Sürdürülebilir Mühendislik Uygulamaları veTeknolojik Gelişmeler Dergisi Journal of Sustainable Engineering Applications and Technological Developments 2022, 5(2): 123-137

Homogeneity Analysis of Turkish Rainfall Intensity Series

Türkiye Yağış Şiddeti Serilerinin Homojenlik Analizi

Utku Zeybekoğlu¹, Aslı Ülke Keskin²

¹Sinop University, Boyabat Vocational School of Higher Education, Department of Construction, Sinop Turkey ²Ondokuz Mayıs University, Engineering Faculty, Department of Civil Engineering, Samsun Turkey

Doi: 10.51764/smutgd.1097444

Geliş Tarihi:02.04.2022Kabul Tarihi:08.08.2022

ABSTRACT

In this study, homogeneity checking the annual maximum rainfall intensity series for periods ranging from 30 to 78 years were obtained from 103 stations operated by the Turkish State Meteorological Service. Absolute homogeneity tests (AHT) namely Standard Normal Homogeneity Test (SNHT), Buishand Range Test (BRT), Pettitt Test (PT), and Von Neumann Ratio Test (VNRT) were applied at a confidence level of 95%. Stations were classified inhomogeneous if at least one of the standard durations data classified suspect or doubtful. Assuming that the factor destabilizing the homogeneity tests were reapplied to the series of rainfall intensity. As a result of this study 49 of 103 stations called useful all 14 standard durations. 45 of the remaining 54 stations classified useful all standard durations after trend components separated from rainfall intensity series. As a result of the analysis, it was determined that the remaining 8 of 103 stations had inhomogeneous values after the trend components were separated.

Keywords: Homogeneity analysis, Turkey, Rainfall Intensity

ÖZET

Bu çalışmada, Meteoroloji Genel Müdürlüğü tarafından işletilen 103 istasyondan 30 ile 78 yıl arasında değişen periyotlar için yıllık maksimum yağış şiddeti serilerinin homojenlik kontrolü yapılmıştır. Mutlak homojenlik testleri olarak bilinen Standart Normal Homojenlik Testi (SNHT), Buishand Aralık Testi (BRT), Pettitt Testi (PT) ve Von Neumann Oran Testi (VNRT) %95 güven aralığında uygulanmıştır. Standart süre verilerinden en az biri şüpheli veya sorunlu ise, istasyon homojen değil olarak sınıflandırılmıştır. Homojenliği bozan faktörün muhtemel trend bileşenleri olduğu varsayılarak, trend bileşenleri ayrılmıştır. Daha sonra, yağış şiddeti serilerin mutlak homojenlik testleri yeniden uygulanmıştır. Analizler sonucunda 103 istasyonun 49'u 14 standart sürenin tamamında kullanılabilir olarak sınıflandırılmıştır. 103 istasyondan geriye kalan 8'inin ise trend bileşenleri ayrıldıktan sonra da homojen olmayan değerlere sahip olduğu tespit edilmiştir.

Anahtar Kelimeler: Homojenlik analizi, Türkiye, Yağış Şiddeti

Utku Zeybekoğlu, Orcid:0000-0001-5307-8563, utkuz@sinop.edu.tr, Corresponding author Aslı Ülke Keskin, Orcid: 0000-0002-9676-8377, asli.ulke@omu.edu.tr

Rapidly melting of ice masses in the poles, rising seawater level, and occurring large irregularities in the rain are powerful indicators of world ecosystem deterioration and global warming. These reasons might lead to water-related problems in the future. To date, researches have been conducted intensively by scientists to determine climate change. In these studies, they first tried to understand atmospheric events. The most basic study to understand atmospheric events are meteorological measurements. The main purpose of these measurements is to show the similarities and to make the necessary predictions by considering the occurrences and the situations that may occur in the future (Salarijazi et al., 2012; Zeybekoglu & Ulke Keskin, 2020).

Homogeneous climate series is defined as the series where changes are caused only by weather and climatic changes (Conrad & Pollak, 1950; Sahin, 2009; Sahin & Cigizoglu, 2010). It is essential for climate and hydrological studies to have long-term, homogeneous, and continuous precipitation series (Bickici Arikan, 2018; Bickici Arikan & Kahya, 2018). The homogeneity of precipitation series employed in climate change and hydrological studies poses a major problem in this respect (Em et al., 2007). The reliability of hydro meteorological observation data should be carefully investigated (Agha et al., 2017). The measurements made, the methods employed, the tools, and environmental factors disrupt the homogeneity. For this reason, measurements must be made with suitable devices and methods. In precipitation measurements, the technological development of the measuring devices can create an artificial and systematic increase (Hanssen-Bauer & Førland, 1994). Therefore, long-term climate changes and trends must be interpreted carefully. To achieve accurate results from climate analysis, it should be examined whether the data have homogeneous and non-homogeneous series, which must either be removed or homogenized (Sahin, 2009; Sahin & Cigizoglu, 2010). Many researchers around the world have investigated the quality and homogeneity of various climatic parameters (Peterson & Easterling, 1994; Tayanc et al., 1998; Gonzalez-Rouco et al., 2001; Yesilirimak et al., 2008; Suhaila et al., 2008; Mair & Fares, 2010; Eris & Agiralioglu, 2012; Sonmez, 2013; Pirnia et al., 2019; Ay 2020, 2021; Khalil, 2021; Ahmed et al., 2021; Demir et al., 2021; Aksu et al., 2022).

