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ABSTRACT 

This paper presents a novel and secure image encryption method. The plain image’s pixels are confused using the N-

point crossover operation of genetic algorithms. Randomly paired rows and columns are determined by the two state 

variables of a six-dimensional hyperchaotic map. The number of crossover points, which are calculated by the two 

other state variables of the hyperchaotic map, differ from each other for each row or column pair. The crossover 

positions are specified according to the number of crossover points with the help of the last two state variables. The 

proposed algorithm generates the diffusion stage’s encryption key using the SHA-256 hash value of the plain image. 

Mutation and crossover operators are implemented using the 16-bit subblocks of the 256-bit hash value. The 

scrambled image’s pixels are altered with the generated encryption key and previously encrypted pixels. Keyspace 

and sensitivity,  histogram, correlation, information entropy, differential, data loss, noise attack, and computational 

time analyzes are performed to test the safety and effectiveness of the encryption method. The experiments and 

simulation results show that the proposed encryption technique is highly secure and efficient since it can resist various 

attacks.  

Keywords: chaos, crossover, genetic operations, hyperchaos, image encryption 

ÖZET 

Bu makale, yeni ve güvenli bir görüntü şifreleme yöntemi sunmaktadır. Düz görüntünün pikselleri, genetik 

algoritmaların N noktalı çaprazlama işlemi kullanılarak karıştırılır. Rastgele eşleştirilmiş satırlar ve sütunlar, altı 

boyutlu bir hiper kaotik haritanın iki durum değişkeni tarafından belirlenir. Hiperkaotik haritanın diğer iki durum 

değişkeni tarafından hesaplanan geçiş noktalarının sayısı, her satır veya sütun çifti için birbirinden farklıdır. Geçiş 

konumları, son iki durum değişkeni yardımıyla geçiş noktalarının sayısına göre belirlenir. Önerilen algoritma, düz 

görüntünün SHA-256 hash değerini kullanarak difüzyon aşamasının şifreleme anahtarını üretir. Mutasyon ve 

çaprazlama operatörleri, 256 bitlik hash değerinin 16 bitlik alt blokları kullanılarak gerçekleştirilir. Karıştırılan 

görüntünün pikselleri, oluşturulan şifreleme anahtarı ve önceden şifrelenmiş piksellerle değiştirilir. Şifreleme 

yönteminin güvenliğini ve etkinliğini test etmek için anahtar alanı ve duyarlılığı, histogram, korelasyon, bilgi 

entropisi, diferansiyel, veri kaybı, gürültü saldırısı ve hesaplama süresi analizleri yapılır. Deneyler ve simülasyon 

sonuçları, önerilen şifreleme tekniğinin çeşitli saldırılara karşı koyabilmesi nedeniyle oldukça güvenli ve verimli 

olduğunu göstermektedir. 

Anahtar Kelimeler: çaprazlama, genetik işlemler, hiperkaos, kaos, görüntü şifreleme 
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INTRODUCTION 

A secure transfer of data between the sender and the receiver is of great importance in today’s world of digitizat ion. 

Digital images, as a type of digital data, are extensively used in people’s daily lives due to advancements in 

information technology. For example, a great number of digital images are shared between people who use social 

networks. However, a confidential and private image could be intercepted, tampered with, and duplicated during the 

process of transmission over public networks. It is a significant task to develop ways for protecting the privacy of 

digital images. One of the methods to ensure secure image transmission is cryptography. Cryptosystems aim to make 

the plain image unrecognized by an intruder who can access the transmission channel.  

 

Chaotic maps can be used in the architecture of cryptosystems for image encryption since they are extremely sensitive 

to initial conditions, unpredictable and non-periodic (Muthu and Murali, 2021). On the other hand, hyperchaotic 

maps, which contain more than one positive Lyapunov exponent, have more complex chaotic behavior than chaotic 

maps (Boriga, Dăscălescu, and Priescu, 2014). Hyperchaotic systems can also generate several random sequences 

with larger key space so that the encryption algorithm could be designed more securely (Q. Zhang and Han, 2021). 

Hyperchaotic systems can be constructed by modifying traditional chaotic maps. A new hyperchaotic Lorenz system 

was proposed by (Jia, 2007) by adding a state feedback controller to the well-known Lorenz system. Similarly, a 

hyperchaotic 4D Chua system was created (Xi, Yu, Zhang, Deng, and Xi, 2010) in which a state feedback controller 

was introduced to the second and third equation of the conventional 3D Chua system. A 5D conservative hyperchaotic 

system was offered by Dong et.al (2019). This hyperchaotic system, which has two positive Lyapunov exponents, 

was obtained by adding an extra function to a 4D chaotic system. In (Wang Fa-Qiang, 2006), an extra state variable 

was added to the Liu chaotic system to form a new 4D hyperchaotic system. Another novel multi-wing hyperchaotic 

attractor was  proposed by Grassi et.al (2009). The system couples two identical Lorenz systems to generate a 6D 

hyperchaotic system. 

 

Similar to chaotic maps, hyperchaotic maps are utilized in image encryption techniques (Demirtaş, 2022; Kaur and 

Kumar, 2020). Cao et.al (2018) created a novel 2D hyperchaotic map and used the map to implement a bit-level 

encryption method. Similarly, a 2D hyperchaotic map, which combines a sine map with a Henon map, was analyzed 

(Natiq, Al-Saidi, Said, and Kilicman, 2018) and this map is used to confuse and diffuse a plain image. Kaur et.al 

(2020) produced the secret keys of an encryption algorithm with larger key space using a 7D hyperchaotic map. In 

the study (Luo, Zhou, Liu, Cao, and Ding, 2018), a 4D hyperchaotic system was used to create an encryption matrix 

and permutation sequences. Pseudo-random sequences generated by a 6D hyperchaotic map were used to rotate the 

bit-plane matrix (Xu, Sun, and Wang, 2020) for a grayscale image encryption algorithm. A bit level-permutation 

process was implemented using the chaotic sequences generated by a hyperchaotic sequence with the help of the 

SHA-256 hash value of the plain image (Patro, Acharya, and Nath, 2019). Chen et.al (2020) suggested a new method 

to obtain a pseudorandom number generator (PRNG) using four-wing hyperchaotic systems and they used the 

designed PRNG in an image encryption method. A color image encryption algorithm was implemented by Cheng, 

Wang, Chen, and Chaos (2019) by generating the key streams of the diffusion phase using a 5D multi-wing 

hyperchaotic map. A 7D hyperchaotic map’s initial values were generated by the SHA-512 hash function and the 

calculated chaotic sequences were used in the confusion and diffusion operations in (Sun, Guo, and Wu, 2019). Zhu 

and Zhu (2019) created a new discrete 5D hyperchaotic map by combining a logistic map and a discrete Lorenz map. 

