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Abstract 

Honey Badger Algorithm (HBA) is one of the recently proposed optimization techniques inspired by the foraging behavior of honey 

badger. Although it has been successfully applied in solving continuous problems, the algorithm cannot be implemented directly in 

binary problems. A binary version of HBA is proposed in this study for the 0-1 Knapsack Problem (0-1 KP). To adapt the binary 

version of HBA, V- Shaped, S-Shaped, U-Shaped, T-Shaped, Tangent Sigmoid, O-Shaped, and Z-Shaped transfer functions are used. 

Each transfer function was tested by computational experiments over 25 instances of 0-1 KP and compared results. According to the 

results obtained, it was observed that O1 was the best TF among 25 TFs. In addition, the proposed algorithm was compared with three 

different binary variants, such as BPSO, MBPSO, and NGHS. Experimental results and comparison show that the proposed method is 

a promising and alternative algorithm for 0-1 KP problems. 

Keywords: Binary Honey Badger Algorithm, 0-1 Knapsack Problems, Transfer Functions, Binary Optimization. 

0-1 Sırt Çantası Problemi İçin İkili Bal Porsuğu Algoritması 

Öz 

Bal Porsuğu Algoritması (HBA), son zamanlarda önerilen optimizasyon tekniklerinden biridir ve bal porsuğunun yiyecek arama 

davranışından esinlenmiştir. Sürekli problemlerin çözümünde başarılı bir şekilde uygulanmasına rağmen, algoritma doğrudan ikili 

problemlerde uygulanamaz. Bu çalışmada 0-1 Sırt Çantası Problemi (0-1 KP) için HBA’nın ikili versiyonu önerilmiştir. HBA’nın ikili 

versiyonunu uyarlamak için V-Şekilli, S-Şekilli, U-Şekilli, T-Şekilli, Tanjant Sigmoid, O-Şekilli, Z-Şekilli transfer fonksiyonları (TF) 

kullanılmaktadır. Her transfer fonksiyonu 25 0-1 KP problemi için test edilmiş ve sonuçlar karşılaştırılmıştır. Elde edilen sonuçlara 

göre 25 TF arasından en iyi TF’nin O1 olduğu görülmüştür. Ayrıca bu algoritma BPSO, MBPSO, NGHS gibi üç farklı ikili varyant ile 

karşılaştırılmıştır. Deneysel sonuçlar ve karşılaştırmalar önerilen yöntemin 0-1 KP problemleri için umut verici ve alternatif bir araç 

olduğunu göstermektedir. 

Anahtar kelimeler: İkili Bal Porsuğu Algoritması, 0-1 Sırt Çantası Problemleri, Transfer Fonksiyonları, İkili Optimizasyon. 

1. Introduction 

Many real-world problems, such as scheduling 

problems (Kaya et al., 2020), (Deng, Xu and Zhao, 

2019) placement of wind turbines (Deng, Xu and Zhao, 

2019; Hakli, 2019), vehicle routing (Halat and Ozkan, 

2021), optimization of seismic isolation parameters 

(Çerçevik and Avşar, 2020), etc. use meta-heuristic 

optimization methods due to traditional solution 

methods that are insufficient. One of these problems is 

the knapsack problem. 

0-1 KP has a prominent part in many real-world 

applications such as decision-making processes, 

exploiting resources optimally, database storage, 

investment strategies, and network formation. This 

problem is one of the fundamental NP-hard problems 

 

that achieves the maximum profit and the minimum cost 

in combinatorial optimization (Bansal and Deep, 2012), 

(Rooderkerk and van Heerde, 2016). 

Recently, 0-1 KP has been applied by many swarm-

intelligence and population-based optimization 

algorithms. Meta-heuristic optimization algorithms 

presented for continuous search space must be adapted 

to binary structure for tackling discrete optimization 

problems. Transfer functions are widely preferred 

approaches to discretization of a continuous algorithm. 

The binary Particle Swarm Optimization algorithm was 

modified (MBPSO) and used to solve some 0-1 KPs and 
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multidimensional KPs, results were compared with 

Binary PSO algorithm (Bansal and Deep, 2012). Cuckoo 

Search (CS) algorithm was transformed to a binary 

version using the sigmoid function (Gherboudj, Layeb 

and Chikhi, 2012). The binary Monkey Algorithm 

(BMA) was developed by (Zhou, Chen and Zhou, 2016). 

BMA was employed with the greedy algorithm to 

strengthen the local search ability to overcome fall into 

local optimal solutions. Also, 0-1 KP was considered by 

Binary Monarch Butterfly Optimization (BMBO) using 

S-shaped transfer functions and repair operator (Feng et 

al., 2017). Social Spider Algorithm was adapted to 

binary search space with sigmoid function and repair 

algorithm to overcome 0-1 KPs (Nguyen, Wang and 

Truong, 2017). In another study (Rizk-Allah and 

Hassanien, 2018), Binary Bat Algorithm (BBA) was 

established based on the V-shaped and S-shaped transfer 

functions and used to cope with 0-1 KP. The Differential 

Evolution Algorithm was designed to apply to binary 

problems and the binary version was tested on the 0-1 

KPs (Ismail M. Ali, 2018). A binary variant of Flower 

Pollination Algorithm (BFPA) with sigmoid transfer 

function was introduced, and repair operator and penalty 

function were employed to improve the solution quality 

(Abdel-Basset, El-Shahat and El-Henawy, 2019). Using 

V-Shaped and S-Shaped transfer functions, Marine 

Predators Algorithm (MPA) was moved from 

continuous to discrete space (Abdel-Basset et al., 2021). 