Hanssen-Bauer and Førland (1994) made a homogeneity analysis for the precipitation data of 165 precipitation stations in Norway by using the SNHT. Alexandersson and Moberg (1997) tested the homogeneity of monthly temperature series for Sweden by using a new method developed by them from the SNHT. Serra et al. (2001) examined the homogeneity of daily, monthly, seasonal, and annual temperature series of the 1917-1998 period of Barcelona in Spain with the VNRT. Wijngaard et al. (2003) examined the homogeneity of the temperature and precipitation series of the European geographical area by applying the SNHT, PT, BRT and VNRT, which are called the Absolute Homogeneity Tests (AHT), and classified the homogeneity of the stations according to the results of these four tests. Feng et al. (2004) examined and classified the homogeneity of daily, temperature, humidity, and wind speed values recorded between 1951-2000 in meteorological observation stations in China with the AHT. Kang and Yusof (2012) analyzed the homogeneity of the precipitation data of Peninsular Malaysia by using the SNHT, BRT, PT, and VNRT. Talaee et al. (2014) examined homogeneity of the annual and monthly precipitation datasets throughout Iran covering the years 1966-2005. Agha et al. (2017) used the AHT and reported that the annual, winter and spring precipitation series of stations in Northern Iraq were not homogeneous. Zaifoglu et al. (2017) examined the daily precipitation series of Northern Cyprus with the AHT. Tsega and Tibebe (2018) applied the AHT to the daily precipitation series of 54 stations in Ethiopia and reported that 42 stations were not homogeneous. Suhaila and Yusop (2018) examined the homogeneity of annual and seasonal temperature series of 10 stations in Malaysia by using the PT and Mann-Kendall test; and reported that there were breaks in the homogeneity of the precipitation series in 1996, 1997, and 1998.

Turkes (1996) analyzed the homogeneity of annual precipitation data of 91 stations in Turkey by using the Kruskal-Wallis test for the 1930-1993 period. Turkes et al. (1996) made the homogeneity analysis of seasonal and annual temperature series of 80 stations for the 1940-1993 period across Turkey by using the Kruskal-Wallis Method. As a result of the Kruskal-Wallis Homogeneity Test, they reported that 59 stations had homogeneous data. the homogeneity of monthly and annual temperature and precipitation series recorded between 1951-1990 of 82 meteorological observation stations in Turkey were examined by Tayanc et al. (1998) using the Kruskal-Wallis and Wald-Wolfowitz tests. They reported that the tests were an important means in testing the homogeneity of time series. Karabork et al. (2007) examined the homogeneity and breaking points of the precipitation series of 212 stations for the 1973-2002 period with SNHT and PT. They reported that 43 stations were not homogeneous. Gokturk et al. (2008) applied the SNHT and PT to the precipitation series of 267 stations in Turkey for the 1930-2004 period and found the years when the homogeneity was disrupted. Firat et al. (2010) examined the homogeneity of precipitation series for the 1968-1998 period of 229 meteorological observation stations in Turkey by using the SNHT and PT, and reported that 179 stations were

not homogeneous. Sahin and Cigizoglu (2010) applied the AHT to precipitation series between 1974-2002 in Turkey; and as a result of the AHT, they reported that 5 out of 232 stations were not homogeneous. Haktanir and Citakoglu (2014) examined the homogeneity of the maximum precipitation series of Turkey for the 1938-2010 period by using the VNRT and Mann-Whitney Homogeneity Test. They reported that the precipitation series was 90% homogeneous according to the Von Neumann Test, and 84% according to the Mann-Whitney test. Bickici Arikan and Kahya (2018) examined the homogeneity of 160 meteorological stations with the AHT and concluded that 5 stations were not homogeneous. They achieved homogeneity by applying the double additive curve method to inhomogeneous stations. Zeybekoglu and Ulke Keskin (2020) examined the homogeneity of the rainfall intensity series of 14 standard durations that were measured between 1965 and 2010 at Artvin in the Eastern Black Sea region of Turkey by using the SNHT and PT and examined their trends by using the Mann Kendall and Spearman's Rho tests. They reported that homogeneity was achieved when the trend component was eliminated from the intensities of the 5', 10', 15', and 30' duration rainfalls, and the trend disrupted the homogeneity.

In this study, the purpose was to determine the homogeneity of the maximum rainfall intensity series of 103 stations operated by the Turkish State Meteorological Service (TSMS) throughout Turkey. For this purpose, firstly, the quality and usability of the data that were obtained from Turkish State Meteorological Service (TSMS) were checked with the BRT, PT, SNHT, and VNRT, which are called AHT. The classes of the data will be identified at this stage with AHT. As a result of the AHT, the rainfall intensity series of the non-homogeneous stations were separated from possible trend components by applying the detrended methodology. Then, the data were classified by re-applying AHT.

STUDY AREA

In the present study, the maximum rainlfall intensity series of a 103 stations that had different observation periods between a minimum of 42 years (1974-2015) and a maximum of 78 years (1938-2015), operated by the TSMS, distributed homogeneously in geographical terms in Turkey as given in Figure 1. The latitude, longitude, altitude, and observation periods of these stations are given in Table 1.

