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Keywords Abstract: Our work on regression and classification provides a new contribution
T}me series, to the analysis of time series used in many areas for years. Owing to the fact that
Linear Regression, convergence could not obtained with the methods used in autocorrelation fixing
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Fuzzy Least Squares Model,
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process faced with time series regression application, success is not met or fall into
obligation of changing the models’ degree. Changing the models’ degree may not be
desirable in every situation. In our study, recommended for these situations, time
series data was fuzzified by using the simple membership function and fuzzy rule
generation technique (SMRGT) and to estimate future an equation has created by
applying fuzzy least square regression (FLSR) method which is a simple linear
regression method to this data. Although SMRGT has success in determining the
flow discharge in open channels and can be used confidently for flow discharge
modeling in open canals, as well as in pipe flow with some modifications, there is
no clue about that this technique is successful in fuzzy linear regression modeling.
Therefore, in order to address the luck of such a modeling, a new hybrid model has
been described within this study. In conclusion, to demonstrate our methods’
efficiency, classical linear regression for time series data and linear regression for
fuzzy time series data were applied to two different data sets, and these two
approaches performances were compared by using different measures.

SMGRT Yéntemi ile Bulaniklagtirilmis Zaman Serileri I¢in Bulanik Dogrusal Regresyon

Anahtar Kelimeler Ozet: Regresyon ve siniflandirma iizerine yaptigimiz bu calisma, yillardir birgok
Zar?an serileri, alanda kullanilan zaman serileri analizine yeni bir katki saglamaktadir. Zaman
Dogrusal regresyon, serileri i¢cin regresyon uygulamasinda karsilasilan otokorelasyonun kaldirilmasi

Bulanik dogrusal regresyon, < o .
Bulanik en kiiciik kareler asamasinda ¢ogu kez ya uyum saglanamadigindan basariya ulasilamamakta ya da

. . modelin derecesinin degistirilmesi zorunluluguyla karsi karsiya kalinmaktadir.
yontemi, . L o C . . . -
SMRGT y6ntemi Modelin derecesinin degistirilmesi ise her zaman istenilen bir durum olmayabilir.

Boyle durumlarda kullanilmak {izere Onerilen ¢alismamizda, zamana bagh
veriler basit iiyelik fonksiyonu ve bulaniklik kural liretim teknigi (SMRGT) ile
bulaniklastirilmis ve elde edilen degiskenler icin bulanik en kii¢iik kareler (Bulanik
EKK) modeli ile basit dogrusal regresyon yontemi uygulanarak gelecege yonelik
tahmine iliskin bir denklem olusturulmustur. SMRGT agik kanallarda debi akisini
belirlemede basarili olmasina ve acik kanallarda debi akisini modellemede giivenle
kullanilabilmesine ragmen bu teknigin bulanmik dogrusal regresyon
modellemesinde de basarili olacagi hakkinda hig¢bir ip ucu yoktur. Bu nedenle bu
tiir bir modellemenin eksikligi adres gosterilerek yeni bir hibrit model bu ¢alisma
kapsaminda tarif edilmistir. Sonug¢ olarak yontemin gecerliliginin dl¢tilebilmesi
bakimindan zaman serileri i¢cin dogrusal regresyon ve bulanik zaman serileri icin
dogrusal regresyon iki ayr1 veri setine uygulanmis ve bu iki yaklasimin
performanslari cesitli 6l¢tim kriterleri kullanilarak karsilastirilmistir.

*ilgili yazar: syalaz@dicle.edu.tr 405
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1. Introduction

While the modeling of some systems that human
estimation is effective, it can be encountered with a
fuzzy structure. These fuzzy structure parameters
can be presented as a fuzzy linear function obtained
from fuzzy sets. Fuzzy linear functions are defined by
the Zadehs’ expansion theory [1].

