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1 INTRODUCTION 

Stochastic simulation is an indispensable part 

and major focus of scientific inquiry. Model 

building, estimation, and testing typically 

require verification via simulation to assess the 

reliability, validity, and plausibility of 

inferential techniques, to evaluate how well the 

implemented models capture the specified true 

population values, and how reasonably these 

models respond to departures from underlying 

assumptions, among other things. Describing a 

real notion by creating mirror images and 

imperfect proxies of the perceived underlying 

truth, iteratively refining and occasionally 

redefining the empirical truth to decipher the  
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ABSTRACT: This manuscript is concerned with establishing a unified framework for concurrently generating data 

sets that include three major kinds of variables (i.e., binary, ordinal, and count) when the marginal distributions and 

a feasible association structure are specified for simulation purposes. The simulation paradigm has been commonly 

utilized in pharmaceutical practice. A central aspect of every simulation study is the quantification of the model 

components and parameters that jointly define a scientific process. When this quantification goes beyond the 

deterministic tools, researchers often resort to random number generation (RNG) in finding simulation-based 

solutions to address the stochastic nature of the problem. Although many RNG algorithms have appeared in the 

literature, a major limitation is that most of them were not devised to simultaneously accommodate all variable types 

mentioned above. Thus, these algorithms provide only an incomplete solution, as real data sets include variables of 

different kinds. This work represents an important augmentation of the existing methods as it is a systematic attempt 

and comprehensive investigation for mixed data generation. We provide an algorithm that is designed for generating 

data of mixed marginals; illustrate its operational, logistical, and computational details; and present ideas on how it 

can be extended to span more sophisticated distributional settings in terms of a broader range of marginal features 

and associational quantities. 

Key Words: Biserial correlation, phi coefficient, simulation, tetrachoric correlation, random number generation, 

mixed data 

7

https://orcid.org/0000-0003-2482-703X
https://orcid.org/0000-0003-0676-0548
https://orcid.org/0000-0001-9997-3459


 

 

 

 

mechanism by which the process under 

consideration is assumed to operate in a 

repeated manner allows researchers to study 

the performance of their methods through 

simulated data replicates that mimic the real 

data characteristics of interest in any given 

setting. Accuracy and precision measures for 

the model parameters signal if the procedure 

works properly; and may suggest remedial 

action to minimize the discrepancies between 

expectation and reality. 

Simulation studies have been 

commonly employed in a broad range of 

disciplines in order to better comprehend and 

solve today’s increasingly intricate issues. A 

core component of every simulation study is 

the quantification of the model components 

and parameters that jointly define a scientific 

phenomenon. Deterministic tools are typically 

inadequate to quantify complex situations, 

leading researchers to harness RNG techniques 

in finding simulation-based solutions to 

address the stochastic behavior of the problems 

that generally involve variables of many 

different types on a structural level; i.e., causal 

and correlational interdependencies are a 

function of a mixture of binary, ordinal, and 

count variables, which jointly act to 

characterize the mechanisms that collectively 

delineate a paradigm. In modern times, we are 

unequivocally moving from small data to big 

data, from mechanistical to empirical thinking,  

 

 

from exact solutions to simulation-driven 

solutions, from mathematical perfection to 

reasonable approximation to reality; the ideas 

presented herein are consequential in the sense 

that the basic mixed-data generation setup can 

be augmented to handle a large spectrum of 

situations that can be encountered in many 

areas. 

This work is concerned with building 

the basics of a unified skeleton for 

concurrently generating data sets that include 

three major kinds of variables (i.e., binary, 

ordinal, and count) when the marginal 

distributions and a feasible association 

structure in the form of Pearson correlations 

are specified for simulation purposes. 

Although many RNG algorithms have 

appeared in the literature, a fundamental 

restriction is that they were not designed for a 

mix of all prominent types of data. The current 

paper is a systematic attempt and compendious 

investigation for mixed data generation; it 

represents a substantial augmentation of the 

existing methods, and it has potential to 

advance scientific research and knowledge in a 

meaningful way. The broader impact of this 

framework is that it can assist data analysts, 

practitioners, theoreticians, and 

methodologists across many disciplines to 

simulate mixed data with relative ease. The 

proposed algorithm constitutes a 

comprehensive set of computational tools that  
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offers promising potential for building 

enhanced computing infrastructure for 

research and education. 