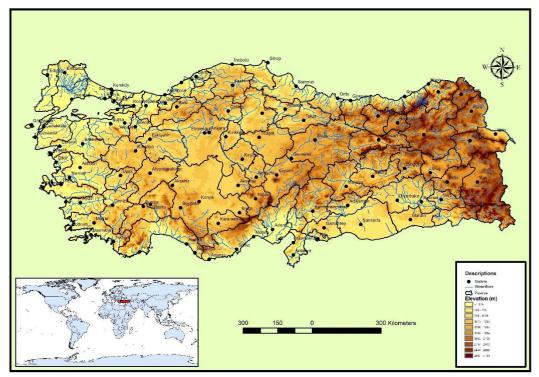


Figure 1. Geographical distribution of meteorological stations

ID	Name	Period	Elevation (m)	Lat. (N)	Long. (E)	ID	Name	Period	Elevation (m)	Lat. (N)	Long. (E)
17015	Akçakoca	1968-2015	10	41.0895	31.1374	17172		1956-2015	1675	38.4693	43.346
17020	Bartın	1966-2015	33	41.6248	32.3569	1717:		1967-2015	4	39.3113	26.6861
17022	Zonguldak	1945-2015	135	41.4492	31.7779	1718	2	1959-2015	3	39.0737	26.888
17022	İnebolu	1959-2015	64	41.9789	33.7636	17184		1965-2015	92	38.9118	27.8233
17026	Sinop	1965-2015	32	42.0299	35.1545	1718		1958-2015	71	38.6153	27.4049
17020	Samsun	1957-2015	4	41.3435	36.2553	1718		1941-2015	919	38.6712	29.404
17033	Ordu	1965-2015	5	40.9838	37.8858	1719	3	1957-2015	1034	38.738	30.5604
17033	Giresun	1966-2015	38	40.9227	38.3878	1719	2	1965-2015	970	38.3705	33.9987
17040	Rize	1940-2015	3	41.04	40.5013	1719		1965-2015	1260	38.6163	34.7025
17040	Нора	1965-2015	33	41.4065	41.4330	1719	,	1950-2015	1094	38.687	35.5
17042	Artvin	1965-2015	613	41.1752	41.8187	1719	2	1958-2015	950	38.3367	38.2173
17045	Ardahan	1967-2015	1827	41.1752	42.7055	1720	2	1957-2015	989	38.6443	39.2561
17040	Edirne		51	41.6767	42.7033 26.5508	1720	0	1966-2015	1139	38.8847	40.5007
		1949-2015				1720	U	1966-2015	1322	38.7509	40.5007
17052	Kırklareli	1966-2015	232 4	41.7382	27.2178	1720	,	1966-2015	1785	38.475	42.1625
17056	Tekirdağ	1963-2015		40.9585	27.4965	17200		1966-2013	895	37.9319	41.9354
17059	Kumköy	1965-2015	38	41.2505	29.0384						
17061	Sariyer	1955-2015	59	41.1464	29.0502	17220		1938-2015	29	38.3949	27.0819
17064	Kartal	1974-2015	18	40.9113	29.1558	1722	3 3	1966-2015	5	38.3036	26.3724
17066	Kocaeli	1945-2015	74	40.7663	29.9173	1723	3	1966-2015	25	37.8597	27.2652
17069	Sakarya	1962-2015	30	40.7676	30.3934	17234	2	1959-2015	56	37.8402	27.8379
17070	Bolu	1949-2015	743	40.7329	31.6022	1723		1959-2015	425	37.762	29.0921
17072	Düzce	1965-2015	146	40.8437	31.1488	1723		1964-2015	957	37.722	30.294
17074	Kastamonu	1948-2015	800	41.371	33.7756	1723	,	1964-2015	1002	38.3688	31.4297
17080	Çankırı	1959-2015	755	40.6082	33.6102	17240	*	1957-2015	997	37.7848	30.5679
17084	Çorum	1958-2015	776	40.5461	34.9362	17242		1965-2015	1141	37.6777	31.7463
17085	Amasya	1965-2015	40	40.6668	35.8353	1724	~	1950-2015	1029	37.8687	32.4713
17086	Tokat	1966-2015	611	40.3312	36.5577	1724		1965-2015	1018	37.1932	33.2202
17088	Gümüşhane	1966-2015	1216	40.4598	39.4653	1724	U	1970-2015	1046	37.5255	34.0485
17089	Bayburt	1966-2015	1584	40.2547	40.2207	17250	U	1959-2015	1211	37.9587	34.6795
17090	Sivas	1958-2015	1294	39.7437	37.002	1725:	3	1966-2015	572	37.576	36.915
17094	Erzincan	1957-2015	1216	39.7523	39.4868	1726	1	1957-2015	854	37.0585	37.351
17095	Erzurum	1956-2015	1860	39.9058	41.2544	17262		1966-2015	640	36.7085	37.1123
17097	Kars	1965-2015	1777	40.6042	43.1073	1726	2	1965-2015	672	37.7553	38.2775
17099	Ağrı	1967-2015	1646	39.7253	43.0522	17270	,	1959-2015	550	37.1608	38.7863
17100	Iğdır	1966-2015	856	39.9227	44.0523	1727:		1966-2015	1040	37.3103	40.7284
17110	Gökçeada	1970-2015	79	40.191	25.9075	1728		1940-2015	680	37.9094	40.2133
17111	Bozcaada	1970-2015	30	39.8326	26.0728	17282		1969-2015	610	37.8636	41.1562
17112	Çanakkale	1958-2015	6	40.141	26.3993	17290) Bodrum	1965-2015	26	37.0328	27.4398
17116	Bursa	1951-2015	100	40.2308	29.0133	17292	2 Muğla	1944-2015	646	37.2095	28.3668
17118	Yenişehir	1986-2015	238	40.2552	29.5624	1729	2	1960-2015	3	36.6266	29.1238
17119	Yalova	1962-2015	4	40.6589	29.2796	17293	Marmaris	1966-2015	16	36.8395	28.2452
17120	Bilecik	1960-2015	539	40.1414	29.9772	17310) Alanya	1964-2015	6	36.5507	31.9803
17126	Eskişehir	1940-2015	801	39.7656	30.5502	17320) Anamur	1965-2015	2	36.0686	32.8649
17129	Etimesgut	1968-2015	806	39.9558	32.6854	1733) Silifke	1964-2015	10	36.3824	33.9373
17130	Ankara	1940-2015	891	39.9727	32.8637	17340	Mersin	1958-2015	7	36.7808	34.6031
17135	Kırıkkale	1967-2015	751	39.8433	33.5181	1735	Adana	1944-2015	23	37.0041	35.3443
17140	Yozgat	1960-2015	1301	39.8243	34.8159	17370		1965-2015	4	36.5924	36.1582
17145	Edremit	1965-2015	19	39.5592	27.0253	17372		1957-2015	104	36.2048	36.1513
17150	Balıkesir	1957-2015	102	39.6326	27.9201	1737:		1966-2015	2	36.3024	30.1458
17155	Kütahya	1941-2015	969	39.4171	29.9891	1763		1938-2015	37	40.9758	28.7865
17160	Kırsehir	1941-2015	1007	39.1639	34.1561	17974	2	1983-2015	21	36.2715	32.3045
17160	Gemerek	1942-2013	1182	39.1039	36.0805	11)1-	Junpaga	2700 2010	-1	20.2110	02.0010
1/102	Gennerek	1700-2013	1102	37.103	50.0005						

Table 1. List of	meteorological	stations and	geographical details

Since the final observation year of the data employed in this study was 2015, the data that include the maximum rainfall intensities recorded until this date, and the place and dates of the observations are given in Table 2.