The fuzzy time series forecasting problem has been
studied by several authors at last decade. Song and
Chissom introduced time-variant and time-invariant
fuzzy time series models, gave properties of them and
discussed procedures to develop fuzzy time series
models [2]. Chen (1996) proposed a method which is
more efficient than the one presented in Song and
Chissom due to the fact that his method uses
simplified arithmetic operations rather than the
complicated max-min composition operations
presented in Song and Chissom [3]. Huarng
determined effective lengths of intervals, distribution
and average based length, which has not been
touched in previous studies [4]. Chen (2002)
presented a new method, to deal with the forecasting
problems based on high-order fuzzy time series and
genetic algorithms, which achieves a higher
forecasting accuracy rate than the existing methods
[5]. Tsaur et. al obtained a fuzzy relation matrix
represents a time-invariant relation to measure the
degrees of fuzziness [6]. Singh proposed a new
method of fuzzy time series forecasting based on
difference parameters for the accuracy in the
forecasted values [7].

All these studies are related directly with fuzzy time
series. In present work the aim is to introduce the
method to fuzzify variables for using fuzzy least
squares method.

When a fuzzy linear function is considered for
modeling the fuzziness of the system, a fuzzy linear
regression analysis is formulated. Owing to the fact
that convergence could not obtained with the
methods used in autocorrelation fixing process faced
with time series regression application, success is not
met or fall into obligation of changing the models’
degree. Changing the models’ degree may not be
desirable in every situation. In these situations a new
regulation methodology is needed.

Toprak proposed SMRGT for open canal flow
modeling [8]. Toprak et. al also used this method on
determination of losses in water-networks [9,10].
Coskun created the automated fuzzy model
generation based on SMRGT [11]. Yalaz (Toprak) et.
al used SMRGT to fuzzify variables to use least
squares method to predict linear parameters [12,13].

In this study a new hybrid model is proposed based
on the basic concepts of SMRGT to fuzzify variables
and fuzzy regression models approaches to time-
series forecasting [14]. In the proposed model, the
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SMRGT is used to preprocess raw data and to provide
the necessary background to apply a fuzzy regression
model. Success of SMRGT is only demonstrated in
determining the flow discharge in open channels.
Because of this reason the new hybrid model has
been described with some changes in SMRGT to show
success of this technique in fuzzy linear regression
modeling.

In order to highlight its appropriateness and
effectiveness, our proposed method is applied to two
different data sets and their performance is
compared with linear regression model for time
series.

2. Material and Method
2.1. Time series

Time series, known as the series obtained as a
function of time. Time series which is the most
important way to make predictions for the future is
based on time dependency on successive
observations. Incoming observations can be
predicted with a function which is adapted to the
series. Economic time series is in the first place in
time series application subjects.

To perform time series analysis, trend, cyclical
variations, seasonal variations and irregular
variations which lead to errors in parameter
estimation, in other words cause stationary took into
account, are necessary to control. A time series is
stationary if its mean and variance do not vary
systematically over time [15]. In nonstationary series
using indexes calculated for the effects except time,
relevant effects are destroyed. Time series analysis is
applicable after this process [16].

In most of the time series, consecutive observations
are interconnected. In this case the method that does
not use dependency advantage is not suitable. Instead
of this method using ARIMA models which use the
dependence structure of time series in a very efficient
manner and known as Box-Jenkins (B]) forecasting
models [17] will be more appropriate.

BJ forecasting models are successful methods used to
predict future estimates of univariate time series.
Because these models determine the structure of a
time series, use the dependency of observations and
include the statistical tests in model determination
stages, compared to other estimation methods they
are the superior models to make short-term
prediction [18]. B] forecasting models can be divided
into four models;

AR (Autoregressive) Models,

MA (Moving Average) Models,

ARMA (Autoregressive Moving Average) Models,
ARIMA (Autoregressive Integrated Moving
Average) Models.

iii.
iv.
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Because we will only deal with the AR model, this
model will be introduced here. Autoregressive (AR)
model describes observation of a time series at any
time during, depending on the error term and a
certain number of past period observations of the
series. AR model is called according to the number of
past period observation that they contain. Generally,
AR model of order p denoted by AR (p) and defined