The formed map was used in a block-based image encryption scheme. A 5D conservative hyperchaotic system (Zhou 

and Wang, 2020) was used both in the permutation and substitution phases of a novel image encryption method. 

Hyperchaos is not only used in the confusion-diffusion image encryption scheme but also have been combined with 

other techniques such as DNA encoding (Hui, Liu, and Fang, 2021; Mohamed, ElKamchouchi, and Moussa, 2020; 

T. Wang and Wang, 2020; Wu, Shi, and Li, 2020), cellular automata (Yaghouti Niyat, Moattar, and Niazi Torshiz, 

2017; Zeng and Wang, 2021), and fractional calculus (Gao, Yu, Banerjee, Yan, and Mou, 2021; P. Li, Xu, Mou, and 

Yang, 2019; Yang, Mou, Liu, Ma, and Yan, 2020).  

 

Crossover and mutation are examples of genetic operators that are inspired by biological evolution mechanisms 

(Katoch, Chauhan, and Kumar, 2021). These operators can be used in the image encryption processes. For example, 

a selection-crossover-mutation-based image encryption method was proposed (Xingyuan Wang and Xu, 2014). 

Guesmi et.al (2016) used a two-point crossover operation to shuffle the rows and columns of a color image’s R, G, 

and B channels. In (Mozaffari, 2018), single-point crossover and flipping mutation operations were used for 

permutation and substitution of the plain image’s pixels. Chai et.al (2021) suggested a novel encryption method in 

which DNA encoded sequences were permuted by double crossover operation and diffused by mutation operation. 
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In the work (Y.-Q. Zhang, He, Li, and Wang, 2020), Different types of mutations and two-point crossover operations 

were used to encode a plain image’s pixels at the bit level. Niu et.al (2020) used selection, crossover, and mutation 

operators along with DNA encoding and Henon map to scramble and diffuse pixels. Gupta et.al (2021a) employed 

single-point and two-point crossover with mutation operator to obtain a session key which is used to encrypt a plain 

image. In a similar study (Gupta, Gupta, and Shukla, 2021b), a session key was generated with the help of a chaotic 

map and a two-point crossover operation.  

 

This paper proposes a novel encryption method based on a 6D hyperchaotic map and genetic operators such as N-

point crossover and mutation. The plain image is shuffled twice with the parameters generated by the 6D hyperchaotic 

map using the N-point crossover operation. The crossover operation creates new offspring by exchanging the genes 

of the parents. The plain image’s rows and columns can be considered parents. The pixels of the plain image represent 

genes. The rows and columns of the plain image are paired with each other pseudo-randomly with the help of the 

chaotic sequences generated by the two state variables of the hyperchaotic map. The number of crossover points and 

the positions of the crossover points are also determined by the state variables of the 6D hyperchaotic map for each 

row or column pair. In the second round of permutation, the initial values of the hyperchaotic map are updated. 

Consequently, the row and column pairs, the number of crossover points, and the positions of the crossover points 

are recalculated. A 256-bit secret key is produced by using the SHA-256 hash algorithm from the plain image for the 

diffusion stage. The secret key is divided into 16 subblocks consisting of 16 bits. A mutation operation is implemented 

on each subblock by flipping one bit. In addition, a two-point crossover operation is performed between different 

subblocks to further scramble the secret key. The modified secret key depends on the plain image which makes the 

encryption method resistive against chosen-plaintext and chosen-ciphertext attacks. This secret key is used in the 

diffusion process which alters the values of the pixels of the permuted image. The image encryption algorithm can 

withstand statistical and differential attacks with the help of the diffusion process. To sum up, a novel and safe image 

encryption architecture which can effectively resist several attacks is presented in this work.  

 

The remaining of this paper is planned as follows: Section 2 gives details of the methods used in the image encryption 

algorithm. Section 3 explains the proposed cryptosystem. Section 4 presents various simulation results of the 

proposed method. In Section 5, the conclusion part summarizes the overall work.  

MATERIALS AND METHODS 

6D Hyperchaotic Map 

The 6D hyperchaotic system (Grassi et al., 2009) used in the scrambling operation of the proposed algorithm can be 

expressed as follows: 

 

{
 
 

 
 
�̇� = 𝑎(𝑦 − 𝑥)

�̇� = 𝑏𝑥 − 𝑦 − 𝑥𝑧 + 𝜎1(𝑤 − 𝑢)
�̇� = 𝑥𝑦 − 𝑐𝑧
�̇� = 𝑎(𝑢 −𝑤)

�̇� = 𝑏𝑤 − 𝑢− 𝑣𝑤+ 𝜎2(𝑥− 𝑦)
�̇� = 𝑤𝑢− 𝑐𝑣

                                                                                                                                                (1) 

 

where x, y, z, w, u, and v are the state variables, and a, b, c are the system parameters and 𝜎1 and 𝜎2 are the scaling 

factors of the linear coupling terms. When a = 10,  b = 28, c = 8/3, 𝜎1 = 0.1, 𝜎2 = 0.01 are chosen as the parameters 

for the system given in Eq. (1), then the four-wing attractors of the (x, w, z) and (x, u, v) spaces can be obtained as 

shown in Fig. 1, respectively. 