Table 2. Summary of historical maximum rainfall intensity series (TSMS)

Duration	Intensity (mm/min)	Location	Date
5'	10.10	Нора	07.07.1988
10'	6.06	Hopa	07.07.1988
15'	4.71	Hopa	07.07.1988
30'	3.03	Hopa	07.07.1988
60'	2.18	Antalya	03.11.1995
120'	1.50	Antalya	03.11.1995
180'	1.28	Marmaris	11.12.1992
240'	1.38	Antalya	03.11.1995
300'	1.25	Antalya	03.11.1995
360'	1.08	Antalya	03.11.1995
480'	0.86	Antalya	03.11.1995
720'	0.59	Antalya	03.11.1995
1080'	0.43	Marmaris	10-11.12.199
1440'	0.32	Marmaris	10-11.12.199

As seen in Table 2, the highest values at 5', 10', 15' and 30' rainfall intensities were measured at

Hopa(07.07.1988); 180', 1080' and 1440' rainfall intensities were measured at Marmaris (10-11.12.1991); and 60', 120', 240', 300', 360', 480' and 720' rainfall intensities were measured at Antalya (03.11.1995). It was also seen that the rainfall intensities decreased as the duration increased.

ABSOLUTE HOMOGENEITY TESTS (AHT)

The Standard Normal Homogeneity Test (SNHT), Buishand Rank Test (BRT), Pettitt Test (PT), and Von Neuman Ratio Test (VNRT), which are called AHT were used for the quality of meteorological data. These tests perform homogeneity analysis after examining the distributions of the data, and its logic is to identify the deviations from the means in the data. According to the results of the AHT, the data are analyzed in three classes as shown in Table 3 (Schonwiese & Rapp, 1997; Wijngaard, et al., 2003).

Table 3. Classes suggested by absolute homogeneity test results

Class	Code	Information
Useful	Ι	one or zero tests reject the null hypothesis (H_0) at the selected level.
Doubtful	II	two tests reject the null hypothesis (H_0) at the selected level.
Suspect	III	three or four tests reject the null hypothesis (H_0) at the selected level.

Standard Normal Homogeneity Test (SNHT)

This method, which was developed by Alexandersson (1986), was used successfully in testing many climatic and hydrological variables (Alexandersson, 1986). According to the H_0 the hypothesis that was accepted for the test, the data were distributed independently and randomly. The test is sensitive to detect the breaks or distortions at the beginning and end of the data series (Kahya et al., 2006). With let Y_i be the value at any instant, \overline{Y} be the mean, and *s* the standard deviation, Alexandersson (1986) identified a T(k) statistic comparing the mean of the first k years with the last n-k years and is shown in Eq. 1.

$$T(k) = k\bar{z}_1^2 + (n-k)\bar{z}_2^2; k = 1, \dots, n$$
⁽¹⁾

The \bar{z}_1 and \bar{z}_2 values given in Eq. 1 are calculated by using Eqs. 2-3.

$$\bar{z}_1 = \frac{1}{k} \sum_{i=1}^k \left(\frac{Y_i - \bar{Y}}{s} \right) \tag{2}$$

$$\bar{z}_2 = \frac{1}{n-k} \sum_{i=1}^k \left(\frac{Y_i - \bar{Y}}{s} \right) \tag{3}$$

If the change occurs at a "k" point, $T_{(k)}$ reaches its maximum value at k = K point. T_0 test statistics is given in Eq. 4.

$$T_0 = \max_{1 \le k \le n} T_{(k)}.$$
 (4)

The 95% Confidence Rank critical values for this test are given in Table 4 (Alexandersson, 1986; Jaruskova, 1996). If T_0 does not exceed the critical value, the H_0 hypothesis is accepted, in other words, it is considered to be homogenous (Alexandersson & Moberg, 1997).

Buishand Range Test (BRT)

The BRT assumes that the data are distributed normally, and according to the H_0 hypothesis, the data are distributed independently and randomly. This method is sensitive in detecting the distortions in the middle of the time series (Wijngaard et al., 2003). In this test, the partial sums are calculated as given in Eq. 5.

$$S_0^* = 0 \text{ and } S_k^* = \sum_{i=1}^k (Y_k - \bar{Y}); k = 1, \dots, n$$
(5)

When the data series is homogeneous, the S_0^* value will be "0" since there will be no systematic deviation of Y_i . The rate of the difference between the maximum and minimum S_k to the number of the data yields the *R* correction rate, which is calculated as the standard deviation as given in Eq. 6 (Wijngaard et al., 2003).

$$R = \frac{\max_{0 \le k \le n} S_k^* - \min_{0 \le k \le n} S_k^*}{s}$$
(6)

Buishand (1982) gave the critical $\frac{R}{\sqrt{n}}$ values that corresponded 95% Confidence Rank for this test in Table 4. If the $\frac{R}{\sqrt{n}}$ value does not exceed the critical value, the H_0 hypothesis is accepted, in other words, it is acceptable, and the data are homogenous.

Pettitt Test (PT)

This non-parametric method, which was developed by Pettitt (1979) to identify the change point in a time series, can find the change point on a monthly or annual scale (Pettitt, 1979). The null hypothesis denotes that the series has independent and random distribution, but the alternative hypothesis denotes that there is a sudden change. The test statistic is related to the Mann-Whitney Statistic (Wijngaard et al., 2003; Yerdelen, 2013). This test is least affected by outliers. Let the ranks of $Y_1, ..., Y_n$ series be $r_1, ..., r_n$, the test statistic is calculated according to Eq. 7;

$$X_k = 2\sum_{i=1}^k r_i - k(n+1); k = 1, ..., n$$
(7)

The result of this test is shown as *E* chart. If there is a break in *E* year, the statistic is maximum or minimum when close to k=E year (Eq. 8).

$$X_E = \max_{1 \le k \le n} |X_k| \tag{8}$$

The evaluation is made by considering the critical X_k values given in Table 4 identified for 95% Confidence Interval by Pettitt (1979) (Wijngaard et al., 2003).

Von Neumann Ratio Test (VNRT)

According to the H_0 hypothesis in the VNRT, the data are not randomly distributed. According to the opposite hypothesis; however, the time series considered is distributed randomly. This test does not detect a specific place where the homogeneity is disrupted and does not provide data on when the homogeneity is disrupted (Wijngaard et al. 2003).

Von Neuman Ratio N is calculated as in Eq. 9 and is defined as the ratio of the sum of the year-to-year mean values to the variance value (Von Neuman, 1941).

$$N = \frac{\sum_{i=1}^{n-1} (Y_i - \bar{Y}_{i+1})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$
(9)

If the resulting value of the test is greater than the identified critical value, the dataset is considered to be homogeneous. The critical values at 95% confidence interval are given in Table 4 (Owen, 1962; Buishand, 1981).