We propose an RNG algorithm that 

encompasses three major variable types, 

building upon our previous work in generation 

of multivariate ordinal data [1], joint 

generation of binary and normal data [2], 

ordinal and normal data [3], count and normal 

data [4] with the specification of marginal and 

associational parameters along with other 

related work [5-10]. Equally importantly, we 

discuss the extensions on how to incorporate 

continuous data to the mix via power 

polynomials that can handle the overwhelming 

majority of continuous shapes [11-15], count 

data that are amenable to over- and under-

dispersion via generalized Poisson distribution 

[16], broader measures of associations such as 

Spearman’s rank correlation, and the 

specification of higher order product moments. 

Conceptual, algorithmic, operational, and 

procedural details will be conveyed throughout 

the paper. 

The organization of the manuscript is 

as follows: In Sect. 2, the algorithm for 

simultaneous generation of binary, ordinal, and 

count data is given. The essence of the 

algorithm is finding the correlation structure of 

underlying multivariate normal (MVN) data 

that form a basis for the subsequent  

 

 

discretization in the binary and ordinal cases, 

and correlation mapping using inverse 

cumulative distribution functions (cdf’s) in the 

count data case, where modeling the 

correlation transitions for different 

distributional pairs is discussed in detail. Sect. 

3 presents some logistical details and 

illustrative examples through an R package 

that implements the algorithm, demonstrating 

how well the proposed technique works. Sect. 

4 includes discussion on extensions, 

limitations, future directions, and concluding 

remarks. 

2 ALGORITHM 

The algorithm is designed for 

concurrently generating binary, ordinal, and 

count data, with the added utility that normal 

variables can potentially be incorporated to the 

system; for generality we present a version that 

includes normal components. The count part is 

assumed to follow the Poisson distribution. 

While binary is a special case of ordinal, for 

the purpose of exposition, the steps are 

presented separately. Skipped patterns are 

allowed for ordinal variables. The marginal 

characteristics (the proportions for the binary 

and ordinal part, the rate parameters for the 

count part, and the means and variances for the 

normal part) and a feasible Pearson correlation 

matrix need to be specified by the users. The 

algorithmic skeleton establishes the basic  
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foundation, extensions to more general and 

complicated situations will be discussed in 

Sect. 4. 

The operational engine of the algorithm 

hinges upon computing the correlation matrix 

of underlying MVN data that serve as an 

intermediate tool in the sense that binary and 

ordinal variables are obtained via 

dichotomization and ordinalization, 

respectively, through the threshold concept, 

and count variables are retrieved by correlation 

mapping using inverse cdf matching. The 

procedure entails modeling the correlation 

transformations that result from discretization 

and mapping. 

In what follows, let B, O, C, and N 

denote binary, ordinal, count, and normal 

variables, respectively. Let   be the specified 

Pearson correlation matrix which is comprised 

of ten submatrices that correspond to all 

possible variable-type combinations. 

Required parameter values are p’s for 

binary and ordinal variables,  λ’s for count 

variables,   2,  pairs for normal variables, 

and the entries of the correlation matrix. These 

quantities are either specified or estimated 

from a real data set that is to be mimicked. 

1. Check if   is positive definite. 

2. Find the upper and lower correlation bounds 

for all pairs by the sorting method of [6]. It is  

 

 

well-known that correlations are not bounded 

between -1 and +1 in most bivariate settings as 

different upper and/or lower bounds may be 

imposed by the marginal distributions. These 

restrictions apply to discrete variables as well 

as continuous ones. Let  (F, G) be the set of 

cdf’s H on R2 having marginal cdf’s F and G. 

It can be proven that in  (F, G), there exist cdf’s 

HL and HU, called the lower and upper bounds, 

having minimum and maximum correlation. 

For all (x, y)   R2,  HL (x, y) = max[F(x) + G(y) 

- 1,0] and HU (x, y) = min[F(x), G(y)]. For any 

H   (F, G) and all (x, y)   R2, HL (x, y)   H (x, 

y)  < HU (x, y). If L , U , and  denote the 

Pearson correlation coefficients for HL, HU, 

and H, respectively, then L    U . One 

can infer that if V is uniform in [0,1], then F-1 

(V) and G-1(V) are maximally correlated; and 

F-1 (V) and G-1(V) are maximally 

anticorrelated. In practical terms, generating X 

and Y independently with a large number of 

data points before sorting them in the same or 

opposite direction give the approximate upper 

and lower correlation bounds, respectively. 