Xt =01 Xeq1+ o+ @pXep+ & (1)
where X;, X;_1, X;2,.., X;—p are the independent
variables and @,¢;,...,¢, are the model
parameters. It is assumed white noise process has
normal distribution with zero mean and ¢? variance.
The model contains p +2 unknown parameters
(4, 02) which have to be estimated. In practice
commonly used AR models are the first and second
degree AR models which are demonstrated as AR(1)
and AR(2). AR models can be written in the form of
difference models as follows,

BX; = X;_1,B*X; = X;_5,,BPX; = X, (2)
Using this equation the p-th degree of AR model is
written as

X, = (@B + -+ @,BP)X, + &
or,

& = (1 - ¢B—— <ppo)Xt 3)
where B is called backward shift operator. Stationary
condition in AR models is possible in terms of
remaining the roots found by equalizing polynomial
to zero outside the unit circle. If the roots are outside
the unit circle, AR (p) can be used for stationary time
series [17]. AR(1) model descibed by backward shift
operator is & = (1—¢,B)X;.|p.] <1 condition
should be satisfied for the stationary model. AR(2)
model descibed by backward shift operator is
& =1 —@1B—0:B)X;. 91+, <1, 9, —; <1
and |@,| <1 equations should be satisfied for the
stationary model.

Selection of appropriate models for time series, is
performed by B] Models. The steps are described
below:

Model group is determined by examining the
series forming observations. At this stage, it is
decided to which model of the group would be
appropriate. The first work which has to be done
in determining the appropriate model is to
determine the stationary. The tools for
examining the stationary are autocorrelation
and correlograms of functions.

It is decided from the group agreed, which
model type would be appropriate for the
relevant series. While analysing stationary time
series and at forecasting stages one of three
types of models (AR, MA, ARMA) is used. Model
selection is performed with using

1iL.
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autocorrelation and partial autocorrelation
functions. The degree of parameters is also
determined for the model selected in this way.
The model parameters judged to appropriate
are estimated. Estimation of the parameters
phase is extremely complex and requires the
time-consuming process. These processes differ
in the type and each model is performed with
the use of statistical packages.

Using the standard error of the estimated
autocorrelations as a measure cannot be clearly
demonstrated the importance of
autocorrelations differs from zero, calculated in
low degree delay [19]. Therefore, adequacy of
the model is tested with Box-Pierce statistics. If
the model is adequate it is used for the
estimation. Otherwise, it should be returned to
the first step.

iv.

2.1.1. Linear regression for time series

When equation (1) demonstrates autoregressive
AR(p) model considered for t = 2,...,n; it can be
written as;

X, = @1X + e

X3 = @1 X; + @, X1 +e5

AR(p) = (4)

Xn =01 X1+ -+ @ 1X+ey
This equation is not defined for t = 1. Because there

is no X,. When y = (X,, ..., X,,)T the matrix form of
the equations (4) can be shown as

X, X1 0 0 P1 €2

X3 _ X2 Xl s 0 (pz e3
C= . . : : +1
: : : X, :

Xn Xn—1 Xn—2 X1/ \Pn-1 én

Y(m-1x1) = X((-1x(n-1)P((n-1x1) T E((n-1)x1)

y=Xp+e¢& (5
In linear regression method, putting ¢ parameter in
the regression equation gives you ability to make
predictions about future [20].

Equation (5) which is constructed dependent on
AR (p) time series model is similar to linear
regression equation. However, to be able to apply
regression method to this equation, E(g;,&_1) =0
assumption which is not coincided in time series,
should be implemented [21]. Thus, DW test is applied
to this model to measure autocorrelation [22,23]. If,
there are autocorrelations between consecutive
errors, Prais-Winsten approach [24] can be used to
fix autocorrelation. In this method, autocorrelation
between consecutive errors can be fixed gradually
[25]. Thus, ¢ parameters can be estimated via linear
least square regression estimation method.
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Lets fix the autocorrelations between consecutive
errors via Prais-Winsten method, considering AR (1)
model X, =¢X;_1 +¢&; t=2,..,n,. Stationary
condition is defined as |p| < 1. For this correction, in
the first step, first derivative of the residual sum of
squares RSS should be equalized to zero as follows:

n n
RSS = ) e = ) X = Xl
t=2 t=2

ORSSS
091

n
= Z(_Z)Xt—l[xt - P1X4] =0,

t=2

Dt=2 Xe1Xe — P 2P Xt2—1 =0. (6)