Table 4. Critical values of AHT based on data count at 95% Confidence Interval

Ν	20	30	40	50	70	100
SNHT	6.95	7.65	8.10	8.45	8.80	9.15
BRT	1.43	1.50	1.53	1.55	1.59	1.62
PT	57	107	167	235	393	677
VNRT	1.30	1.42	1.49	1.54	1.61	1.67

RESULTS

It is required in hydrological studies that the data be homogeneous. However, meteorological data such as precipitation and temperature, the errors stemming from the tools and methods used during measurements, environmental factors, etc. sometimes have an inhomogeneous structure because of many factors. For this reason, the series of the stations must be tested with homogeneity analysis methods before the analyses (Sahin, 2009; Sahin and Cigizoglu, 2010). In this context, the results of the Absolute Homogeneity Test regarding the rainfall intensity series of the 103 stations across Turkey are evaluated and classified according to Table 3 (results are given in Table 5).

 Table 5. AHT class results of the stations

ID	5'	10'	15'	30'	60'	120'	180'	240'	300'	360'	480'	720'	1080'	1440'
17015 17020							III							
17022 17024							III	Ш	III	III	III	III	III	III
17026						III	III	III	III					
17030								III	III	III	III	III		
17033 17034														
17040									III	III	III	III	III	
17042							III							
17045 17046	III	III	III	III	III									
17040							III	III	III	III	III			
17052														
17056							III			III		III	III	II
17059 17061	Ш	Ш	III III	III	III III	II III								
17061	III	III	m		m			m	111	111	111	111	111	111
17066				III		III	III	III	III	III	III			
17069				III	III	III	III	III	III	III				
17070 17072														
17072														
17080														
17084 17085														
17085														
17088														
17089														
17090 17094														
17094														
17097							III	III	III		III	III	III	III
17099 17100														
17110												III	III	
17111														
17112														
17116 17118														
17119	Ш													
17120						III	III	III	III	III	III			
17126 17129	Ш			III	III	III	III	Ш	III	III	III	III	III	
17129	Ш	III		111	111	111	111	111	111	111	111	111	111	
17135	-	-												
17140 17145														
17145 17150	III													
17155													III	
17160				III	III	III	III	III	III	III	III	III	III	Π
17162 17172														
17175														
17180					III	III	III	III	III			III		
17184 17186						III	III	III	III	III III	III	III	III	
17188										111				
17190														II
17192								III						
17193 17196		II											Π	
17199	III													
17201								III	II	Π	III	II	Π	
17203 17204														
17204					II							III	III	

Sürdürüle	bilir M	ühe	ndi	slik	Uygı	ulam	naları	ve T	ekno	lojik	Geliş	mele	er De	r <mark>gisi 2</mark>	022, 5(2): 123-13	7
	ID	5'	10'	15'	30'	60'	120'	180'	240'	300'	360'	480'	720'	1080'	1440'	
	17210															
	17220					II	III	III	III	III	III	III	III	III	II	
	17221							Π	II	Π	III	III		Π	II	
	17232						II	III	III	III	III	III	III	III	III	
	17234			II	II	II	III	III	Ш	II	II	II	II	Π		
	17237															
	17238															
	17239	II														
	17240										II	II				
	17242														II	
	17245															
	17246															
	17248															
	17250					II									**	
	17255	II							II	III	Π				II	
	17261															
	17262 17265															
	17203															
	17270														III	
	17275					II			Π	II	III	III	Π	III	111	
	17282					п			п	п		111	п	m		
	17290				II				II		Π	III	III	Π	II	
	17292			Π			Π	II				111				
	17296		II	П	Π	II	II	ш	Ш	Ш	Ш	III	III	III		
	17298						II	П		П	П	II	III	Π	III	
	17310	Π														
	17320	III														
	17330	II	II	II												
	17340												II			
	17351	III	II		Π	II	III	III	III	II	Π	Π	Π			
	17370	II														
	17372															
	17375															
	17636				II	III	III	III	III	III	III	III	III			
	17974															
	I	88	95	96	92	88	85	78	75	75	74	77	77	79	88	
	II	5	4	4	5	7	4	3	4	6	7	4	5	6	9	
-	III	10	4	3	6	8	14	22	24	22	22	22	21	18	6	

As a result of the AHT, the rainfall intensity series of 49 stations were classified to be useful. As it is seen in Table 5, the classification of all rainfall intensity series was obtained. The most appropriate series for using was at rainfall with 15' duration, the least series appropriate for using was determined at 360' rainfall with 74 stations. The geographical distribution of the stations identified to be homogeneous for 14 standard durations is given in Figure 2.

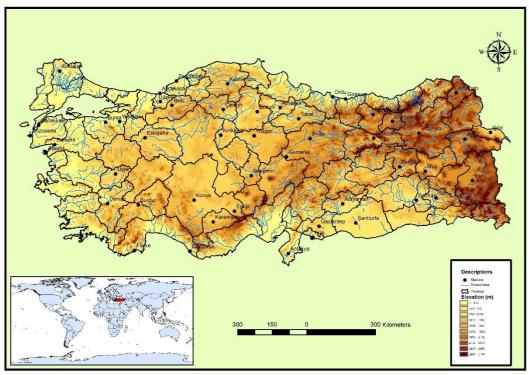


Figure 2. Geographical distribution of the useful stations

According to the results of AHT, the datas of the 54 meteorological observation stations were identified as doubtful or suspect for at least 1 standard duration. The station that had the lowest measurement quality was found to be Sariyer with 13 problematic series, which was followed by Kumköy and Fethiye with 12 problematic series. The geographical distribution of the stations that had doubtful/suspect values as a result of the AHT is shown in Figure 3.