The binary version of the Equilibrium Algorithm (BEA) 

was proposed for tackling 0–1 KP. Because the standard 

Equilibrium Optimizer (EO) was presented to overcome 

continuous optimization problems, EO was transformed 

to BEO with V-Shaped and S-Shaped TFs. Results 

showed that among those transfer functions, V3 was the 

best one (Abdel-Basset, Mohamed and Mirjalili, 2021). 

Ali et al. proposed a new binary technique that makes a 

simple differential evolution algorithm adequate for 

solving binary optimization issues (Ali, Essam and 

Kasmarik, 2021). The Giza Pyramids Construction 

(GPC) algorithm was proposed with accumulative and 

multiplicative penalty functions to determine infeasible 

solutions in the binary version of GPC (Harifi, 2022). 

On the other hand binary version of Slime Mould 

Algorithm (SMA) was presented to convert a continuous 

variable to a binary by employing eight different transfer 

functions (Abdollahzadeh et al., 2021). A Quantum 

Inspired Social Evolution Algorithm (QSE) (Pavithr and 

Gursaran, 2016) was obtained by hybridizing Social 

Evolution Algorithm with the QSE, and the method was 

compared with different algorithms. Cohort Intelligence 

(CI) (Kulkarni and Shabir, 2016) was inspired by 

individuals' social, natural and social learning to learn 

from each other. Several cases of 0–1 KP were applied 

using CI, and the various parameters influencing the 

solution quality were discussed. One of the global 

optimization strategies was the complex-valued 

encoding method. Zhou, Li, et al. applied the method to 

the bat algorithm, and the sigmoid function was used for 

obtaining the discrete value (Zhou, Li and Ma, 2016). In 

order to achieve the good solutions that increases the 

total value without overcapacity of knapsack by Grey 

Wolf Optimization (GWO) and K-means algorithm was 

merged and dealt with the complexity of the algorithm 

(Yassien et al., 2017). Genetic Algorithm, Branch and 

Bound, Simulated Annealing, Dynamic Programming, 

Greedy Search algorithms were compared for obtained 

0-1 KPs results and discussed in (Ezugwu et al., 2019). 

Improved Whale Optimization Algorithm (IWOA) was 

performed by the sigmoid transfer function to convert 

the real-valued solutions into binary and combining the 

penalty function with the fitness function to evaluate 

performance single and multidimensional 0-1 KPs are 

solved (Abdel-Basset, El-Shahat and Sangaiah, 2019). 

Due to fact that Dragonfly Algorithm (DA) performs on 

continuous search space, angle modulation mechanism 

was used for DA to adapt the algorithm works in the 

binary space (Wang, Shi and Dong, 2021). Moreover, 

Hybrid Harmony Search Algorithm with distribution 

estimation was introduced (Liu et al., 2022), Hybrid 

Rice Optimization (HRO) was merged with Binary Ant 

Colony Optimization (BACO) algorithm to increase the 

convergence speed and search efficiency (Shu et al., 

2022). 

Although many meta-heuristic optimization 

methods have been applied to overcome the 0-1 KPs, 

HBA has not been used to this problem. However, HBA 

presents a successful performance for continuous 

optimization problems, but a remarkable binary version 

of HBA is not seen in literature (Hashim et al., 2022). 

This paper proposes binary versions of HBA with 

transfer functions and applies to several 0-1 KPs. The 

rest of this paper are formed as follows: Section 2 

explains 0-1 KPs and original HBA. Section 3 presents 

binary version of HBA and implementation of transfer 

functions. In Section 4, the experiment results and 

comparison of transfer functions are conducted. The last 

section covers the conclusion of the study and provides 

some possible future directions. 

2. Materials and Method 

2.1. 0-1 Knapsack Problem 

The 0-1 KP problem, proposed by Dantzig (Dantzig, 

1957), is based on the knapsack, which has a capacity  

𝐶 > 0  and contains a set of n items (𝑥1, 𝑥2, . . . , 𝑥𝑛). For 

each 𝑥𝑖 item has 𝑝𝑖 > 0 profit and 𝑤𝑖 > 0 weight 

(𝑖 = 1,2, . . . , 𝑛). If 𝑥𝑖 item is selected 𝑥𝑖=1 and 𝑥𝑖 = 0 if 

𝑥𝑖 is not selected into the knapsack. The goal of this 

issue is to achieve a maximum profit from the items 

selected for the knapsack and the weights of all chosen 

items must be less or equal to the capacity of the 

knapsack. Mathematically formulation is given below 

(Rooderkerk and van Heerde, 2016); 