When the equation above is solved, estimated value

A~ Yhep Xe—1Xt . .
of ¢; can be found as @; = =52—=—. Using with
Tt=2 Xt
estimated @, in the equation, fort = 2,..,n;
n XX 7
& =Xe—P1Xeq = X — —Zt_z - 21 : X1 (7
t=2X{ 1

values can be calculated. Thus, correlation coefficient
between t_th and (¢t — 1)_th errors can be calculated

L B

as using p,,, = %fort =3,..,n
t—-1

TP Xe-1X SR Xp_pXe—
Z[Xt_g:nz—;zltxt—l][xt—l—WXt_z
ﬁlw — t=2"t-1 t=3 2t—2 (8)
p Z[Xt 1_2?:3Xt—2Xt—1Xt 2]
T3 Xi-z

If this value is put to the 3_th step equation of Prais-
Winsten method, fort = 3,..,n

(Xt - ﬁ;th—1) = b(Xt—l - ,6117th—2) + v 9

is acquired. In the second step, using
Xe1" o (Xt—l - ,6117th—2)' X - (Xt - ﬁzlant—1) a
new equation can be found as X," = bX,_;* + v, and
returned to the first step. In this manner, this cycle
should be run till acquire py,, = 0, (i = 1, ...,n).

The last equation which has no autocorrelation will
provide the regression assumptions stated above and
will be ready to be applied regression methods. The
equation which has no autocorrelations also can be
found for AR(2),...,AR(p) models. After the time
series equation gets ready to be applied linear
regression with Prais-Winsten method, the least
square estimation of ¢ can be obtained as

P = (P2, P2 o) (/A’n—1)T;

$ = min,||el|?= min,|ly — Xol|?
= miny(y — X@)' (y — Xo)

(10)
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This minimization problem, acquired with the
solutions of normal equations in linear regression
defined as

0y —Xe)' (y—Xop)
e B

0

¢ =9=XX"X"y (11)
IfXTX is singular, the system is inconsistence and the
equation above can not be obtained. In this case,
using Tikhonov (Ridge estimator) regularization the
problem can be solved with singular value
decomposition [26].

However at the end of the Prais-Winsten procedure,
fixes autocorrelation gradually, autocorrelation could
not removed or fall into obligation of changing the
models’ degree. In these undesirable situations a
new hybrid model is proposed based on the basic
concepts of SMRGT to fuzzify variables and fuzzy
regression models approaches to time-series
forecasting.

3. Fuzzy Forecasting Models

3.1. Simple membership function and fuzzy rule
generation technique (SMRGT)

As mentioned previously, the main question in any
given fuzzy system is how construct the membership
functions (MFs) and fuzzy rules (FRs), such that the
system yields the best results. In this study, therefore,
a simple technique is proposed to help those who
have difficulties in deciding on the number, the shape,
and the logic of the MFs and FRs in any fuzzy system.
In Toprak, 2009, a new fuzzy technique was
introduced for open canal flow modeling depends
only on some key numbers for all MFs of input and
output variables. The key numbers were selected
according to the MF shape (triangular, trapezoid, etc.)
and the defuzzification method (centroid, maximum
membership degree, etc.).

The proposed method used the following algorithm
with relevant steps, which should be applied for
successful results [8]:

i Decide on the independent variables which
affect the dependent variable for the event at
hand. The independent variables are inputs,
whereas the dependent variable(s) is the output
of the fuzzy system.