Make sure all elements of  are within the 

plausible range. 

3. Perform logical checks such as binary 

proportions are between 0 and 1, probabilities 

add up to 1 for ordinal variables, the Poisson 

rates are positive for count variables, variances  
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for normal variables are positive, the mean, 

variance, proportion and rate vectors are 

consistent with the number of variables,  is 

symmetric and its diagonal entries are 1, to 

prevent obvious misspecification errors. 

4. For B-B combinations, find the tetrachoric 

(pre-dichotomization) correlation given the 

specified phi coefficient (post-dichotomization 

correlation). Let X1, X2 represent binary 

variables such that E[Xj] = pj and Cor(X1, X2) 

= 12 , where pj (j = 1, 2) and 12  (phi 

coefficient) are given.  

Let  1 2 12t , t ,   be the cdf for a standard 

bivariate normal random variable with 

correlation coefficient 12  (tetrachoric 

correlation).Naturally, 

   
1 2

1 2 12 1 2 12 1 2

t t

t , t , f z , z , dz dz 
 

    , 

where  

   

 
  

1
1 2

2

1 2 12 12

2 2

1 12 1 2 2

2

12

2 1

2

2 1

/

f z , z ,

z z z z
exp

  







  
  

   
 
 
 

 The connection between 12  and 12  is 

reflected in the equation 

     
1 2

1 2 12 12 1 1 2 2 1 2

/
z p , z p , p q p q p p       

Solve for 12  where  jz p denotes the 

th

jp quantile of the standard normal  

 

 

distribution, and 1j jq p  . Repeat this 

process for all B-B pairs. 

5. For B-O and O-O combinations, implement 

an iterative procedure that finds the polychoric 

(pre-discretization) correlation given the 

ordinal phi coefficient (post-discretization 

correlation). Suppose Z =  1 2Z , Z  ~ N

 
1 2

0 Z Z, , where Z denotes the bivariate 

standard normal distribution with correlation 

matrix 
1 2Z Z whose off-diagonal entry is 

1 2Z Z . 

Let X = (X1,X2) be the bivariate ordinal data 

where underlying Z is discretized based on 

corresponding normal quantiles given the 

marginal proportions, with a correlation matrix 

1 2Z Z . If we need to sample from a random 

vector (X1, X2) whose marginal cdf’s are F1, F2 

tied together via a Gaussian copula, we 

generate a sample  1 2z , z  from Z ~ N

 
1 2

0 Z Z, , then set 

      1 1

1 2 1 1 2 2x , x F u ,F u  x  when 

      1 2 1 2u ,u z , z   u , where   is the 

cdf of the standard normal distribution. The 

correlation matrix of X, denoted by 
1 2Z Z  (with 

an off-diagonal entry 
1 2X X ) obviously differs 

from 
1 2Z Z  due to discretization. More 

specifically, 
1 2 1 2X X Z Z   in large samples. 

The relationship between 
1 2X X  and 

1 2Z Z can 

be established via the following algorithm [9]: 
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a. Generate standard bivariate normal data 

with the correlation 
1 2

0

Z Z where 
1 2 1 2

0

Z Z X X   

(Here, 
1 2

0

Z Z is the initial polychoric 

correlation). 

b. Discretize Z1 and Z2, based on the 

cumulative probabilities of the marginal 

distribution F1 and F2, to obtain X1 and X2, 

respectively. 

c. Compute 
1 2

1

X X through X1 and X2  (Here, 

1 2

1

X X is the ordinal phi coefficient after the first 

iteration). 

d. Execute the following loop as long as 

1 2 1 2

v

X X X X   ϵ and 1 maxv v   ( maxv  and ϵ 

are the maximum number of iterations and the 

maximum tolerated absolute error, 

respectively, both quantities are set by the 

users): 

i. Update
1 2

v

Z Z   by  
1 2 1 2

1v v

Z Z Z Z g v   , where 

 
1 2 1 2

v

X X X Xg v   . Here,  g v  serves as 

a correction coefficient, which ultimately 

converges to 1. 

ii. Generate bivariate normal data with 
1 2

v

Z Z  

and compute 
1 2

1v

X X  after discretization. 