The Shuffling Process by N-Point Crossover Operation 

As a well-known genetic operator, the crossover operation essentially exchanges genetic information between parents 

to generate new offspring. N-point crossover operation requires N different crossover points so that a total of N+1 

segments can be obtained for each parent. The genetic information in between the crossover points is swapped 

between the parents. If N is greater than or equal to three, then genetic information between at least two segments is 

exchanged. For instance, three segments are exchanged between parents if N is equal to five or six. The length of 

each segment might be different from each other and is determined by the positions of the crossover points.  
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Figure 1. The Four-Wing Attractors of the 6D Hyperchaotic System 

 

 
 

Figure 2. An Example of a 5-Point Crossover Operation   

 

In the confusion stage of the proposed algorithm, two rounds of N-point crossover operation are implemented to 

shuffle the pixels of the plain image. First of all, parents should be selected from the rows and columns of the plain 

image to perform the crossover operation. The pseudo-random sequences generated by the state variables x and y in 

Eq. (1) are used to generate the row pairs and column pairs, respectively. The whole row or column can be regarded 

as chromosomes or parents and each pixel can be regarded as genes. The number of crossover points that specify the 

number of exchanged segments varies for different row and column pairs. The pseudo-random sequences produced 

with the help of the state variables z and w of Eq. (1) are utilized to calculate the number of crossover points of the 

row pairs and column pairs, respectively. After the determination of the pairs and the number of crossover points, 

the length and content of segments for each pair are identified. The position of the crossover points determines the 

length and content of segments on each chromosome. The state variables u and v in Eq. (1) create two pseudo-random 

sequences that determine the crossover positions for row and column pairs, respectively. In the second round, all of 

the initial conditions of the hyperchaotic map are varied and the above-mentioned processes are re-implemented. To 

sum up, the pixels are shuffled with the help of the N-point crossover operation whose shuffling parameters are 

calculated from the random sequences generated by Eq. (1). In Fig. 2, an illustration of a 5-point crossover operation 

example is shown. Parent 1 and Parent 2 could be rows or columns of the plain image with a length of 256 pixels. 

Randomly chosen five crossover points are 25, 46, 93, 158, and 201 which creates six segments. Segment 2, segment 

4, and segment 6 are exchanged between Parent 1 and Parent 2 so that Child 1 and Child 2 are obtained as the new 

generation.  

Key Generation for the Diffusion Stage 

Hash functions are used to generate fixed-size output data from input of arbitrary size.  As a member of the Secure 

Hash Algorithm (SHA) family, SHA-256 gives an output with a digest length of 256 bits for any given input. In this 

work, the SHA-256 hash value of the plain image is utilized in the key generation for the diffusion stage. The 256-

bit hash value is divided into 16 blocks with a length of 16 bits as shown in Eq. (2).  

 

𝐾𝑖 = {𝐾1,𝐾2 ,… , 𝐾16}                                                                                                                                                                    (2) 
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where i denotes the block number and each K consists of 16 bits. Mutation and crossover operations of genetic 

algorithms are used to further complicate the encryption key of the diffusion stage. Initially, the ith block’s ith bit 

where i = 1,2,…,16 is flipped for mutation operation. Subsequently, a two-point crossover operation is implemented 

on the mutated blocks. The ith block is paired with the jth block where j=17–i and i = 1,2,…,8. Starting from the 

(i+1)th position, j-5 bits are swapped between the paired blocks. For example, 𝐾1 and 𝐾16 blocks are paired with 

each other and eleven bits from the second position to the twelfth position are exchanged between the blocks. 𝐾𝑖′ is 

the generated 256-bit sequence which consists of 16 blocks after the genetic operations. 

THE PROPOSED IMAGE ENCRYPTION ALGORITHM 

The proposed image encryption algorithm consists of two main stages. In the first stage, the plain image’s pixels are 

confused using the N-point crossover operation after its parameters are computed with the aid of a 6D hyperchaotic 

system. Additionally, the shuffled image is diffused with the keys which are obtained by applying mutation and 

crossover operations to the hash value of the plain image. The plain image P with a size of M x N is given as the 

input, where M and N are the numbers of rows and columns, respectively. The proposed encryption algorithm’s steps 

are listed as follows:   

 

Step 1. The 6D hyperchaotic system in Eq. (1) is iterated for 1000 + L times with the initial conditions 𝑥0, 𝑦0 , 𝑧0,  

𝑤0 , 𝑢0 , 𝑣0. The system parameters a, b, c, and the scaling factors 𝜎1 and 𝜎2 are selected properly so that the system 

is ensured to be hyperchaotic. A total of six pseudo-random sequences are produced by the state variables x, y, z, w,  

u, and v. The first 1000 values in those sequences are discarded to get rid of the transient effects. 

 

Step 2. The rows and columns of the plain image are paired with each other with the help of the pseudo-random 

sequences generated by the state variables x and y, respectively. The elements in the obtained sequences 𝑆𝑥 =
{𝑥1001 , 𝑥1002,… , 𝑥1000+𝑀} and 𝑆𝑦 = {𝑦1001 , 𝑦1002 ,… , 𝑦1000+𝑁} are sorted in ascending order. The positions of the 

sorted values are found in the sequences 𝑆𝑥 and 𝑆𝑦 so that the position arrays 𝑅 = (𝑟1 , 𝑟2 , … , 𝑟𝑀 ) and 𝐶 =

(𝑐1 ,𝑐2 , … , 𝑐𝑁) can be obtained. Starting from the first element, every two adjacent elements in the position arrays R 

and C are grouped sequentially. Each group consisting of two rows or columns are the paired parents whose genes 

will be exchanged between them.  

 

Step 3. The number of crossover points for each row and column pair is calculated using the pseudo-random 

sequences produced through the state variables z and w, respectively. A total of 𝑀/2 and 𝑁/2 crossover points are 

determined for the row and column pairs, respectively. The following equations shown in Eq. (3) and Eq. (4) are 

used to find the number of crossover points. 