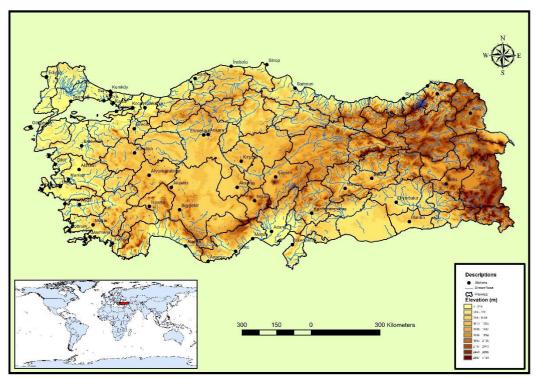


Figure 3. Geographical distribution of the doubtful/suspect stations

The disruption of the homogeneity in rainfall intensities of stations may occur because of a sudden rise or fall trends in temperatures with factors such as urbanization, as well as artificial reasons such as changing the location of the stations (Turkes et al., 2002; Sahin & Cigizoglu, 2010). For this reason, long-term climate changes and trends must be interpreted with care (Houghton et al., 1992; Sahin, 2009; Sahin & Cigizoglu, 2010). It was considered that the reason for the loss of homogeneity in stations with doubtful/suspect data of the 54 stations that were not suitable for use is possible trends, and therefore, the trend component in the time series was removed (Zeybekoglu & Ulke Keskin, 2020) by using the methodology suggested by Peng et al. (1994, 1995). The AHT were re-applied to the datasets which were free from the trend. The classes determined according to the results of the AHT of the series of the 54 stations that were not suitable for use at the end of the first stage and were separated from the trend component are given in Table 6.

17020 17024 17026 17030 17040 17042 17045 17050 17056 17059 17061 17064 17066 17069 17069 17097 17110														
17024 17026 17030 17040 17042 17045 17050 17056 17059 17061 17064 17066 17069 17069 17097 17110														
17026 17030 17040 17042 17045 17050 17056 17059 17061 17064 17066 17069 17069 17097 17110														
7030 7040 7042 7045 7050 7056 7059 7061 7064 7066 7069 7097 7110														
7040 7042 7045 7050 7056 7059 7061 7064 7066 7069 7097 7110														
7042 7045 7050 7056 7059 7061 7064 7066 7069 7097 7110														
7045 7050 7056 7059 7061 7064 7066 7069 7097 7110														
7050 7056 7059 7061 7064 7066 7069 7097 7110														
7056 7059 7061 7064 7066 7069 7097 7110														
7056 7059 7061 7064 7066 7069 7097 7110														
7059 7061 7064 7066 7069 7097 7110														
7061 7064 7066 7069 7097 7110														
7064 7066 7069 7097 7110	TTT													
7066 7069 7097 7110		TTT												
7069 7097 7110	III	III												
7097 7110														
7110														
7110														
7119	Π													
7120														
				п	п	п	п	п	п	п	п	п	п	
7129	TTT			П	II	II	II	II	II	Π	Π	Π	Π	
7130	III													
7150														
7155														
7160														
7180														
7184														
7186														
7190														
7192														
7196														
7199														
7201								Π						
7208														
7220														
7221														II
7232														
7234														
7239														
7240														
7242														
7250														
7255														
7281														
7290										Π	II	II	II	II
7292														
7296														
7298														
7310														
7310														
7320														
7330														
7340														
7351		II			II	III	II	Π						
7370														
7636														
	51	50	54	52	50	50	50	51	52	50	50	50	50	50
•	51	52	54	53	52	52	52	51	53	52	52	52	52	52
I II	1 2	1 1		1	2	1 1	2	3	1	2	2	2	2	2

Table 6. Absolute Homogeneity Test results of the stations that underwent DFA

When Table 6, which shows the Absolute Homogeneity Test results of the rainfall intensity series separated from the trend component by the DFA process is examined, it is found that Yalova (17119), Elazığ (17201), Çeşme (17221), and Ankara (17130) yielded doubtful/suspect values in 1 standard duration, Kartal (17064)

yielded doubtful/suspect values in 2 durations, Bodrum (17290) and Adana (17351) in 5 standard durations, and Etimesgut (17129) in 10 standard durations. The rainfall intensity series of the 14 standard durations of the 46 stations other than these 8 stations were classified as useful as a result of AHT.

CONCLUSION

The reliability of the observation data that are employed in hydro-meteorological studies is evaluated before the water resources, hydrological processes, and climate change studies are conducted. In this study, the maximum rainfall intensity series of a total of 103 stations across Turkey were examined by employing AHT. In the application of the homogeneity tests, which was made in two stages, the rainfall intensity data of useful and non-useful (doubtful/suspect) periods for use at the stations were determined in the first stage. In the second stage, the trend component is allocated to the rainfall intensities of the stations that are not suitable for use. Homogeneity Tests were applied again. After the second stage, an approach was preferred to suggest that stations with problematic or suspicious data, in other words, inhomogeneous data, must not be employed in future studies in at least 1 standard duration.

The geographical distribution of the 95 stations, 49 of which were at the end of the first stage and 46 of which were at the second stage, is given in Figure 4. Yalova, Elazığ, Çeşme, Ankara, Kartal, Bodrum Adana, and Etimesgut were found to have doubtful/suspect values according to the results of the homogeneity analysis performed after the trend component was separated.

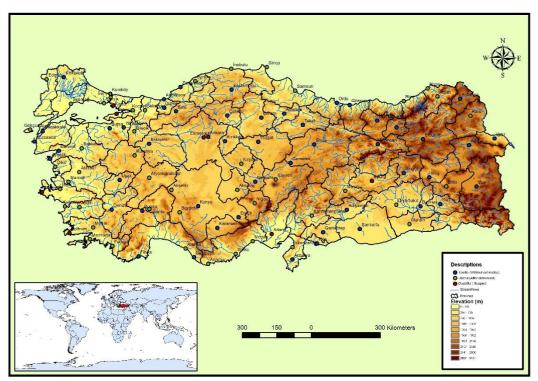


Figure 4. Geographical distribution of the station classes

The stations shown with black circles in Figure 4 are the stations that are suitable for use after the first stage, and the stations that are suitable for use after the second stage are indicated with black circles. The stations with a green circle show those that are recommended not to be used because of doubtful/suspect values in the AHT and DFA.

It is considered that the rainfall intensity series of 95 stations can be employed easily in climatic and hydrological studies. It is recommended that it would not be accurate to use the rainfall intensity series of the remaining 8 stations, and if they are used, it is recommended to carefully investigate the reasons for the deterioration of homogeneity.

Acknowledgements

The Authors would like to thank the Turkish State Meteorological Service for providing the data. The authors also thank the anonymous reviewers who expressed their opinions on the development of the manuscript.

Conflict of Interest

The authors declare no competing interests.