Again, one should repeat this process for 

each B-O and O-O pair. 

6. For C-C combinations, compute the 

corresponding normal-normal correlations 

(pre-mapping) given the specified count-count  

 

 

correlations (post-mapping) via the inverse cdf 

method in Yahav and Shmueli that was 

proposed in the context of correlated count 

data generation [10]. Their method utilizes a 

slightly modified version of the NORTA 

(Normal to Anything) approach [17], which 

involves generation of MVN variates with 

given univariate marginals and the correlation 

structure (RN), and then transforming it into 

any desired distribution using the inverse cdf. 

In the Poisson case, NORTA can be 

implemented by the following steps: 

a. Generate a k-dimensional normal vector 

NZ  from MVN with mean vector 0 and a 

correlation matrix NR . 

b. Transform NZ  to a Poisson vector XC  as 

follows: 

i. For each element iz  of NZ , calculate 

the Normal cdf,  iz . 

ii. For each value of  iz , calculate the 

Poisson inverse cdf with a desired 

corresponding marginal rate i , 

  1

i iz  ; where 

 
i

ix

i 0

e
x

i!








   

c.      1 1    X
i k

T

C i kz ,..., z     is a 

draw from the desired multivariate count data 

with correlation matrix RPOIS. 

 An exact theo-retical connection  

Anat. J. Pharm. Sci 2022:1(1) 

 

12



 

 

 

 

between RN and RPOIS has not been established 

to date. However, it has been shown that a 

feasible range of correlation between a pair of 

Poisson variables after the inverse cdf 

transformation is within 

 
    

    

1 1

1 1

1
i j

i j

Cor U , U ,

Cor U , U

 

 




 

 

   
 
 

    

,  

where i  and 
j  are the marginal rates, and 

𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) Yahav and Shmueli 

proposed a conceptually simple method to 

approximate the relationship between the two 

correlations [10]. They have demonstrated that 

RPOIS can be approximated as an exponential 

function of RN where the coefficients are the 

functions of   and  . 

7. For B-N/O-N combinations, find the 

biserial/polyserial correlation (before 

discretization of one of the variables) given the 

point-biserial/point-polyserial correlation 

(after discretization) by the linearity and 

constancy arguments proposed by [7]. Suppose 

that X and Y follow a bivariate normal 

distribution with a correlation of XY . Without 

loss of generality, we may assume that both X 

and Y are standardized to have a mean of 0 and 

a variance of 1. Let XD be the binary variable 

resulting from a split on X,  DX I X k  . 

Thus,  DE X p  and  DV X pq  where 

1q p  . The correlation between DX  and X

, 
DX X  can be obtained in a simple way,  

 

 

namely, 

  

 

   

 

D

D

X X

D

D

Cov X ,X

V X V X

E X X pq

E X X k pq

 



    

. 

 We can also express the relationship 

between X and Y via the following linear 

regression model: 

XYY X ò    (1) 

where ϵ is independent of X and Y, and follows 

𝑁~(0,1 − δ𝑋𝑌
2 . When we generalize this to 

nonnormal X and/or Y (both centered and 

scaled), the same relationship can be assumed 

to hold with the exception that the distribution 

of ϵ follows a nonnormal distribution. As long 

as Eq. 1 is valid, 

   D D XYCov X ,Y Cov X , X ò                 

                   D XY DCov X , X Cov X ,  ò    

                 XY D DCov X ,X Cov X , .  ò  (2) 

Since ò is independent of X, it will also 

be independent of any deterministic function 

of X such as DX , and thus  DCov X ,ò  will be 

0. As     0E X E Y  ,     1V X V Y  , 

 
DD X YCov X ,Y pq and   XYCov X ,Y  , 

Eq. 2 reduces to  

D DX Y XY X X .                      (3) 

In the bivariate normal case, 

DX X h pq   where h  is the ordinate of the 

normal curve at the point of dichotomization.  
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Eq. 3 indicates that the linear association 

between DX  and Y  is assumed to be fully 

explained by their mutual association with X  

[7]. The ratio, 
DX Y XY   is equal to 

 
DX X DE X X pq

E X X k pq .

 

    

  

It is a constant given p  and the 

distribution of  X ,Y . These correlations are 

invariant to location shifts and scaling, X and Y 

do not have to be centered and scaled, their 

means and variances can take any finite values. 