 
𝑁𝑟 = 𝑚𝑜𝑑 (⌊𝑎𝑏𝑠(𝑧(𝑖))×10

10⌋,𝑁𝑚𝑎𝑥 −𝑁𝑚𝑖𝑛 +1) +𝑁𝑚𝑖𝑛                                                                                                     (3) 

 

𝑁𝑐 = 𝑚𝑜𝑑 (⌊𝑎𝑏𝑠(𝑤(𝑗)) ×10
10⌋,𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛 +1) +𝑁𝑚𝑖𝑛                                                                                                    (4) 

 

where 𝑁𝑟  and 𝑁𝑐  are the sequences which include the number of crossover points for row and column pairs, 𝑖 =
1001,1002, … ,1000 + 𝑀/2, and 𝑗 = 1001, 1002, … , 1000 + 𝑁/2. 𝑁𝑚𝑖𝑛 ∈ [1,4] is the minimum N-point, 𝑁𝑚𝑎𝑥 ∈
[5,8] is the maximum N-point. 𝑁𝑚𝑖𝑛  and 𝑁𝑚𝑎𝑥  are calculated using the following formulas with the help of the 256-

bit hash value of the plain image 𝐾𝑖.  
 
𝑁𝑚𝑖𝑛 = 𝑚𝑜𝑑(∑ 𝑑𝑒𝑐(𝐾𝑖)

8
𝑖=1  , 4) + 1                                                                                                                                             (5) 

 

𝑁𝑚𝑎𝑥 = 𝑚𝑜𝑑(∑ 𝑑𝑒𝑐(𝐾𝑖)
16
𝑖=9  , 4) + 5                        (6) 

 

where dec converts 16-bit binary numbers to decimal numbers.  

 

Step 4. The positions of the crossover points are determined by the sequences generated using the state variables u 

and v, respectively. The positions of crossover points are selected between 2 and 𝑀 − 1, and 2 and 𝑁 − 1 for row 

and column pairs, respectively. The expressions for the crossover positions are given as the following equations.  

 
𝑃𝑟 = 𝑚𝑜𝑑 (⌊𝑎𝑏𝑠(𝑢(𝑘)) ×10

10⌋,𝑀 − 2) + 2                                                                                                                             (7) 
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𝑃𝑐 = 𝑚𝑜𝑑 (⌊𝑎𝑏𝑠(𝑣(𝑙))× 10
10⌋,𝑁 − 2) + 2                       (8) 

 

where 𝑃𝑟  and 𝑃𝑐  are the sequences which contain the positions of the crossover points, 𝑘 = 1001,1002, … , 1000 +
∑ 𝑁𝑟(𝑖)𝑖  and 𝑙 = 1001, 1002, … ,1000 + ∑ 𝑁𝑐(𝑗)𝑗 . Therefore, the maximum number of iterations L could be equal 

to the greatest of (𝑀 2)𝑁𝑚𝑎𝑥⁄  or (𝑁 2)𝑁𝑚𝑎𝑥⁄ . 

  

Step 5. The N-point crossover operation is implemented on the input image. The rows of the plain image are 

transformed using the position arrays 𝑅, the number of crossover points 𝑁𝑟  and the positions of the crossover points 

𝑃𝑟  as described in Sect. 2.2. After transforming the rows, the columns of the plain image are modified in the same 

way using C, 𝑁𝑐  and 𝑃𝑐 . 

 

Step 6. In the second round of the shuffling phase, the initial conditions 𝑥0, 𝑦0 , 𝑧0, 𝑤0 , 𝑢0 , 𝑣0 are updated and the 

processes from Step 1 to Step 5 are re-implemented. 

 

Step 7. The keys for the diffusion phase are obtained as discussed in Sect. 2.3. There are 16 keys with a length of 16 

bits each. The following formulas are used to diffuse the shuffled image 𝑃𝑠  with the generated keys 𝐾𝑖′ . 
 

𝐶(1) = 𝑃𝑠(1)⊕𝐾1(1: 8)                                                                                                                                                              (9) 
 

𝐶(2) = 𝑃𝑠(2)⊕𝐾1(9: 16)                                                                                                                                                          (10) 

 

where 𝐾1(1:8) represents the first eight bits of Key 1, 𝐾1(9:16) represents the last eight bits of Key 1. 𝑃𝑠 (1) and 

𝑃𝑠(2)  are the first two pixels of the shuffled image. 𝐶(1) and 𝐶(2) are the first two pixels of the encrypted image. 

The equations in (11) and (12) are used to cipher the rest of the pixels of the shuffled image. 

 

𝐶(𝑖) = 𝐾𝑘(1: 8) ⊕𝑃𝑠(𝑖) ⊕𝐶(𝑖 − 2)                                                                                                                                        (11) 
 

𝐶(𝑖 + 1) = 𝐾𝑘(9: 16) ⊕𝑃𝑠(𝑖+ 1)⊕ 𝐶(𝑖 − 1)                                                                                                                                                   (12) 

 

where 𝐶 is the encrypted image, 𝑘 = 𝑚𝑜𝑑 (
𝑖+1

2
, 16) + 1 and 𝑖 = 3,5,7,9, … , 𝑀𝑁 − 1. The proposed image 

encryption architecture is illustrated in Fig. 3. The decryption of the ciphered image can be accomplished by 

following the steps from 7 to 1 sequentially. 

EXPERIMENTAL RESULTS AND ANALYZES 

Lena, Cameraman, Mandril, and Peppers which are grayscale standard test images with sizes of 256x256 are used in 

the experimental study. The following analyzes are performed for the test images: Keyspace and key sensitivity,  

histogram, correlation (adjacent pixel), information entropy, differential, data loss, noise attack, and computational 

time. The results of these analyzes are compared with the results of many other recently published studies.  

Keyspace and Key Sensitivity Analysis 

The key space can be found by calculating the total number of all possible keys which are used in the encryption 

process. To resist an exhaustive search attack that tries every possible key, the key space must be larger than 2100 

(Alvarez and Li, 2006). The initial values of the 6D hyperchaotic system in the first and second rounds of the shuffling 

are determined as the secret keys. The initial values are real numbers with a precision of 10−15. The key space can 

be computed as in Eq. (13) for a plain image with a size of 256 × 256 pixels. 