 

fitness function:  𝑚𝑎𝑥
𝑖

∑ 𝑥𝑖𝑝𝑖
𝑛
𝑖=1  (1) 



 

Journal of Intelligent Systems: Theory and Applications 6(2) (2023) 108-118 110 

 

subject to 

∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 ≤ 𝐶,    𝑥𝑖 ∈ {0,1}, 𝑖 = 1,2, . . . , 𝑛                                                              

    

(2) 

 

2.2. Honey Badger Algorithm 

Honey Badger Algorithm (HBA) is a search strategy 

used to solve mathematical optimization problems 

inspired by the honey badger's foraging behavior. This 

algorithm is proposed by Hashim et al. (Hashim et al., 

2022). The honey badger's digging and dynamic 

foraging behavior are formulated in the exploration and 

exploitation phases. In the case of digging, it uses its 

sense of smell to predict the location of prey; Once 

reached, it moves around the prey to catch the prey. In 

the case of honey, the honey badger takes the guide of 

the honey guide bird to find the beehive directly. The 

steps of the Honey Badger algorithm are given below. 

The algorithm starts by generating a randomly 

population of candidate solutions with the help of the 

following equation. 

 

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1(𝑢𝑏𝑖 − 𝑙𝑏𝑖) (3) 

 

where 𝑥𝑖 is honey badger's 𝑖ts position, 𝑙𝑏𝑖  and 𝑢𝑏𝑖  are 

the lower and upper bounds of the search space, 

respectively. 𝑟1 is a random number between 0 and 1. 

The other important notation is intensity (𝐼) which is 

related to the concentration power of the prey and the 

distance between it and the prey. 𝐼𝑖  is the odor intensity 

of the prey; if the odor is high, the honey badger will 

move quickly and vice versa. This odor intensity is 

inversely proportional to the distance of the honey 

badger from the prey. There 𝑆 is the source power or 

concentration power, 𝑑𝑖 is the distance between prey and 

honey badger, and 𝑟2 is a random number between 0 and 

1. 

 

𝐼𝑖 = 𝑟2

𝑆

4𝜋𝑑𝑖
2 (4) 

𝑆 = (𝑥𝑖 − 𝑥𝑖+1)2 (5) 

𝑑𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖  (6) 

 

The intensity factor (𝛼) controls the time change 

randomness to provide a soft transition from exploration 

to exploitation. The decreasing factor 𝛼 is updated with 

decreasing iterations in a random time. Where 𝐶 ≥ 1 is 

constant (default value is 2), tmax is maximum number of 

iterations. 

 

𝛼 = 𝐶. 𝑒𝑥𝑝 (
−𝑡

𝑡𝑚𝑎𝑥

) (7) 

 

For escaping from the local optimum algorithm is 

used an 𝐹 flag that changes the search direction of the 

algorithm. In equation (9), the property of flag 𝐹 is 

given. 

The main phases of HBA are the digging phase and 

the honey phase. In first phase, honey badger draws the 

path in the form of Cardioid. This motion is simulated 

by equation (8) 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹. 𝛽. 𝐼. 𝑥𝑝𝑟𝑒𝑦 

          +𝐹. 𝑟3. 𝛼. 𝑑𝑖 . |𝑐𝑜𝑠(2𝜋𝑟4). [1 − 𝑐𝑜𝑠(2𝜋𝑟5)]| 

     

(8) 

 

where, 𝑥𝑝𝑟𝑒𝑦  is the prey position, 𝑥𝑛𝑒𝑤  honey badger's 

new position, 𝛽 ≥ 1 (default 6) honey badger's ability to 

reach food, 𝑑𝑖  is the distance between prey and the 𝑖th 

honey badger and 𝑟3, 𝑟4, 𝑟5 are random numbers 

different from each other between 0 and 1. The 𝐹 flag 

changes the search direction and is defined as follows. 

 

𝐹 = {
         1 , 𝑟6 ≤ 0.5

−1, 𝑒𝑙𝑠𝑒  
 

   

(9) 

 

where 𝑟6 is a random value in range [0,1]. 

In the second phase honey badger's pursuit of the 

honey guide bird is shown by the equation below. 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹. 𝑟7. 𝛼. 𝑑𝑖   (10) 

 

where 𝑟7 is a random like 𝑟6. For more information on 

HBA, see (Hashim et al., 2022). 

The flowchart of the HBA method is demonstrated 

in Figure 1. 