REFERENCES

- Agha OMAM., Bagcaci SC., Sarlak N. Homogeneity analysis of precipitation series in North Iraq. IOSR Journal of Applied Geology and Geophysics 2017; 5(3) Ver. II: 57–63.
- Ahmed K., Nawaz N., Khan N., Rasheed B., Baloch A. Inhomogeneity detection in the precipitation series: case of arid province of Pakistan. Environment, Development and Sustainability 2021; 23:7176–7192. <u>https://doi.org/10.1007/s10668-020-00910-y</u>
- Aksu H., Cetin M., Aksoy H., Yaldiz SG., Yildirim I., Keklik G. Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey. Natural Hazards 2022; 111: 2379– 2405. https://doi.org/10.1007/s11069-021-05141-6
- Alexandersson H. A homogeneity test applied to precipitation data. Journal of Climate 1986; 6(6):661–675 https://doi.org/10.1002/joc.3370060607
- Alexandersson H., Moberg A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. International Journal of Climatology 1997; 17(1): 25-34. <u>https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J</u>
- Ay M. Trend and homogeneity analysis in temperature and rainfall series in western Black Sea region, Turkey. Theoretical and Applied Climatology 2020; 139: 837–848. <u>https://doi.org/10.1007/s00704-019-03066-6</u>
- Ay M. Trend tests on maximum rainfall series by a novel approach in the Aegean region, Turkey. and Atmospheric Physics 2021; 133: 1041–1055. <u>https://doi.org/10.1007/s00703-021-00795-0</u>
- Bickici Arikan B. Prediction of drought indices based on hydroclimatological data. Istanbul Technical University PhD Thesis, Istanbul, Turkey, 2018.
- Bickici Arikan B., Kahya E. Homogeneity revisited: analysis of updated precipitation series in Turkey. Theoretical and Applied Climatology 2018; 135(1–2): 1–10. <u>https://doi.org/10.1007/s00704-018-2368-x</u>
- Buishand TA. The analysis of homogeneity of long-term rainfall records in the Netherlands. The Royal Netherlands Meteorological Institute, 1981
- Buishand TA. Some methods for testing of rainfall records. Journal of Hydraulics 1982; 58(1-2): 11–27. https://doi.org/10.1016/0022-1694(82)90066-X
- Conrad V., Pollak C. Methods in climatology. Cambridge: Harvard University Press, 1950.
- Demir S., Karakaya K., Kavuncu O., Akdoğan, Y. trend analysis of climate parameters of Ordu province and determination of change point. Gaziosmanpasa Journal of Scientific Research 2021; 10(1): 128-141.
- Em A., Hamidi N., Toprak, ZF. Variation in annual total precipitation and its homegeneous analysis at GAP Region. 1st Turkey Climate Change Congress, 11-13 April 2007, 379-393, Istanbul.
- Eris E., Agiralioglu N. Homogeneity and trend analysis of hydrometeorological data of the Eastern Black Sea Region, Turkey. Journal of Water Resource and Protection 2012; 4(2): 99-105. <u>https://doi.org/10.4236/jwarp.2012.42012</u>
- Feng S., Hu Q., Qian W. Quality control of daily meteorological data in China, 1951–2000: a new dataset.

Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi 2022, 5(2): 123-137 International Journal of Climatology 2004; 24(7): 853–870. https://doi.org/10.1002/joc.1047

- Firat M., Dikbas F., Koc AC., Gungor M. Missing data analysis and homogeneity test for Turkish precipitation series. Sadhana-Academy Proceedings in Engineering Sciences 2010; 35(6): 707–720. <u>https://doi.org/10.1007/s12046-010-0051-8</u>
- Gokturk OM., Bozkurt D., Sen OL., Karaca M. Quality control and homogeneity of Turkish precipitation data. Hydrological Processes 2008; 22(16), 3210–3218. <u>https://doi.org/10.1002/hyp.6915</u>
- Gonzalez-Rouca JF., Jimenez JL., Quesada V., Valero F. Quality control and homogeneity of precipitation data in the Southwest of Europe. Journal of Climate 2001; 14: 964-978. <u>https://doi.org/10.1175/1520-0442(2001)014<0964:QCAHOP>2.0.CO;2</u>
- Haktanir T., Citakoglu H. Trend, independence, stationarity and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. Journal of Hydrologic Engineering 2014; 19(9): 1–13. <u>https://doi.org/10.1061/(ASCE)HE.1943-5584.0000973</u>
- Hanssen-Bauer I., Førland J. Homogenizing long Norwegian precipitation series. Journal of Climate 1994; 7: 1001–1013. <u>https://doi.org/10.1175/1520-0442(1994)007<1001:HLNPS>2.0.CO;2</u>
- Houghton J., Callendar BA., Varney SK., Eds. (1992): Climate Change: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press.
- Jaruskova D. Change-point detection in meteorological measurement. Monthly Weather Review 1996; 124: 1535-1543. <u>https://doi.org/10.1175/1520-0493(1996)124<1535:CPDIMM>2.0.CO;2</u>
- Kahya E., Cigizoglu HK., Dorum A., Karabork MC., Kömüşcü UA., Cengiz MT., Marti IA., Tarhan M. El Nino ve La Nina Olaylarının Etkileri ile Türkiye'deki Yağış Zaman Serilerinin Karakteristik Özelliklerindeki ve Dağılımlarındaki Değişkenlerin Analizi, YDABAG 102Y146, Research Project. The Scientific and Technological Research Council of Turkey (TUBITAK), Turkey (in Turkish), 2006.
- Kang HM., Yusof F. Homogeneity tests on daily rainfall series in Peninsular Malaysia. International Journal of Contemporary Mathematical Sciences 2012; 7(1): 9-22.
- Karabork MC., Kahya E., Komuscu AU. Analysis of Turkish precipitation data homogeneity and the Southern Oscillation forcings on frequency distributions. Hydrological Processes 2007; 21(23): 3203–3210. <u>https://doi.org/10.1002/hyp.6524</u>
- Khalil A. Inhomogeneity detection in the rainfall series for the Mae Klong River Basin, Thailand. Applied Water Science 2021; 11:147. <u>https://doi.org/10.1007/s13201-021-01474-6</u>
- Mair A., Fares A. Assessing rainfall data homogeneity and estimating missing records in Mākaha Valley, Oʻahu, Hawaiʻi. Journal of Hydrologic Engineering 2010; 15(1): 61-66. <u>https://doi.org/10.1061/(ASCE)HE.1943-5584.0000145</u>
- Owen DB. Handbook of Statistical Tables. Addison-Wesley, Reading, Mass: Addison-Wesley Pub. Co., 1962.
- Peng CK., Buldyrev SV., Havtin S., Simons IM., Stanley HE., Goldberger AL. Mosaic organization of DNA nucleotides. Physical Review E 1994; 49(2): 1685–1689. <u>https://doi.org/10.1103/physreve.49.1685</u>
- Peng CK., Havlin S., Stanley HE., Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5(1): 82-87. https://doi.org/10.1063/1.166141
- Peterson, TC., Easterling DR. Creation of homogeneous composite climatological reference series.