Once the ratio  
DX X  is found, one can 

compute the biserial correlation when the 

point-biserial correlation is specified. When X 

is ordinalized to obtain XO, the fundamental 

ideas remain unchanged. If the assumptions of 

Eqs. 1 and 3 are met, the method is equally 

applicable to the ordinal case in the context of 

the relationship between the polyserial (before 

ordinalization) and point-polyserial (after 

ordinalization) correlations. The easiest way of 

computing 
OX X  is to generate X with a large 

number of data points, then ordinalize it to 

obtain XO, and then compute the sample 

correlation between XO and X. X could follow 

any continuous univariate distribution. 

However, here X is assumed to be a part of 

MVN data before discretization. 

8. For C-N combinations, use the count       

version of Eq. 3, which is 
C CX Y XY X X    is  

 

 

valid.  The only difference is that we use the 

inverse cdf method rather than discretization 

via thresholds as in the binary and ordinal 

cases. 

9. For B-C and O-C combinations, suppose 

that there are two identical standard normal 

variables, one underlies the binary/ordinal 

variable before discretization, the other 

underlies the count variable before inverse cdf 

matching. One can find Cor(O, N) by the 

method of [7]. Then, assume Cor(C, O) = 

Cor(C, N)* Cor(O, N). Cor(C, O) is specified 

and Cor(O, N) is calculated. Solve for Cor(C, 

N). Then, find the underlying N-N correlation 

by Item 8 above [4,7]. 

10. Construct an overall, intermediate 

correlation matrix, *  using the results from 

Steps 4 through 9, in conjunction with the N-N 

part that remains untouched when we compute 

* from  . 

11. Check if *  is positive definite. If it is 

not, find the nearest positive definite 

correlation matrix by the method of Higham 

[18]. 

12. Generate multivariate normal data with a 

mean vector of (0, ..., 0) and correlation matrix 

of * , which can easily be done by using the 

Cholesky decomposition of *  and a vector of 

univariate normal draws. The Cholesky 

decomposition of 
*  produces a lower-

triangular matrix A for which AAT = 
* . If  
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 1 dz z ,...,z  are d independent standard 

normal random variables, then Z = Az is a 

random draw from this distribution. 

13. Dichotomize binary, ordinalize ordinal 

by respective quantiles, go from normal to 

count by inverse cdf matching. 

The assessment of the algorithm 

performance in terms of commonly accepted 

accuracy and precision measures in RNG and 

imputation settings as well as in other 

simulated environments can be carried out 

through the evaluation metric developed in 

Demirtas [19-34]. 

3 SOME OPERATIONAL DETAILS 

AND ILLUSTRATIVE SIMULATED 

EXAMPLES 

 The software implementation of the 

algorithm has been done in PoisBinOrd 

package within R environment [35,36]. The 

package consists of ten functions. The 

functions validation.bin, validation.ord, and 

validation.corr validate the specified 

quantities to prevent users from committing 

obvious specification errors. The function 

correlation.limits returns the lower and upper 

bounds of the pairwise correlation of Poisson-

Poisson, Poisson-Binary, Poisson-Ordinal, 

Binary-Binary, Binary-Ordinal, and Ordinal-

Ordinal combinations given their marginal 

distributions, i.e. returns the range of feasible 

pairwise correlations. The function  

 

 

correlation.bound.check checks the validity of 

the values of pairwise correlations. The 

functions intermediate.corr.PP, 

intermediate.corr.BO, and 

intermediate.corr.PBO computes intermediate 

correlation matrix for Poisson-Poisson 

combinations, binary/ordinal and 

binary/ordinal combinations, and Poisson and 

binary/ordinal combinations, respectively. The 

function overall.corr.mat assembles the final 

correlation matrix. The engine function 

gen.PoisBinOrd generates mixed data in 

accordance with the specified marginal and 

correlational quantities. Throughout the 

package, variables are supposed to be inputted 

in a certain order, namely, first count variables, 

next binary variables, and then ordinal 

variables should be placed. 