 

2.3. Transfer Functions (TFs) 

Selecting an appropriate transfer function is an 

important decision to increase efficiency, as transfer 

functions play a significant role in converting the 

continuous search space to binary space. PSO algorithm 

is adapted to binary space with the help of the sigmoid 

function, which is defined as follows (J. Kennedy, 

1997): 

 

𝑠𝑖𝑔𝑚 (𝑣𝑖
𝑑(𝑡)) =

1

1 + 𝑒−𝑣𝑖
𝑑(𝑡)

  (11) 

 

where 𝑣𝑖
𝑑(𝑡)  is the following velocity of the 𝑖𝑡ℎ particle 

in the 𝑑𝑡ℎ dimension. The position, 𝑥𝑖
𝑑(𝑡 + 1) is updated 

by the following equation: 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

1,           𝑖𝑓 𝑟 ≥ 𝑠𝑖𝑔𝑚 (𝑣𝑖
𝑑(𝑡))  

0,            𝑒𝑙𝑠𝑒                               
  (12) 
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Figure 1. Flowchart of the Honey Badger Algorithm (HBA) 

where 𝑟 is a number between 0 and 1, which is generated 

with uniform distribution 

Seyedali Mirjalili et. al. proposed six new TFs, S-

shaped and V-shaped (Mirjalili and Lewis, 2013). The 

formula of each function is denoted in Table 1. The 

value obtained between 0 and 1 is converted to a binary 

value using Eq. (12). 

Transfer functions U-shaped has been defined as 

𝑈(𝑥) = 𝛼|𝑥𝛽| (Mirjalili et al., 2020). Where 𝛼, 𝛽 are the 

control parameters. U1, U2, U3, U4 transfer functions 

which used in our study is shown in Table 2. Obtained 

value with the U-shaped TF is converted into binary 

space using Eq. (12). 

In order to effectively perform the binary 

optimization problems, Taper-shaped TF was 

introduced (He et al., 2022). Formulas of T1, T2, T3, T4 

TFs are given in Table 2. There are upper bounds of the 

search space [−𝐴, 𝐴]. The calculated real value with the 

T-shaped TF is converted into binary space using Eq. 

(13). 

 

𝐵𝑖𝑛𝑣𝑎𝑙 = {
1, 𝑖𝑓 0.5 ≥ 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
  (13) 

 

Z-shaped probability transfer function is proposed 

by Guo et al. (Guo et al., 2020). The formula of each Z- 

shaped function is given in Table 3. A real number 

obtained between 0 and 1 using the Z-shaped TF is 

converted to the binary value using Eq. (12). 

In addition to the TFs mentioned above, Other-

shaped transfer functions also appear in the literature. 

O1 TF is proposed by Pampará et. al. (Pampará and 

Engelbrecht, 2011). O2 TF is introduced by Costa et al. 

(Costa et al., 2014). O3 TF is linear normalization 

function (Wang et al., 2008), O4 TF is taken as unit 

function (Zhu et al., 2017). The value calculated with 

the O1, O4, O2, O3 TFs is converted to binary value 

with Eq. (14), Eq. (15), Eq. (12), respectively. The 

Set, parameters max
, , ,t N C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Update the position 𝑥𝑛𝑒𝑤  using Eq. (10) 
NO 

Update the position 𝑥𝑛𝑒𝑤  using Eq. (8) 

NO 

YES 

Update the decreasing factor  using Eq. (7) 

Evaluate fitness of each honey badger and 

save the best as fprey 

Evaluate fitness 𝑥𝑛𝑒𝑤  

 While 
max

t t  

YES 

Calculate the intensity using Eq. (4) 

 If 0.5r   

Initialize candidate population (Eq. (3)) 

 If 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑖  

YES 

NO 

𝑥𝑝𝑟𝑒𝑦 =𝑥𝑛𝑒𝑤  and  𝑓𝑝𝑟𝑒𝑦 = 𝑓𝑛𝑒𝑤  

 

𝑥𝑖=𝑥𝑛𝑒𝑤  and  𝑓𝑖 = 𝑓𝑛𝑒𝑤  

Return 𝑥𝑝𝑟𝑒𝑦  

 

 If 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑝𝑟𝑒𝑦  

 

YES 

NO 
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formula of each Other-shaped function family is given 

in Table 3. 

𝐵𝑖𝑛𝑣𝑎𝑙 = {
1, 𝑖𝑓 0 ≤ 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
 

    

(14) 

𝐵𝑖𝑛𝑣𝑎𝑙 = 𝑇𝐹(𝑥)   (15) 

 

 

 

The last TF we use is Hyperbolic tangent sigmoid 

(TanSig) TF is given Table 4 (Yonaba, Anctil and 

Fortin, 2010). The real value is converted to binary 

according to Eq. (16). 

 

𝐵𝑖𝑛𝑣𝑎𝑙 = {
1, 𝑖𝑓 0.6 < 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
 

    

(16) 

Table 1. S-Shaped and V-Shaped TFs 

Table 2. U- Shaped and Taper-Shaped TFs 

 

 

 

Name Formulation of TF Equation 

 

 

 

S- Shaped 

S1: 𝑇𝐹(𝑥) =
1

(1+𝑒−2𝑥)
 

 

 

 

 

 

 

 

 

 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

1,   𝑖𝑓 𝑟 ≥ 𝑠𝑖𝑔𝑚 (𝑣𝑖
𝑑(𝑡))  

0,    𝑒𝑙𝑠𝑒                               
   (12) 

S2: 𝑇𝐹(𝑥) =
1

(1+𝑒−𝑥)
 

 

