerical solutions are run for five different 
mesh densities to examine the mesh sensitivity of 
the described simulations. The mesh is refined by 
increasing the number of divisions of edges of the 
body in � and � directions. In this study, the edges 
of the body are divided by 10x10, 20x20, 40x40, 
80x80, 160x160 and 320x320 in order to analyze 
the mesh sensitivity of the problem by comparing 
the heat transfer results at the top (ξ=1) boundary. 
The results are monitored in Table 1. A maximum 
residual reduction factor of 10-9 for the heat 
conduction equation was used to monitor the 
convergence of iterative solution. The 
discretization error in the numerical solutions is 
calculated in the following form [18] (Equation 9). 
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h h
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Ø Ø
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The order of the scheme coefficient � in eq.(20) is 
given by following relation (Equation 10): 
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2 4
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log
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h h
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Ø Ø

Ø Ø
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The Richardson extrapolation suggests that an 
approximation of the exact solution ɸ is more 
accurate than the solution of the finest mesh Ø�	by 
adding the discretization error ϵh. The 

approximation of exact solution is expressed as 
following (Equation 11): 
 
ɸ = Ø� + ��  (11) 
 
The relative discretization error is given in the 
Equation 12 below and calculated by the heat flux 
given in Table 2. 
 

Ψ(%)=
εh

Øh+εh
×100. (12) 

 
Table 1. Q(W/m2), the amount of heat transferred at the top (� = 1) boundary 

n Number of Cell “Bi=1” Bi=5 Bi=10 Bi=30 Bi=60 
10×10 100 222.14 376.53 416.37 449.38 458.78 
20×20 400 224.33 390.94 434.12 470.20 480.59 
40×40 1600 225.07 398.69 443.82 481.68 492.64 
80×80 6400 225.45 402.87 449.09 487.95 499.25 
160×160 25600 225.65 405.07 451.87 491.28 502.76 
320×320 102400 225.75 406.19 453.29 492.98 504.56 
Analytical  225.90 407.39 454.85 495.25 507.09  

 
 
Table 2. Relative discretization error for a=1.5 and d=5 at the top (ξ=1) boundary 

 Bi=1 Bi=5 Bi=10 Bi=30 Bi=60 
Ø� 225.75 406.19 453.29 492.98 504.56 

� 1.1171 0.9721 0.9678 0.9687 0.9624 

�� 0.0814 1.1648 1.4863 1.7786 1.9005 

Φ 225.83 407.35 454.77 494.76 506.47 

Ψ(%) 0.03603 0.2859 0.3268 0.3595 0.3752 

 
4. RESULTS AND DISCUSSION 
 
The temperature distribution for the case that 
thermal conductivity and volumetric heat 
generation are varied exponentially in one spatial 
variables are presented in Figure 2-7. In these 
figures, the results obtained in the numerical 
results are compared with the analytical study of 
Yarımpabuç et al. [17], and It can be seen from 
Figure 2-7 that the numerical results are in a good 
agreement with the analytical results and both 
solutions satisfy boundary conditions imposed in 
the problem. 

 
Figure 2. Dimensionless temperature distribution    

for different Biot number at the top 
(ξ=1) boundary 
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The variation of temperature in the body for 
various �� numbers is displayed in Figure 2–3 
with a=1.5 and d=5. In Figure 2 numerical and 
analytical solutions are presented for different 
values of Bi=1,	2,	5,	10,	30 and 60. The numerical 
and analytical solutions are coinciding accurately 
for all the �� numbers. As the Biot number 
increases the heat transfer increases yielding the 
temperature on top wall to approach the ambient 
temperature. On the other hand, temperature of the 
same wall increases due to the volumetric heat 
generation and heat flux while Bi number is 
decreasing. However at point (η=1,	ξ=1) the 
temperature is found to be � = 0 which satisfies 
the BC’s described in problem definition for all �� 
numbers. It is also shown that dimensionless 
temperature value approaches to zero as �� 
number goes to infinity. 
 

 
Figure 3. Dimensionless temperature distribution   

for different Biot number at the left 
(η=0) boundary 

 
The dimensionless temperature distribution along 
left wall (� = 0) for �� = 1, 2, 5, 10, 30 and 60 
with constans values of a=1.5 and d=4 is provided 
in Figure 3. It is clearly seen that dimensionless 
temperature � becomes � = 0 which is expected 
because it is imposed as the boundary condition in 
the problem definition. The dimensionless 
temperature  � distribution tends to have lower 
value while �� number increases. 

 
Figure 4. Dimensionless temperature distribution 

at the top (ξ=1) boundary 
 
The change of dimensionless temperature 
distributions for assorted dimensionless volumetric 
heat generation values d=0, 5, 20 and 50 with     
Bi=5 and a=1.5 is shown in Figure 4-5. In Figure 
4, the temperature distribution of the medium 
considerably increases as the volumetric heat 
generation increases. However, when volumetric 
heat generation is neglected (d=0) in the medium, 
temperature seems not to be affected substantially 
for Bi=5 and a=1.5. 
 