 

𝐾𝑒𝑦 𝑆𝑝𝑎𝑐𝑒 = (1015)6×(1015)6 ≈ 2597≫ 2100                                                                                                                      (13) 

 

Table 1 shows the comparison of key space for different studies. As seen in the table, this study’s key space is larger 

than the referred works’ key spaces. The proposed algorithm’s key space is sufficiently large to resist an exhaustive -

search attack. A reliable image encryption system must be sensitively dependent on the secret keys, which means 

that a tiny deflection in any key results in a completely unrecognizable decrypted image. The initial conditions of the 

6D system which are part of the secret keys are chosen as follows: 𝑥0 = 0, 𝑦0 = 1, 𝑧0 = 20, 𝑤0 = 0.2, 𝑢0 = 0.2,  

𝑣0 = 0.2 for the first round of shuffling and 𝑥02 = 0.1, 𝑦02 = 2, 𝑧02 = 21, 𝑤02 = 0.21, 𝑢02 = 0.21, 𝑣02 = 0.21 for 

the second round of the shuffling. Figure 4 shows the plain images of Lena, Cameraman, Mandril, and Peppers, their  
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Figure 3. The Proposed Image Encryption Architecture   

 

Table 1. Comparison of Keyspace 

 This study 

(Q. Zhang 

and Han, 

2021) 

(Zhou and 

Wang, 2020) 

(Hui et al., 

2021) 

(Zeng and 

Wang, 2021) 

(Chai et al., 

2021) 

Keyspace 2597 2536  2399 1060 ≈ 2199 2512  2280  

 

corresponding encrypted images, and their corresponding decrypted images with the correct keys. To illustrate the 

encryption method’s sensitivity to the secret keys, encrypted test images are decrypted with slightly altered keys. As 

shown in Fig. 5, only one secret key is changed very slightly while other secret keys are kept the same for each test 

image. These decrypted images are incorrectly deciphered and entirely different from the ones which are shown in 

Fig. 4. Therefore, it can be said that this image encryption scheme is sensitive to the selected secret keys.  

Histogram Analysis 

The values of pixels in the encrypted images should be uniformly distributed to resist statistical attacks which aim to 

obtain information by analyzing the distribution of the pixels. The histogram graphs of the test images for plain and 

encrypted versions are illustrated in Fig. 6. The suggested encryption method provides uniform distribution for the 

encrypted images so that statistical attacks can be made infeasible. 

 

To quantify how uniformly the pixels are distributed for the plain and encrypted test images, the variance of 

histograms can be calculated. The variance value should be smaller for a securely encrypted image as an indication 

of uniform pixel distribution. Ideally, the variance is zero for an 8-bit grayscale image if all 256 tonal values have 

the same repetition frequency. Table 2 lists the variance values of the histogram plots for plain and encrypted test 

images. Table 2 indicates that the variances are significantly reduced after the encryption process. 

 

Table 2. Histogram Variances for Plain and Encrypted Images 
Test image Plain  Encrypted 

Lena 30785.960 234.047 
Cameraman 111408.494 247.890 

Mandril 59087.020  253.663 
Peppers 31763.255 250.776 

 

Correlation Analysis 

Since a plain image is a visualization of meaningful data, neighboring pixels of the plain image are highly similar in 

horizontal, vertical, and diagonal directions. Thus, the plain image’s adjacent pixels are highly correlated.  One of the  
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Figure 4. Encryption and Decryption Results with the Correct Keys    

 

 
Figure 5. Decryption with Incorrect Keys a. Decrypted Lena with 𝑦0 = 1 + 10−15 b. Decrypted Cameraman with 

𝑣02 = 0.21 − 10−15  c. Decrypted Mandril with 𝑤0 = 0.2 + 10−15 d. Decrypted Peppers with 𝑥02 = 0.1 − 10−15 

 

the aims of the image encryption methods is to reduce this correlation between adjacent pixels. A total of 2500 

adjacent pixel pairs are selected randomly from the plain and encrypted test images in horizontal, vertical, and 

diagonal directions. A high correlation between neighboring pixels in all directions can be identified from Fig. 7(a), 

7(c), 7(e), and 7(g) for the plain images. As is observed in Fig. 7(b), 7(d), 7(f), and 7(h), however, the strong 

correlation is significantly reduced in all directions after the encryption process. Thus, it is safe to say that this 

encryption method can resist statistical attacks.  

 

The correlation coefficient can be used as an evaluation metric to determine the correlation between adjacent pixels 

and it can be expressed as in Eq. (14).  

 

𝜌 =
∑ (𝑥𝑖−𝐸(𝑥))(𝑦𝑖−𝐸(𝑦))
𝑛
𝑖=1

√∑ (𝑥𝑖−𝐸(𝑥))
2𝑛

𝑖=1 ∑ (𝑦𝑖−𝐸(𝑦))
2𝑛

𝑖=1

                                                                                                                                                (14) 
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Figure 6. Histogram Graphs a. Lena b. Encrypted Lena c. Cameraman d. Encrypted Cameraman e. Mandril f. 

Encrypted Mandril g. Peppers h. Encrypted Peppers 

 

Table 3. Average Correlation Coefficients for Test Images and Comparison with Other Works   

Test image Direction Plain  Encrypted 

(Patro 

et al., 

2019) 

(Niu et 

al., 2020) 

(Gupta 

et al., 

2021b) 

(J. Wang, 

Zhi, Chai, 

and Lu, 

2021) 

(Xingyuan 

Wang, Lin, 

and Li, 2021) 

Lena 

Horizontal 0.940712 -0.008011 - 0.0089   0.0055 0.0057    0.0084 0.0006 

Vertical 0.969795  0.004080   0.0016   0.0305 0.0087 −0.0039 0.0003 

Diagonal 0.917030  0.001165   0.0068 −0.0043 0.0387 −0.0013 0.0020 

Cameraman 

Horizontal 0.933703  0.000178 - 0.0013 - - - 0.0007 
Vertical 0.960281 -0.004402   0.0017 - - - 0.0024 
Diagonal 0.909464 -0.001455   0.0070 - - - 0.0003 

Mandril 

Horizontal 0.890513  0.003920 - −0.0138 0.0062 - - 

Vertical 0.858449  0.007558 - −0.0267 0.0090 - - 
Diagonal 0.816526 -0.001011 - −0.0072 0.0851 - - 