S3: 𝑇𝐹(𝑥) =
1

(1+𝑒−𝑥/2)
 

 

S4: 𝑇𝐹(𝑥) =
1

(1+𝑒−𝑥/3)
 

 

 

 

V- Shaped 

V1: 𝑇𝐹(𝑥) = |𝑒𝑟𝑓 (
√𝜋

2
𝑥)| 

 

V2: 𝑇𝐹(𝑥) = |𝑡𝑎𝑛ℎ(𝑥)| 
 

V3: 𝑇𝐹(𝑥) = |
𝑥

√1+𝑥2
| 

 

V4: 𝑇𝐹(𝑥) = |
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜋

2
𝑥)| 

 

Name Formulation of TF Equation 

 

 

 

 

U- Shaped 

U1: 𝑇𝐹(𝑥) = |𝑥1.5|, 𝛼 = 1, 𝛽 = 1.5 

 

 

 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

1,   𝑖𝑓 𝑟 ≥ 𝑠𝑖𝑔𝑚 (𝑣𝑖
𝑑(𝑡))  

0,    𝑒𝑙𝑠𝑒                               
   (12) 

U2: 𝑇𝐹(𝑥) = |𝑥2|, 𝛼 = 1, 𝛽 = 2 

 

U3: 𝑇𝐹(𝑥) = |𝑥3|, 𝛼 = 1, 𝛽 = 3 

 

U4: 𝑇𝐹(𝑥) = |𝑥4|, 𝛼 = 1, 𝛽 = 4 

 

 

 

 

 

Taper- Shaped 

T1: 𝑇𝐹(𝑥) =
√|𝑥|

√|𝐴|
 

 

 

 

 

 

 

𝐵𝑖𝑛𝑣𝑎𝑙 = {
1, 𝑖𝑓 0.5 ≥ 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
                     (13) 

T2: 𝑇𝐹(𝑥) =
|𝑥|

|𝐴|
 

 

T3: 𝑇𝐹(𝑥) =
√|𝑥|3

√|𝐴|3  

 

T4: 𝑇𝐹(𝑥) =
√|𝑥|4

√|𝐴|4  
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Table 3. Z- Shaped and Other-Shaped TFs 

 

Table 4. Hyperbolic Tangent Sigmoid TF 

3. Binary HBA with Transfer Functions 

The HBA algorithm performs for continuous 

problems due to its structure. It is clear that the candidate 

solutions formed by Eq. (3) consist of continuous 

values. The transfer functions mentioned in Table 1, 2, 

3 and 4 take a continuous value as input, then 

normalized to a value between 0 and 1 using the 

corresponding equation. Pseudocode of Binary HBA is 

given in Algorithm 1. 

Algorithm 1. Pseudocode of Binary HBA 

Set parameters tmax, N, 𝛽,  𝐶. 

Generate a random real-valued population with Eq. (3). 

Convert each candidate solution to binary representation 

using TF. 

Calculate the fitness value of each candidate solution xi in 

the binary representation. (i=1, 2, …, N) 

Save best solution xprey and assign fitness to fprey. 

while t ≤ tmax do 

     Update α using Eq. (7). 

     for i = 1 to N do 

          Calculate Ii using Eq. (4). 

          if r < 0.5 then 

               Update the real valued candidate solution xnew  

using Eq. (8). 

          else 

               Update the real valued candidate solution xnew 

using Eq. (10). 

          end if 

          Convert new candidate solution to binary 

representation using TF. 

          Compare the existing candidate solution with the 

xnew by fitness value. 

          if fitness(xnew) ≤ fitness(xi) then 

               xi = xnew and fitness(xi) = fitness(xnew). 

          end if 

          if fitness(xnew) ≤ fprey then 

               xprey = xnew and fprey = fitness(xnew .) 

          end if 

     end for 

end while Stop criteria satisfied. 

Return xprey 

 

 

As can be seen from Algorithm 1, in Binary HBA, 

before calculate fitness, continuous values are 

transformed to binary with the help of TF. The 

transformation of a candidate solution consisting of 5 

dimensional real values 𝑥 = [-5.48, -3.30, 4.46, 9.71, -

6.35] into binary representation [1, 1, 0, 0, 1] with the 

help of the S2 TF is given in Table 5. 

 
Table 5. Conversion of continuous value to binary with S2 TF 

𝑖 𝑥𝑖  𝑆2(𝑥𝑖) r Binary 

1 -5.48 0.0041 0.1072 1 

2 -3.30 0.0356 0.0736 1 

3 4.46 0.9885 0.0917 0 

4 9.71 0.9999 0.7845 0 

5 -6.35 0.0017 0.3039 1 

4. Experimental Results 

In this section, the HBA algorithm is adapted for 

solving 0-1 KPs. The HBA is an algorithm that performs 

Name Formulation of TF Equation 

 

 

 

 

Z- Shaped 

Z1: 𝑇𝐹(𝑥) = √1 − 2𝑥 

 

 

 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

1,   𝑖𝑓 𝑟 ≥ 𝑠𝑖𝑔𝑚 (𝑣𝑖
𝑑(𝑡))  