3.1 Simulation Settings and Parameters 

of Interest 

All simulated scenarios have been 

implemented via the use of the package 

PoisBinOrd. We assumed that there were six 

variables (two count, two binary, and two 

ordinal) in the system. We have chosen two 

levels of Poisson rates, two combinations of 

binary proportions, and two combinations for 

each of the ordinal variables, leading to 16 

scenarios in total. Within each scenario, two 

sets of correlation structures and two levels of 

sample sizes (100 and 10,000) have been 

investigated. More specifically, for count  
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variables, the Poisson rates ( 1 , 2 ) 

considered were (2, 7) and (0.2, 0.7); for binary 

variables, proportions ( 1 2p , p ) were chosen as 

(0.45, 0.50) and (0.80, 0.90); for ordinal 

variables, four levels (1, 2, 3, 4) were assumed 

with corresponding probabilities (0.25, 0.25, 

0.25, 0.25) and (0.65, 0.15, 0.10, 0.10) for the 

first one, (0.20, 0.25, 0.30, 0.25) and (0.50, 

0.30, 0.10, 0.10) for the second one. Table 1 

summarizes all the marginal specifications. 

Note that the cumulative thresholds for each 

level (except for the last level) of ordinal 

variables are given rather than the marginal 

probabilities. Furthermore, the letter P is used 

for count variables rather than C that appeared 

in the algorithm to better reflect the fact that 

these variables follow the Poisson distribution. 

In regard to the association structure, two 

correlation matrices were employed. Each 

element of the correlation matrices was 

randomly sampled from a uniform distribution 

with range (-0.20, +0.20) in a way such that the 

resulting matrix is positive definite. Non-

redundant entries for each of the two 

correlation matrices are given in Table 2 in a 

column format. From a marginal distribution 

standpoint, four distinct settings were 

considered: large Poisson rate/balanced binary 

and ordinal data (scenarios 1-4), large Poisson 

rate/imbalanced binary and ordinal data 

(scenarios 5-8), small Poisson rate/balanced 

binary and ordinal data (scenarios 9-12), small 

Poisson rate/imbalanced binary and ordinal  

 

 

data (scenarios 13-16). As far as the Poisson 

rates go, our small and large dichotomy was 

based on the arbitrary threshold 1, and what we 

mean by ’imbalanced’ in what follows is about 

proximity to 0.5 for binary variables (farther 

from 0.5 is labeled ’imbalanced’), and degree 

of deviations from uniform probabilities (0.25) 

for ordinal variables (farther from 0.25) is 

labeled ’imbalanced’). 

 

Table 1. The 16 scenarios considered in 

simulations 
scenario    1-4 5-8 9-12 13-16 

Poisson P1 1  2.00   2.00 0.20 0.20 

 P2 2  7.00   7.00 0.70 0.70 

Binary B1  pı 0.45   0.80 0.45 0.80 

 B2  p2 0.50   0.90 0.50 0.90 

Ordinal O1  tı 0.25   0.65 0.25 0.65 

   t2 0.50   0.80 0.50 0.80 

   t3 0.75   0.90 0.75 0.90 

 O2  tı 0.20   0.50 0.20 0.50 

   t2 0.45   0.80 0.45 0.80 

   t3 0.75   0.90 0.75 0.90 

 

Table 2. The correlation structures of the 16 

scenarios 
scenario 1,2,5,6,9,10,13,14 3,4,7,8,11,12,15,16 

 P1P2                   0.0789                    0.0172 

 P1B1                   0.1907                   -0.0619 

 P1B2                 -0.0488                    0.0460 

 P1O1                   0.0559                   -0.0962 

 P1O2                 -0.0784                   -0.1050 

 P2B1                 -0.0882                   -0.0405 

 P2B2                   0.1942                   -0.0672 

 P2O1                   0.0321                    0.1549 

 P2O2                   0.1450                    0.1468 

 B1B2                   0.1509                    0.0897 

 B1O1                   0.1148                    0.0209 

 B1O2                 -0.0618                   -0.1080 

 B2O1                 -0.0373                    0.0681 

 B2O2                   0.1502                    0.1476 

 O1O2                   0.1219                   -0.0526 
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3.2      Evaluation Criteria and Results 

In each scenario, 1,000 simulated data sets 

were generated to evaluate the performance of 

the method. Let the true parameter be  , and 

the estimated value be ̂ . The evaluation 

metrics include two accuracy measures: the 

relative bias (RB), defined as 100
ˆ

E
 



 
 

 

%, and the standardized bias (SB), defined as 

 
100

ˆ

E
ˆSD

 



 
 
 
 

%. RB is the deviation of the 

average estimates from the expected value 

with respect to  , whereas SB takes overall 

uncertainty in the system as the assessment 

base. The standard deviation (SD) of estimates 

across all simulation replicates is a pure 

precision quantity. Furthermore, the root mean 

square error (RMSE) of  , defined as 

2
ˆE     , which is arguably the best 

integrated measure of accuracy and precision, 

and the coverage rate (CR), which is the 

percentage of times that   is contained within 

a 95% confidence interval, are reported. 