Peppers 

Horizontal 0.962784 -0.002207 - 0.0190 - - 0.0026 
Vertical 0.970404  0.003186 - 0.0029 - - 0.0010 

Diagonal 0.937218 -0.000596 - 0.0334 - - 0.0029 

 

where 𝐸(𝑥) =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 , 𝐸(𝑦) =

1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 , x and y denote the values of the adjacent pixels and n represents the 

number of randomly chosen pixels. The correlation coefficient 𝜌 must approximate 1 and 0 for plain and encrypted 

images, respectively. The correlation coefficients in horizontal, vertical, and diagonal directions for plain and 

encrypted test images can be calculated using Eq. (14). 2500 different adjacent pixel pairs are randomly selected in 

all directions to compute 𝜌. This selection and computation procedure is repeated 10 times. The average values of 

the calculated correlation coefficients are listed for the plain and encrypted test images in Table 3. It can be noticed 

from Table 3 that the plain images have very high correlation values which are close to 1 in all directions. The 

correlation coefficient values for the encrypted images, however, are close to zero in all directions. A significant 

reduction in the correlation coefficients results as a consequence of the applied image encryption method. In Table 

3, the suggested method is also compared with some recent studies (Gupta et al., 2021b; Niu et al., 2020; Patro et al.,  

2019; J. Wang et al., 2021; X. Wang et al., 2021) in terms of correlation coefficients of the encrypted images of the 

same size. The best correlation coefficient values are marked in bold for the encrypted images in the table. The 

presented image encryption method provides the best correlation coefficient reduction performance for seven out of 

twelve calculations. 

Information Entropy Analysis 

Information entropy can be used as an evaluation metric to measure the randomness of the plain and encrypted 

images. The information entropy value can be ideally 8 for an 8-bit encrypted grayscale image, whereas its value is 

smaller for plain images. The information entropy of a signal s can be calculated as expressed in Eq. (15).  
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Figure 7. Correlation Between Adjacent Pixels in Horizontal, Vertical, Diagonal directions a. Lena b. Encrypted 

Lena c. Cameraman d. Encrypted Cameraman e. Mandril f. Encrypted Mandril g. Peppers h. Encrypted Peppers 

 

Table 4. Information Entropies for Test Images and Comparison with Other Works 

Test image Plain  Encrypted 
(Patro et al., 

2019) 

(Gupta et al., 

2021b) 

(J. Wang et al., 

2021) 

(X. Wang, Zhu, and 

Zhang, 2018) 

Lena 7.5683 7.9974 7.9974 7.9971 7.9973 7.9971 
Cameraman 7.0097 7.9973 7.9972 - - 7.9971 

Mandril 7.2283 7.9972 - 7.9969 - - 
Peppers 7.5798 7.9972 - - - 7.9968 

 

 
𝐼𝐸 =  −∑ 𝑃(𝑠𝑖) 𝑙𝑜𝑔2𝑃(𝑠𝑖)

255
𝑖=0                                                                                                                                                    (15) 

 
where 𝑃(𝑠𝑖) is the probability of frequency of the symbol 𝑠𝑖 . To compute the information entropy of the plain and 

encrypted test images, 𝑃(𝑠𝑖) can be considered as the probability of occurrence of each pixel value. Table 4 lists the 

calculated information entropy values for plain and encrypted test images. The information entropy values for the 

encrypted images are larger than 7.997 which is quite close to the ideal value. This indicates the good randomness of 

the encrypted images. Compared with existing studies (Gupta et al., 2021b; J. Wang et al., 2021; Patro et al., 2019; 

X. Wang et al., 2018), this method presents better information entropy results.    
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Table 5. NPCR and UACI Values of Test Images for Five Different Pixel Changes 
Test image Position of pixel Pixel value change NPCR (%) UACI (%) 

Lena 

(1,24) 151→150 99.64447 33.35464 
(79,13)          70→71 99.59259 33.50028 

(125,132)        100→99 99.58801 33.50730 

(199,201)          93→94 99.64447 33.24368 
(250,1)          29→28 99.58954 33.36937 

Average   99.61182 33.39505 

Cameraman 

(1,1) 156→155 99.57886 33.57422 
(50,50) 174→175 99.60632 33.31693 

(100,120) 12→13 99.63074 33.45505 
(150,170) 162→163 99.61243 33.38579 
(256,256) 113→112 99.59717 33.45018 

Average   99.60510 33.43643 

Mandril 

(10,250) 124→123 99.62616 33.50114 

(49,155) 130→131 99.59564 33.55044 
(125,3) 104→103 99.61395 33.40848 

(202,256) 135→136 99.59869 33.39330 
(245,23) 159→158 99.57428 33.37628 

Average   99.60174 33.44593 

Peppers 

(25,1) 85→86 99.56360 33.27225 
(115,44) 43→42 99.62006 33.44840 
(177,177) 131→132 99.63684 33.53672 

(200,9) 68→69 99.61853 33.28563 
(250,187) 162→161 99.57733 33.39371 

Average   99.60327 33.38734 

Overall average   99.60549 33.41619 

Differential Analysis 

Differential attacks aim to detect a relationship between two ciphered images whose corresponding plain images own 

one pixel difference. Even if there is a slight difference between two plain images, a robust encryption method should 

generate completely different encrypted images for those plain images. To defend against differential attacks, 

sensitivity to the plain image should be provided. Two performance metrics are typically used for differential 

analysis: Number of Pixel Change Rate (NPCR) and Unified Average Changing Intensity (UACI). NPCR is used to 

calculate the ratio of the number of different pixels between two encrypted images. Similarly, UACI computes the 

percentage of the mean difference in intensities between two encrypted images. NPCR and UACI values can be found 

using the equations in Eq. (16) and Eq. (17) for an image with a size of M x N. 