0,    𝑒𝑙𝑠𝑒                               
   (12) 

Z2: 𝑇𝐹(𝑥) = √1 − 5𝑥 

 

Z3: 𝑇𝐹(𝑥) = √1 − 8𝑥 

 

Z4: 𝑇𝐹(𝑥) = √1 − 20𝑥 

 

 

 

 

 

Other- Shaped 

O1: 𝑇𝐹(𝑥) = 𝑠𝑖𝑛(2𝜋(𝑥 − 𝑎) ∗ 𝑏 ∗ 𝑐𝑜𝑠(2𝜋(𝑥 − 𝑎) ∗

𝑐)) + 𝑑 

(𝑎 = 𝑑 = 0, 𝑏 = 𝑐 = 1) 

 

 

𝐵𝑖𝑛𝑣𝑎𝑙 = {
1, 𝑖𝑓 0 ≤ 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
                     (14) 

O2: 𝑇𝐹(𝑥) = ⟦𝑥 𝑚𝑜𝑑 2⟧ 

 

𝐵𝑖𝑛𝑣𝑎𝑙 = 𝑇𝐹(𝑥)                                          (15) 

O3: 𝑇𝐹(𝑥) =
(𝑥−𝐴𝑚𝑖𝑛)

𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛
 ,   (𝐴𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝐴𝑚𝑎𝑥) 

 
𝑥𝑖

𝑑(𝑡 + 1) = {
1,   𝑖𝑓 𝑟 ≥ 𝑠𝑖𝑔𝑚 (𝑣𝑖

𝑑(𝑡))  

0,    𝑒𝑙𝑠𝑒                               
   (12) 

O4: 𝑇𝐹(𝑥) = 𝑥 

 
𝐵𝑖𝑛𝑣𝑎𝑙 = {

1, 𝑖𝑓 0 ≤ 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
                      (14) 

Name Formulation of TF Equation 

 

Hyperbolic 

tangent sigmoid 

𝑇𝐹(𝑥) =
2

1 + 𝑒−2𝑥 − 1 

 

𝐵𝑖𝑛𝑣𝑎𝑙 = {
1, 𝑖𝑓 0.6 ≤ 𝑇𝐹(𝑥)

0, 𝑒𝑙𝑠𝑒                     
                     (16) 
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continuous search space due to its structure. 0-1 KPs, on 

the other hand, have a binary structure. For this reason, 

first, N real-valued candidate solutions, each of which is 

D-dimensional, are created. After each candidate honey 

badger position is converted to binary with the help of 

transfer functions, fitness value is evaluated. A total of 

25 transfer functions as V-Shaped, S-Shaped, U-Shaped, 

T-Shaped, Tangent Sigmoid, O-Shaped, Z-Shaped TFs 

are used to adapt the binary version of the HBA. Each 

transfer function is tested by computational experiments 

over 25 instances of 0-1 KP and compared results. 

Our experiment was carried on the problems in the 

benchmark dataset, which can be taken from 

(https://pages.mtu.edu/~kreher/cages/Data.html) in 

Table 6. 

Table 6. Benchmark datasets 

Problem Capacity Dimension Optimal 

KP8a 1.863.633 8 3.924.400 

KP8b 1.822.718 8 3.813.669 

KP8c 1.609.419 8 3.347.452 

KP8d 2.112.292 8 4.187.707 

KP8e 2.493.250 8 4.955.555 

KP12a 2.805.213 12 5.688.887 

KP12b 3.259.036 12 6.473.019 

KP12c 2.489.815 12 5.170.626 

KP12d 3.453.702 12 6.941.564 

KP12e 2.520.392 12 5.337.472 

KP16a 3.780.355 16 7.850.983 

KP16b 4.426.945 16 9.352.998 

KP16c 4.323.280 16 9.151.147 

KP16d 4.550.938 16 9.348.889 

KP16e 3.760.429 16 7.769.117 

KP20a 5.169.647 20 10.727.049 

KP20b 4.681.373 20 9.818.261 

KP20c 5.063.791 20 10.714.023 

KP20d 4.286.641 20 8.929.156 

KP20e 4.476.000 20 9.357.969 

KP24a 6.404.180 24 13.549.094 

KP24b 5.971.071 24 12.233.713 

KP24c 5.870.470 24 12.448.780 

KP24d 5.762.284 24 11.815.315 

KP24e 6.654.569 24 13.940.099 

 

For a fair comparison, the number of maxFes, 

population size and runtime illustrate in Table 7. GAP 

values are calculated using Eq. (17). 