Determine the maximum and the minimum
values (variation domain) for each variable.
Decide on the MF shape (i.e, triangular,
trapezoidal, etc.).

il

il

iv. Decide on the number of the MF for each
independent variable (a minimum number of
3MF is required).

v. Determine the width and the core of the MFs

with their key values for each independent



S.Yalaz, A. Atay / Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method

variable. Note that the number of key values will
be equal to the number of the MFs for each
independent variable (Figure 1).

Core
-

I 1

I |

| I

I 1

| 1
bo undary bo undary
D Width "

Figure 1. Parts of fuzzy set

vii These key values are the inputs of the fuzzy
model.
vii. ~ The fuzzy model is valid for the data distributed
between the key values of the first and the last
MFs for each variable.
viii. ~ Tables of fuzzy rules are prepared (Table1).

Although this technique is successful in determining
the flow discharge in open channels and can be used
confidently for flow discharge modeling in open
canals, as well as in pipe flow with some
modifications, there is no research paper which
demonstrates that this technique is successful in
fuzzy linear regression modeling. Therefore, in order
to address the luck of such a modeling, a new model
has been described within this study.

3.2. Fuzzy least squares

A clear path to move fuzzy regression model, in line
with the statistical regression, is modeling fuzzy
regression along the same lines [27]. Let began with
the standard linear regression model described in
equation (5).

In contrast, the fuzzy regression model may take the
following form:

y=Xp+& (12)

Conceptually the i-th fuzzy response and explanatory
variables as shown in the figure 2.
¥

Output
Datay;

Input
Data x;

Figure 2. Relationships between variables in fuzzy linear
regression

If the equation is rearranged, & = ¥ — X¢ is obtained.

The problem turns into the following form with least
squares perspective:

minZ(fl —X'go)z (13)

4. Formulation of the Proposed Model

For a given fuzzy linear regression how can the least
squares approach be optimally designed? SMRGT can
be used with the well-known fuzzy least squares
equation which is shown in equation (12) for
fuzzification of the variables. With this method, the
limitation of autocorrelation fixing process in linear
regression process is lifted through investing on the
advantages of the fuzzy regression models.

The main difference of the proposed method from the
SMRGT is that output is the multiple of inputs in
SMRGT, but in our method ¢ parameter is estimated
using input and output. Because of this situation the
number of MFs (nyps) for dependent variable is
chosen square of nyp for independent variable.

Let fuzzify the independent variable X = (X4, ..., X,))"
and dependent variable y = (X,,..,X,)T. The
problem can be modeled in light of the SMRGT
algorithm given in the section 3.1.

The maximum and minimum of the independent and
dependent variable X,,,4, X;min Were decided.

For this model the MF shapes adopted were triangles,
which are the simplest form of the MF, for each
variable.

Because of the difficulty in running the program from
hard or removable drives ny s for each independent
variable is limited to five. With this decision n, for
dependent variable is limited to twenty five.

The width (variation range) Xy of the variables can be
obtained by:

Xr = Xmax = Xmin (14)

The key values of the intermediated MFs, K; is
determined. For the intermediated MFs one can
accept the unit width of the MF as the width of a right
angled triangle. Therefore, the unit width, UW, is
given as:

XR

Uw ==R (15)

Ny
where n, was the number of units.

On the other hand, the neighboring MFs should
overlap with each other. Therefore, for each unit of
MF it was necessary to have extended unit width,
EUW, symmetrically as:

3UW
EUW = —— (16)

For the center MF:
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XR 17
K; = 7 + Xonin ( )
For the previous MF:
Ki_1 = W + Xonin (18)
For the next MF:
Ximax — Ki (19)

)

The key values of the first, K; , and the last, Knppsr
MFs corresponded to the centroid of these MFs,
which can be calculated as:

Kiv1 = Xmax — ( 2

EUwW

Ky = Xmin + =5~ and K, Ew

mrs = Xmax =5 (20)
Using this rules the key values fuzzy dependent
¥ = X, and independent variable X = [X;, X, .. X,| =
[X;-1 X,z ...X;_p] can be calculated. These key
values are used to create table of fuzzy rules (Table

1). Data of this table are the inputs and outputs of the

fuzzy least squares method for fuzzy linear
regression model
p=X%) Xy (21)

In the current modeling we proposed to use
triangular MFs and the centroid method for

Table 1. Fuzzy rules for nygs = 5,p =2

defuzzification. The procedure of the proposed model
is described in figure 3.