 

𝑁𝑃𝐶𝑅 =
1

𝑀×𝑁
∑ ∑ 𝐷(𝑖, 𝑗)𝑀

𝑖=1  × 100 %𝑁
𝑗=1                                                                                                                       (16)  

 

𝑈𝐴𝐶𝐼 =
1

𝑀×𝑁×255
∑ ∑ |𝐸1(𝑖, 𝑗) − 𝐸2(𝑖, 𝑗)|

𝑀
𝑖=1  × 100 %𝑁

𝑗=1                                                                                                                        (17)  

 

where 𝐸1  and 𝐸2  are two images that are encrypted with the proposed algorithm, whose corresponding images contain 

only one pixel difference. The elements of 𝐷, which is an M x N dimensional matrix, are given as follows. 

 

𝐷(𝑖, 𝑗) = {
  1  𝑖𝑓   𝐸1(𝑖, 𝑗) ≠ 𝐸2(𝑖, 𝑗) 
0  𝑖𝑓   𝐸1(𝑖, 𝑗) = 𝐸2(𝑖, 𝑗)

                                                                                                                              (18)  

 

NPCR and UACI values of the test images are calculated using the equations given in Eq. (16), Eq. (17) and Eq. (18) 

and are presented in Table 5. One pixel is arbitrarily selected from each test image and the pixel’s value is increased 

or decreased by one. The plain image and the slightly modified image are both encrypted with the same secret keys 

to obtain 𝐸1  and 𝐸2 . This process is repeated for 5 separate pixels of each test image. The average of five different 

NPCR values are listed as follows: 99.61182%, 99.60510%, 99.60174%, and 99.60327% for Lena, Cameraman, 

Mandril, and Peppers images, respectively. The average UACI values are computed as 33.39505%, 33.43643%, 

33.44593%, and 33.38734% for Lena, Cameraman, Mandril, and Peppers images, respectively. Table 6 illustrates 

the comparison of average NPCR and UACI values with recently published studies (Karawia and Elmasry, 2021; X. 

Wang et al., 2021). The overall average of NPCR and UACI are calculated as 99.60549% and 33.41619%. The ideal  
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Table 6. Comparison of NPCR and UACI Values with Recent Studies 
Test image This study (Karawia and Elmasry, 2021) (X. Wang et al., 2021) 

 NPCR (%)  UACI (%) NPCR (%)  UACI (%) NPCR (%)  UACI (%) 

Lena 99.61182 33.39505 99.6099 33.4025 99.6078 33.5309 
Cameraman 99.60510 33.43643 99.6145 33.5832 99.6215 33.3309 

Mandril 99.60174 33.44593 99.6140 33.4384 - - 

Peppers 99.60327 33.38734 99.6368 33.4185 99.6200 33.4506 

 

Table 7. PSNR And MSE Values for the Test Images 
Test image Data loss ratio   MSE  PSNR (dB) 

Lena 

1/64   119.802 27.346 
1/8 1188.124 17.382 
1/4 2459.674 14.222 

Cameraman 

1/64   133.799 26.866 
1/8 1187.897 17.383 
1/4 2503.545 14.145 

Mandril 

1/64   108.735 27.767 
1/8   901.682 18.580 

1/4 1767.412 15.657 

Peppers 

1/64   115.340 27.511 
1/8   920.479 18.490 
1/4 1897.099 15.350 

 

values suggested in the literature (Y. Li, Wang, and Chen, 2017) are 99.61% and 33.46% for NPCR and UACI, 

respectively. The overall average values are pretty close to the ideal ones which indicate that the proposed encryption 

scheme can effectively resist differential attacks. 

Data Loss Analysis 

The data of the encrypted image may be lost during the process of transmission as a consequence of attacks. The 

attacked and disrupted encrypted image should be decrypted as accurately as possible. Data loss analysis is performed 

by clipping a certain amount of the encrypted images deliberately. The clipped images are decrypted with the correct 

keys and the decrypted images are compared with the plain images. Peak signal-to-noise ratio (PSNR) can be used 

as a parameter to compare plain images and decrypted images. For an 8-bit grayscale image, PSNR can be calculated 

as in Eq. (19). 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
(28−1)

2

𝑀𝑆𝐸
 (𝑑𝐵)                                                                                                                                     (19) 

 

where MSE stands for mean squared error and it can be defined as in Eq. (20) for an image with a size of M x N. 

 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ (𝑃(𝑖, 𝑗) − 𝐷(𝑖, 𝑗))

2𝑀
𝑖=1

𝑁
𝑗=1                                                                                                                                      (20) 

 

where P is the plain image and D is the decrypted image. Theoretically, if the plain image and the decrypted image 

are the same, then MSE becomes zero and PSNR goes to infinity. PSNR value will be high if the plain image and the 

decrypted image are very similar to each other. To test the effect of data loss, 1/64, 1/8, and 1/4 of the upper left 

corner of the encrypted image are clipped. The data loss analysis visual results are presented in Fig. 8 for Lena and 

Cameraman test images. The PSNR and MSE values for all of the test images are also calculated and presented in 

Table 7.  

 

As shown in Fig. 8, Lena and Cameraman images are recovered from the clipped encrypted images. The recovered 

images are more recognizable for lower data loss ratios due to the lower mean squared error rates. Table 7 shows that 

if the data loss ratio increases, the PSNR value decreases. The highest PSNR values are obtained as 27.767 dB, 

18.580 dB, and 15.657 dB for 1/64, 1/8, and 1/4 data losses, respectively. A comparison of PSNR is shown in Table 

8, where the encrypted Lena image is cropped by 1/8 or 1/4 from the upper left corner. Comparison with the recently 

published studies (Karawia and Elmasry, 2021; Xingyuan Wang and Li, 2021; T. Wang and Wang, 2020) shows that 

the suggested method appears to perform better in terms of recovering images with data loss.  
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Figure 8. Data Loss Analysis a. Lena with 1/64 Loss b. Lena with 1/8 Loss c. Lena with 1/4 Loss d. Decrypted 

Lena with 1/64 Loss e. Decrypted Lena with 1/8 Loss f. Decrypted Lena with 1/4 Loss g. Cameraman with 1/64 