𝐺𝐴𝑃 =
𝑜𝑝𝑡𝑖𝑚𝑎𝑙 − 𝑚𝑒𝑎𝑛

𝑜𝑝𝑡𝑖𝑚𝑎𝑙
  (17) 

Table 7. The parameter values 

Parameters Value 

Maximum Fes 1000 (For KP8a to KP12e) 

5000 (For KP16a to KP24e) 

Population size 40 

Runtime 50 

 

In order to show performance of the proposed 

method, a total of 10 problems, Kp8a-Kp8e and Kp12a-

Kp12e taken from the benchmark dataset, were 

performed for 50 runtimes and 1000 Fes number. Also, 

15 problems, including Kp16a-Kp16e, Kp20a-Kp20e, 

Kp24a-Kp24e, run with 50 runtimes and 5000 Fes 

number. In all of the problems, the search space in the 

HBA algorithm was adapted to binary space with the 

help of S, V, U, T, Hyperbolic Tangent Sigmoid, Z and 

Other-shaped transfer functions. The gap value between 

the approximate solutions obtained for each transfer 

function and the optimal solutions was given in Table 8 

and Table 9. Table 8 and Table 9 show that optimal 

solutions were obtained by V, U shaped transfer 

functions and T1, T3, T4, O1, O2 shaped transfer 

functions for problems with a problem size of 8. In 

addition, V, U1, U4, T4, O1, O2 shaped transfer 

functions reached the optimum value for all runs in 4 

problems with problem size 12. In the dataset with a 

problem size of 16, the optimal value was reached in 3 

of the five problems with the help of V, U, T, O2 shaped 

transfer functions. Although it is seen that it is difficult 

for the results obtained to reach the optimum value when 

the problem size is 20 and 24, optimum values were 

obtained in 2 or 1 of the five problems depending on the 

transfer functions used. It has been seen that the lowest 

gap values are in the solutions obtained with the O1 and 

O2 transfer functions. When we consider Table 8 and 

Table 9 in general, it can be said that O1 and O2 transfer 

functions are in the front according to the efficiency of 

the transfer functions for the 25 problems. In the 

continuation of this sorting, it has been seen that U1-

shaped transfer function gives efficient results. 

In this study, the 25 KPs run 50 times to test each 

transfer function. The optimum number of values 

obtained for each transfer function due to running 1250 

times is given as hit value in Table 10. According to the 

table, it was seen that the optimal value was reached 

with the O1 transfer function in 1017 and O2 in 1009 of 

1250, respectively. After these functions, U and T 

transfer functions get the maximum optimum value. As  

a result, it was observed that the HBA algorithm 

performed successful results for the O1 and O2 transfer 

functions.
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Table 8. Gap values for each TF (S, V, U) and KP problem with HBA algorithm 

 

Table 9. Gap values for each TF (T, Hyp.Tan, O, Z) and KP problem with HBA algorithm 

Problem 

Name 

S- Shaped V- Shaped U- Shaped 

S1 S2 S3 S4 V1 V2 V3 V4 U1 U2 U3 U4 

KP8a  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP8b  0.163 0.228 0.081 0.114 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP8c  0.013 0.020 0.020 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP8d  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP8e  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP12a  0.070 0.063 0.105 0.084 0.093 0.080 0.075 0.057 0.034 0.032 0.039 0.025 

KP12b  0.110 0.118 0.142 0.118 0.000 0.000 0.000 0.000 0.000 0.008 0.024 0.000 

KP12c  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP12d  0.018 0.049 0.018 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP12e    0.036 0.054 0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP16a    0.177 0.156 0.169 0.164 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP16b    0.117 0.105 0.054 0.104 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP16c    0.000 0.005 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP16d  0.147 0.146 0.149 0.121 0.523 0.523 0.523 0.523 0.073 0.063 0.076 0.078 

KP16e  0.198 0.193 0.191 0.190 0.286 0.282 0.286 0.288 0.182 0.157 0.199 0.144 

KP20a  0.000 0.000 0.008 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP20b  0.103 0.056 0.074 0.048 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP20c  0.056 0.058 0.051 0.052 0.044 0.044 0.044 0.044 0.037 0.037 0.033 0.037 

KP20d  0.136 0.144 0.140 0.099 0.154 0.154 0.154 0.154 0.151 0.154 0.148 0.154 

KP20e  0.082 0.065 0.067 0.058 0.124 0.099 0.099 0.033 0.010 0.009 0.007 0.016 

KP24a  0.227 0.232 0.181 0.268 0.326 0.332 0.334 0.321 0.259 0.232 0.280 0.239 

KP24b  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP24c  0.017 0.021 0.031 0.017 0.052 0.052 0.044 0.043 0.006 0.004 0.001 0.002 

KP24d  0.103 0.092 0.099 0.132 0.045 0.045 0.045 0.045 0.043 0.045 0.045 0.044 

KP24e  0.088 0.065 0.057 0.053 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 

Friedman 

Rank 16.1 16.56 16.44 15.46 13.12 12.76 12.72 11.92 8.68 9.06 9.46 8.84 

Rank 18 20 19 17 14 13 12 11 3 5 8 4 

Problem 

Name 

Taper- Shaped Hyp.Tan. Other- Shaped Z- Shaped 

T1 T2 T3 T4 TanSig O1 O2 O3 O4 Z1 Z2 Z3 Z4 

KP8a  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP8b  0.000 0.065 0.000 0.000 0.130 0.000 0.000 0.601 0.195 0.293 0.098 0.130 0.195 

KP8c  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.623 0.007 0.000 0.033 0.013 0.007 