‘ Training Data Set ‘

U

Phasel: Determining
data and min-max
peints of variables

Results
2

Deciding shape and
the number of MFs

I

Phase2: Determining
the minimal fuzziness

! P 1
it Training Data !

New fuzzy training data set

Center and width of
fuzzy variables (Key
values of variables)

Il

Phase3: Applying fuzzy
least squares regression

Optimum structure
and weight

Results
%

Center and width of
fuzzy parameters (Key
values of parameters)

57

Forecasting

Figure 3. Procedure in the proposed model

Fuzzy Rules Independent Variable1l Independent Variable2 Dependent Variable
Number Numerical Linguistic  Numerical Linguistic Numerical Linguistic
1 Ki Very Low K2 Very Low Ky 1
2 K Very Low K3 Low Ky 2
3 Ki Very Low K2 Medium K 3
4 K} Very Low K? High Ky 4
5 K Very Low K2 Very High K2 5
6 K} Low K Very Low K} 6
7 K} Low K2 Low K 7
8 K} Low K2 Medium K7 8
9 K} Low K2 High K 9
10 K3 Low KZ Very High K3, 10
11 K3 Medium K2 Very Low Ky, 11
12 K3 Medium K? Low K7, 12
13 K3 Medium K? Medium K7, 13
14 K3 Medium K} High K, 14
15 K3 Medium KZ Very High K7 15
16 K3 High K? Very Low K7, 16
17 Ki High K? Low K7, 17
18 K3 High K? Medium Ky 18
19 K} High K? High K3, 19
20 K3 High KZ Very High K3, 20
21 K2 Very High K? Very Low K2, 21
22 K2 Very High K? Low K3, 22
23 K3 Very High K2 Medium K, 23
24 K Very High K? High K2, 24
25 Ka Very High KZ Very High K2 25
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5. Applications
5.1.Description of data sets used in applications

Two data sets are used in the applications. First data
set, Chemical Process Concentration Readings
(CPCR), denotes a chemical processes concentration
readings measured at intervals of two hours. It

variables nyps =5,n, =8 and for dependent

variable nyps = 25,n, = 48.

Application of the method for CPCR data
Xg=185-16=25

2.5
uw = 5 = 0.3125

contains 197 observations. Second data set, Chemical EUW = M = 0.46875
Process Viscosity Readings (CPVR), denotes a 0.46875

chemical processes viscosity values of an hour. It K, =16 + ——— = 16.15625
contains 310 observations. Data sets scatterplots are 0.46875

shown in the Appendix. For detailed information K = 18.5 — ——— = 18.34375

about CPCR and CPVR see Box-Jenkins (1976).

5.2. Validation
measures

approach and comparison

To evaluate the performances of regression for time
series and SMRGT several measures can be used. The
performance measures that we wused in our
applications are Adjusted R? (Adj-R?), R? Mean
Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Mean Square Error (MSE), Root Mean
Square Error (RMSE), Akaike’s Information Criteria

2.5
Ki=—-+16=17.25

18.5 — 17.25)

Kiy, = 185 —( =17.875

17.25 - 16
i1 = — + 16 = 16.625
Application of the method for CPVR data
Xg=105-7=35

3.5
uw = 5 - 0.4375

(AIC) and Correlation Coefficient (rho). 3% 0.4375

EUW = ——— = 0.65625
5.3. Construction of models 0.65625

Ki=7+ —3 = 7.21875
5.3.1. Construction of linear regression model 0.65625

K5 =10.5 —————=10.28125
While regression model is comprised, firstly, time _ 3.5 _
series models should equip with regression Ky = 2 +7=875
assumptions. In time series there is autocorrelation Ko =105 — (10-5 - 8-75) — 9425
between consecutive errors and this situation can be 1 2 -
fixed with some autocorrelation correction methods. _875-7 +7=7875
In this study, autocorrelation is measured with =17 2 -

Darwin Watson Test [22,23], and it is fixed with
Prais-Winsten Procedure using STATA [28]. In both
data sets convergence is satisfied for p = 2 and so,
AR(2) time series model is used.