International Journal of Climatology 1994; 14(6):671-679. https://doi.org/10.1002/joc.3370140606

- Pettitt AN. A non-parametric approach to the change-point detection. Applied Statistics 1979; 28(2): 126–135. https://doi.org/10.2307/2346729
- Pirnia A., Golshan M., Darabi H., Adamowski J., Rozbeh S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change 2019; 10(4): 725–742. <u>https://doi.org/10.2166/wcc.2018.162</u>
- Sahin S. Applying artificial neural networks on determining climate zones and comparison with the Ward's Method. Istanbul Technical University PhD Thesis, Istanbul, Turkey, 2009.
- Sahin S., Cigizoglu HK. Homogeneity analysis of Turkish meteorological data set. Hydrological Processes 2010; 24(8): 981–992. <u>https://doi.org/10.1002/hyp.7534</u>
- Salarijazi M., Akhond AA., Adib A., Daneshkhah A. Trend and change-point detection for the annual streamflow series of the Karun river at the Ahvaz hydrometric station. African Journal of Agricultural Research 2012 7(32): 4540–4552. <u>https://doi.org/10.5897/AJAR12.650</u>
- Schonwiese CD., Rapp J. Climate Trend Atlas of Europe Based on Observations 1891–1990. Dordrecht: Kluwer Academic Publishers, 1997.
- Serra C., Burguen A., Lana X. Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE Spain) in the period 1917–1998. International Journal of Climatology 2001; 21(5): 617–636. <u>https://doi.org/10.1002/joc.633</u>
- Sonmez I. Quality control tests for western Turkey Mesonet. Meteorological Application 2013; 20(3): 330–337. https://doi.org/10.1002/met.1286
- Suhaila J., Deni SM., Jemain AZ. Detecting inhomogeneity in Peninsular Malaysian rainfall series. Asia-Pacific Journal of the Atmospheric Sciences 2008; 44(4): 369-380.
- Suhaila J., Yusop Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics 2018; 130(5): 565–581. https://doi.org/10.1007/s00703-017-0537-6
- Talaee PH., Kouchakzadeh M., Shifteh Some'e B. Homogeneity analysis of precipitation series in Iran. Theoretical and Applied Climatology 2014; 118(1–2): 297–305. <u>https://doi.org/10.1007/s00704-013-1074-</u> <u>¥</u>
- Tayanc M., Dalfes H., Karaca M., Yenigün O. A comparative assessment of different methods for detecting in homogeneities in Turkish temperature data set. International Journal of Climatology 1998; 18(5): 561– 578. <u>https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<561::AID-JOC249>3.0.CO;2-Y</u>
- Tsega M., Tibebe D. Homogeneity tests on rainfall records for selected meteorological stations in Ethiopia. dvanced Journal of Agricultural Research and Reviews 2018; 2(3): 72–78.
- Turkes M. Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology 1996; 16: 1057–1076. <u>https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<1057::AID-JOC75>3.0.CO;2-D</u>
- Turkes M. Spatial and temporal variations in precipitation and aridity index series of Turkey. In: Bolle HJJ. (ed.) Mediterranean Climate. Heidelberg: Springer Verlag 2002; 181-213. <u>https://doi.org/10.1007/978-3-642-55657-9_11</u>

- Turkes M., Sumer UM., Kilic G. Observed changes in maximum and minimum temperatures in Turkey. International Journal of Climatology 1996; 16(4): 463-477. <u>https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<463::AID-JOC13>3.0.CO;2-G</u>
- Turkes M., Sumer UM., Kilic G. Persistence and periodicity in the precipitation series of Turkey and associations with 500 hPa geopotantial heights. Climate Research 2002; 21: 59-81. <u>https://doi.org/10.3354/cr021059</u>
- Turkish State Meteorological Service (TSMS). Standart Zamanlardaki Maksimum Yağışlar ve Tekerrür Analizi. Ankara, Turkey. <u>https://mgm.gov.tr/genel/hidrometeoroloji.aspx?s=6</u>.
- Von Neumann J. Distribution of the ratio of the mean square successive difference to the variance. Annals of Mathematical Statistics 1941; 13: 367– 395. <u>https://doi.org/10.1214/aoms/1177731677</u>
- Wijngaard JB., Klein Tank AMG., Konnen GP. Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 2003; 23: 679–692. <u>https://doi.org/10.1002/joc.906</u>
- Yerdelen C. Investigation of trend analysis and change point detection for annual mean streamflows of Susurluk Basin. Dokuz Eylul University Faculty of Engineering Journal of Engineering Sciences 2013; 15(44): 77-87.
- Yesilirmak E., Akcay S., Dagdelen N., Gurbuz T., Sezgin F. Quality Control and Homogeneity of Annual Precipitation Data in Büyük Menderes Basin, Turkey. International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 29 October - 01 November 2008; pp. 225-233, Aydin.
- Zaifoglu H., Akintug B., Yanmaz AM. Quality control, homogeneity analysis and trends of extreme precipitation indices in Northern Cyprus. Journal of Hydrologic Engineering 2017; 22(12): 1–14. <u>https://doi.org/10.1061/(ASCE)HE.1943-5584.0001589</u>
- Zeybekoglu U., Ulke Keskin A. Detrended fluctuation analyses of rainfall intensities: a case study. International Journal of Global Warming 2020; 21(2): 141-154. <u>https://doi.org/10.1504/IJGW.2020.108175</u>