Loss h. Cameraman with 1/8 Loss i. Cameraman with 1/4 Loss j. Decrypted Cameraman with 1/64 Loss                

k. Decrypted Cameraman with 1/8 Loss l. Decrypted Cameraman with 1/4 Loss 

 

Table 8. Comparison of PSNR (dB) Value of Lena image with Recent Studies 
Test 

image 
Data loss ratio 

This 

study 

(T. Wang and 

Wang, 2020) 

(Karawia and 

Elmasry, 2021) 

(Xingyuan Wang and 

Li, 2021) 

Lena 

1/8 at the upper left 
corner 

17.382 8.6402 8.8 13.6449 

1/4 at the upper left 
corner 

14.222 8.0511 8.1 10.6747 

Noise Attack Analysis 

The noise in the transmitted image data might be a problem. A robust image encryption system should recover the 

noisy encrypted image to a large extent. Possible noise attacks can be simulated by intentionally adding various noise 

types with different intensities. The encrypted test images are contaminated with salt and pepper noise (SPN) with 

an intensity of 0.05, 0.1, and 0.15; speckle noise (SN) with an intensity of 0.001, 0.01, and 0.02; and Poisson noise 

(PN) to test the suggested encryption method’s resistance against noise attacks. The noise attack simulation results 

of Mandril and Peppers test images are presented in Fig. 9 for various types of noises with different intensities. The 

most identifiable image is detected in Fig. 9(d), whereas the least recognizable one is given in Fig. 9(l). The PSNR  
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Figure 9. Noise Attack Analysis a. Mandril 0.05 SPN b. Mandril 0.001 SN c. Mandril PN d. Decrypted Mandril 

0.05 SPN e. Decrypted Mandril 0.001 SN f. Decrypted Mandril PN g. Peppers 0.10 SPN h. Peppers 0.15 SPN i. 

Peppers 0.02 SN j. Decrypted Peppers 0.10 SPN k. Decrypted Peppers 0.02 SN l. Decrypted Peppers 0.02 SN 

 

Table 9. PSNR (dB) Values for Various Noise Attacks 

Test image 
 Noise type and intensity 

SPN 0.05   SPN 0.1 SPN 0.15 SN 0.001 SN 0.01  SN 0.02 PN 

Lena 18.660 15.824 14.088 18.839 14.347 13.209 15.116 

Cameraman 18.589 15.528 13.872 18.448 14.080 12.959 14.952 
Mandril 19.752 17.020 15.387 19.640 15.504 14.392 16.347 
Peppers 19.047 16.124 14.415 19.502 15.067 13.834 15.973 

 

Table 10. Comparison of PSNR (dB) Value of Lena Images for Different Noise Attacks  
Test 

image 

Noise type and 

intensity 

This 

study 

(T. Wang and 

Wang, 2020) 

(J. Wang et al., 

2021) 

(Xingyuan Wang and 

Chen, 2021) 

 SN 0.00000143 62.999 - 41.4243 - 

Lena 

(256x256) 

SPN 0.00003 55.288 - 52.3022 - 
SPN 0.10 15.824 8.6674 - - 

SPN 0.15 14.088 8.4304 - - 

Lena 

(512x512) 

SPN 0.05 18.096 - - 17.101 
SPN 0.10 15.253 - - 14.286 
SN 0.02 12.471 - - 10.357 

PN 14.390 - - 10.827 
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values of these images are 19.752 dB and 13.834 dB, respectively. Table 9 lists the PSNR values which are calculated 

between plain images and the noisy encrypted images. The cryptosystem’s resistance varies as the noise type changes 

but the PSNR value always decreases as the noise intensity increases. Also, the noise performance of the suggested 

method is compared with some recent studies (J. Wang et al., 2021; Xingyuan Wang and Chen, 2021; T. Wang and 

Wang, 2020) in terms of PSNR values in Table 10. The same size of encrypted Lena images is contaminated with 

the same types and intensities of noise. This study’s noise performance is better than that of (J. Wang et al., 2021) 

for both SN and SPN. Also, this study’s resistance against SPN with intensities of 0.10 and 0.15 is more robust than 

that of (T. Wang and Wang, 2020). Moreover, the suggested method outperforms the method given in (Xingyuan 

Wang and Chen, 2021) for SPN, SN, and PN attacks to a 512x512 Lena image.    

Computational Time Analysis 

The proposed image encryption algorithm is executed on MATLAB 2017b using a PC with an Intel Core 2.80 GHz 

processor and 16 GB RAM. Average encryption and decryption times are found to be 1.429 seconds and 1.148 

seconds for a grayscale image of size 256x256, respectively.   

CONCLUSIONS 

In this work, a new image encryption method, which is based on a 6D hyperchaotic map and genetic operators, is 

presented. The 6D hyperchaotic map’s state variables are utilized to generate the parameters of the N-point crossover 

operation. The pseudo-random sequences generated by those state variables are used to pair rows and columns with 

each other and to determine the number of crossover points and positions. The maximum and minimum values of N 

are calculated using the SHA-256 hash value of the original image. The 256-bit hash value is also modified by 

mutation and two-point crossover operations for being used in the diffusion stage. The initial values of the 6D 

hyperchaotic, which increase the key space, are used as the secret keys. High key space and the key sensitivity to the 

secret keys protect against exhaustive search attacks. The test images’ uniformly distributed histograms show that 

statistical attacks are infeasible. Also, the correlation between the adjacent pixels of the plain images in horizontal, 

vertical, and diagonal directions is significantly reduced. For each test image, an information entropy value greater 

than 7.997 is obtained. This is an indication of the good randomness of the encrypted images. Differential analysis 

proves that the proposed method’s overall NPCR and UACI values are pretty close to the ideal values. Thus, the 

proposed encryption algorithm can resist differential attacks effectively. Finally, data loss and noise attack analyses 

prove that the proposed method can effectively recover the encrypted images with data loss or noise. The analysis 

results prove that the suggested encryption technique can be used for the safe transmission of images. The analysis 

results of the proposed scheme are also compared with several recently published state-of-the-art works. In most of 

the comparisons, this method outperforms the others. In future work, the main idea behind the suggested method will 

be improved and applied to color images.  
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