5.3.2. Construction of SMRGT model
In this case, the five MFs, of which the first and the

second of them are right angled triangles, consisted
of eight units. Because of this reason for independent

According to our method, for X;_; and X;_, in CPCR
data new key values are found as 16.15625, 16.625,
17.25, 17.875, 18.34375. Also for X,_; and X,_, in
CPVR data new key values are found as 7.21875,
7.875, 8.75, 9.625, 10.28125. We can also obtain key
values for X, in a similar way. Now, we can construct
the tables (Table 2 and 3) contain fuzzy rules for
located key values of both data.

15" 16.6257 17.25° 17.B75° 18.5°
7 7.BY57 B.75™ 96257 1057
Komine H; H; E Homax

16.15625" 16.46875" 16.78125°  17.09375"  17.406257 17.71875°  18.03125" 18.34375"
7.21875" 7.65625" 8.08375" 8.53125" B.96875" 9.40625" 9 843757 10.28125™
L K, +UW K, +2UW K, +30W K +4UW  k +50W K, +6UW K,

Figure 4. Construction of triangular membership functions and key values to apply centroid deffuzzyfication method for the
CPCR" and CPVR* data
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5.4. Comparison of models

MATLAB [29] codes are written for performance
measures which are wused to measure the
performances of regression for time series and
SMRGT methods and the following results are
obtained.

Table 4. Performance Measures For CPCR Data

LINEAR

REGRESSION SMRGT
Adj-R? 0.3607 0.7916
.R? 0.3674 0.8090
MAE 0.2422 0.2759
MAPE 1.4175 1.5950
MSE 0.1013 0.1065
RMSE 0.3207 0.3479
AIC -447.06 -437.20
rho 0.6076 0.9819

Table 5. Performance measures for CPVR data

LINEAR SMRGT
REGRESSION
Adj-R? 0.7284 0.8767
R? 0.7302 0.8870
MAE 0.2432 0.2899
MAPE 2.6937 3.5185
MSE 0.0960 0.1214
RMSE 0.3114 0.3714
AIC -722.46 -649.69
rho 0.8588 0.9962

6. Discussion and Conclusion

Owing to the fact that convergence could not
obtained with the methods used in autocorrelation
fixing process faced with time series regression
application, success is not met or fall into obligation
of changing the models’ degree. Changing the models’
degree may not be desirable in every situation. In
these situations a new regulation methodology is
needed. With this study, it is proposed to use a new
method SMRGT to fuzzify the variables for using
fuzzy OLS models and the steps should be followed
are shown. In this method, the limitation of
autocorrelation fixing process in linear regression
process is lifted through investing on the advantages
of the fuzzy regression models.

Although SMRGT is successful in determining the
flow discharge in open channels and can be used
confidently for flow discharge modeling in open
canals, as well as in pipe flow with some
modifications, there is no research paper which
demonstrates that this technique is successful in
fuzzy linear regression modeling. Therefore, in order
to address the luck of such a modeling, the new
hybrid model has been described with some changes
in SMRGT to show success of this technique in fuzzy
linear regression modeling.

This study also include the several performance
measurement criteria results independent from
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methods to measure how effective the proposed
technique. When given 8 performance criteria used
for the two sets of data are considered, on three of
these criteria SMRGT model showed a better
performance than the linear regression model (Table
4 and Table 5). MAE, MAPE, MSE, RMSE and AIC
values calculated for SMRGT are close to the values
obtained for linear regression. According to this
study when working with fuzzy numbers fuzzified
with SMRGT it can be said that our method is an
alternative method to linear regression model for
time series data.
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