 
Figure 5.  Dimensionless temperature distribution 

at the left (η=0) boundary 
 

In Figure 5, the temperature distributions along left 
wall (η = 0) with constant Biot number Bi=5 and 
dimensionless heat flux a=1.5 for dimensionless 
volumetric heat generations d=0, 5, 20 and 50 are 
illustrated. The temperature along the wall 
increases remarkably as the volumetric heat 
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generation is increased with constant heat flux. 
Similar to Figure 3 the temperature along the wall 
reaches to a maximum and then decreases. 
According to Figure 5 the maximum temperature 
value happens to be at the middle of the wall. The 
temperature alters slightly when heat generation is 
not deployed. 
 
Effect of dimensionless heat flux (a=0, 0.25, 0.5, 
1.0, 1.5) on temperature for constant Bi number 
(Bi=5), volumetric heat generation (d=5) is plotted 
in Figure 6-7.  
 

 
Figure 6. Dimensionless temperature distribution 

at the top (ξ=1) boundary 
 
In Figure 6, the temperature distribution on top 
wall (ξ=	1) decreases as the heat flux value 
decreases. The temperature does not differ along 
the wall of interest when the heat flux does not 
exist. Similar to the other plots, the temperature 
ξ=	1 vanishes to zero satisfying the enforced 
boundary conditions. It is shown that the 
volumetric heat generation dominates the 
temperature distribution along the top wall over 
the heat flux. The temperature distribution for the 
left wall for numerous dimensionless heat flux    
(a= 0, 0.25, 0.5, 1.0, 1.5) is plotted in Figure 7 for 
constant Bi number (Bi= 5) and volumetric heat 
generation (d= 5). According to the figure, the 
temperature distribution on the wall tends to shift 
upward as the heat flux is increased. The 
temperature � becomes zero assuring the boundary 
conditions employed in the problem definition 
ξ=	0. However at ξ=	1, the dimensionless 
temperature values depend on the Biot number 

employed on the top wall. The temperature at ξ=	1 
is anticipated to become zero approaching to the 
ambient temperature. 
 

 
Figure 7. Dimensionless temperature distribution 

at the left (η= 0) boundary 
 
In Figure 8-9, the results of numerical solution of 
the problem for the case that thermal conductivity 
and volumetric heat generation are varied 
exponentially in two spatial variables. The 
dimensionless temperature distribution of the top 
(ξ=	1) and left wall (η=	0) with respect to the Bi 
number for a constant a= 1.5 and d= 5 is provided 
in Figure 8 and 9 respectively. According to results 
presented in Figure 8, the temperature of the top 
wall approaches to ambient temperature for higher 
Bi numbers. Similarly, in Figure 9 the temperature 
distributions of the left wall increase as the Bi 
number decreases due to decrease of the heat 
transfer from wall to the environment.  
 

 
Figure 8. Dimensionless temperature distribution 

at the top (ξ= 1) boundary 
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Figure 9. Dimensionless temperature distribution 

at the left (η= 0) boundary 

 

 
Figure 10. Dimensionless temperature distribution 

at the top (ξ= 1) boundary 

 
In addition, the results of numerical solution of the 
problem for the case that thermal conductivity 
changed exponentially, and internal heat 
generation changed with power law in two spatial 
variables are presented in Figure 10-11. The 
dimensionless temperature distribution of the top 
and left wall with respect to the Bi number for a 
constant a= 1.5 and d= 5 is provided in Figure 10 
and 11 respectively. According to results presented 
in Figure 10, as Bi number increases, the 
temperature of the top wall comes close to the 
ambient temperature. Furthermore, in Figure 11 
the temperature of the left wall increases as the Bi 
number decreases due to developing resistance 
against heat transfer from wall to the environment. 

 
Figure 11. Dimensionless temperature distribution 

at the left (η= 0) boundary 
 

5. CONCLUSION 
 
In this study heat conduction equation of an 
anisotropic medium with location dependent heat 
generation and nonhomogeneous boundary 
conditions is solved numerically. The numerical 
solution of the defined problem is performed in the 
commercially available software ANSYS Fluent. 
The heat conduction coefficient, location 
dependent heat generation and nonhomogeneous 
boundary conditions are imposed by the help of 
ANSYS Fluent UDF.   
 
The results obtained agree with analytical solution 
remarkably. The error margin remains to be in the 
vicinity of 0.5%. The temperature distributions of 
the model for dimensionless numbers are explored 
and they are consistent with each other. According 
to the results presented, the temperature 
distribution is governed greatly by the heat 
generation rather than heat flux. The proposed 
models are capable of solving and analyzing of 
heat conduction equations for different and 
anisotropic materials. 
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