KP8d  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP8e  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP12a  0.043 0.053 0.043 0.052 0.079 0.019 0.018 0.643 0.088 0.083 0.082 0.077 0.098 

KP12b  0.016 0.071 0.000 0.000 0.087 0.000 0.000 0.397 0.142 0.118 0.079 0.118 0.118 

KP12c  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KP12d  0.000 0.000 0.009 0.000 0.018 0.000 0.000 0.519 0.040 0.000 0.019 0.027 0.066 

KP12e    0.018 0.018 0.018 0.000 0.144 0.000 0.000 0.664 0.036 0.036 0.072 0.000 0.054 

KP16a    0.000 0.000 0.000 0.000 0.168 0.010 0.000 0.356 0.195 0.203 0.196 0.212 0.152 

KP16b    0.000 0.000 0.000 0.000 0.054 0.000 0.000 0.791 0.175 0.157 0.132 0.059 0.078 

KP16c    0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.017 0.005 0.000 0.015 

KP16d  0.068 0.104 0.063 0.167 0.164 0.068 0.057 0.130 0.173 0.132 0.110 0.138 0.188 

KP16e  0.181 0.156 0.207 0.226 0.205 0.068 0.054 0.434 0.186 0.188 0.228 0.181 0.214 

KP20a  0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.275 0.016 0.021 0.036 0.012 0.011 

KP20b  0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.023 0.102 0.061 0.069 0.078 0.065 

KP20c  0.033 0.029 0.037 0.039 0.073 0.015 0.024 0.114 0.045 0.035 0.047 0.043 0.055 

KP20d  0.145 0.114 0.151 0.154 0.129 0.133 0.136 0.154 0.129 0.114 0.129 0.126 0.138 

KP20e  0.008 0.035 0.021 0.039 0.065 0.013 0.048 0.268 0.041 0.053 0.048 0.049 0.063 
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Table 10. Hit values for each TF with HBA algorithm

     The binary version of HBA for O1 TF is compared 

with BPSO, MBPSO (Modified Binary Particle Swarm 

Optimization) and NGHS (Novel Global Harmony 

Search) algorithms to evaluate its performance and 

accuracy. All methods were performed with the same 

parameters as 50 runs, 1000 Fes number for Kp8a to 

Kp12e and 5000 Fes number for Kp16a to Kp24e. 

Experimental results of algorithms were directly taken 

from (Zhou, Chen and Zhou, 2016), (Hakli, 2020). The 

gap values of 50 runs for the algorithms and the 

proposed algorithm are presented in Table 11. The 

binary version of HBA with O1 TF found the optimum 

value or the closest results for 22 of 25 problems. Thus, 

it has been seen that HBA with O1 TF offers more 

effective solutions than BPSO, MBPSO, and NGHS 

algorithms for selected 0-1 KP problems. 

Table 11. Experimental results of proposed method and binary 

variants of the different algorithms. 

Problem 

Name 

HBA-O1-

Shaped 
BPSO MBPSO NGHS 

KP8a  0.000 0.065 0.000 0.000 

KP8b  0.000 0.151 0.000 0.000 

KP8c  0.000 0.563 0.000 0.000 

KP8d  0.000 0.039 0.000 0.000 

KP8e  0.000 0.460 0.020 0.000 

KP12a  0.019 0.091 0.006 0.020 

KP12b  0.000 0.308 0.084 0.187 

KP12c  0.000 0.071 0.003 0.107 

KP12d  0.000 0.037 0.004 0.006 

KP12e    0.000 0.386 0.000 1.190 

KP16a    0.010 0.205 0.101 0.711 

KP16b    0.000 0.199 0.028 1.068 

KP16c    0.000 0.353 0.077 1.041 

KP16d  0.068 0.291 0.117 0.406 

KP16e  0.068 0.136 0.064 0.390 

KP20a  0.000 0.184 0.063 1.256 

KP20b  0.000 0.275 0.130 0.909 

KP20c  0.015 0.099 0.029 1.203 

KP20d  0.133 0.213 0.061 0.782 

KP20e  0.013 0.090 0.022 0.356 

KP24a  0.101 0.285 0.126 0.296 

KP24b  0.000 0.232 0.084 0.595 

KP24c  0.007 0.168 0.044 0.195 

KP24d  0.042 0.197 0.098 0.669 

KP24e  0.034 0.124 0.054 0.805 

5. Conclusions 

This study proposed the binary version of HBA 

algorithm with TFs. The binary variants performed with 

the help of 25 transfer functions were applied to 

benchmark datasets for 0-1 KP problem. The results for 

25 binary variants were compared to examine the 

efficiency of each transfer function. The O1 and O2 TFs 

showed the best successful performances among the 

TFs. Also, HBA algorithm with O1 TF was compared 

with three different binary variants, and the results show 

that binary HBA is the first in the ranking. For future 

work, the validity of the proposed approach can be 

enlarged by applying it to different 0-1 KPs. It can be 

impressive work to adapt the HBA algorithm to binary 

space without TFs directly. 
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