Tables 3-10 given in the Appendix show 

the true values (TV), average estimates (AE), 

SD, RB, SB, RMSE, and CR that are 

calculated across the 1,000 replications. 

Throughout these results, the discrepancies 

between the specified and empirically 

computed correlations are indiscernibly small  

 

 

and the deviations are within an acceptable 

range that can be expected in any stochastic 

process. For all marginal and associational 

quantities considered, relative and 

standardized biases as well as coverage rates 

and RMSEs demonstrate a close agreement 

with a nearly perfectly functioning procedure, 

lending a suggestive and compelling support to 

the presented methodology. Important relevant 

references in this context include Amatya and 

Demirtas (2015b, 2015c, 2016, 2017), 

Demirtas (2009b, 2009c, 2010b, 2014, 2017c, 

2019); Demirtas and Gao (2022), Demirtas et 

al. (2014, 2017), Gao and Demirtas (2023), and 

Li et al. [37-53]. 

4 LOOKING AHEAD/FUTURE 

DIRECTIONS 

The significance of the current study 

stems from the three major reasons: First, data 

analysts and practitioners across many 

different disciplines including pharmaceutical 

sciences can simulate multivariate data of 

mixed types with relative ease using this 

approach. Second, the proposed work can 

serve as a milestone for the development of 

more sophisticated simulation, computation, 

and data analysis techniques in the digital 

information, massive data era. Capability of 

generating many variables of different 

distributional types, nature, and dependence 

structures may be a contributing factor for 

better grasping the operational characteristics  
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of today’s intensive data trends. Overall, it 

provides a comprehensive and useful set of 

computational tools whose generality and 

flexibility offer promising potential for 

building enhanced statistical computing 

infrastructure for research and education. 

While this work represents a decent 

step forward in mixed data generation, it may 

not be sufficiently complex for real-life 

applications in the sense that real count and 

continuous data are typically more 

complicated than what Poisson and normal 

distributions accommodate, and it is likely that 

specification of parameters that control the 

first two moments and the second order 

product moment is inadequate. To address 

these concerns, we plan on building a more 

inclusive structural umbrella, whose 

ingredients are as follows: First, the continuous 

part will be extended to encompass nonnormal 

continuous variables by the operational utility 

of the third order power polynomials. This 

approach is a moment- matching procedure 

where any given continuous variable in the 

system is expressed by the sum of linear 

combinations of powers of a standard normal 

variate, which requires the specification of the 

first four moments [11,12,14]. A more 

elaborate version in the form of the fifth order 

system will be implemented in an attempt to 

control for higher order moments to cover a 

larger area in the skewness-elongation plane 

and to provide a better approximation to the  

 

 

probability density functions of the continuous 

variables; and the count data part can be 

augmented through the generalized Poisson 

distribution that allows under- and over-

dispersion, which is usually encountered in 

most applications, via an additional dispersion 

parameter [13,15,16]. Second, although the 

Pearson correlation may not be the best 

association quantity in every situation, it is the 

most widespread measure of association; and 

generality of the methods proposed herein with 

different kinds of variables requires the 

broadest possible framework. For further 

broadening the scale, scope, and applicability 

of the ideas presented in this paper, the 

proposed RNG technique can be extended to 

allow the specification of the Spearman’s rho, 

which is more popular for discrete and heavily 

skewed continuous distributions, could be 

incorporated into the algorithm for 

concurrently generating all major types of 

variables. For the continuous-continuous pairs, 

the connection between the Pearson and 

Spearman correlations is given in Headrick 

through the power coefficients, and these two 

correlations are known to be equal for the 

binary-binary pairs [13]. The relationship can 

be derived for all other variable type 

combinations. Inclusion of Spearman’s rho as 

an option will allow us to specify nonlinear 

associations whose monotonic components are 

reflected in the rank correlation. Third, the 

expanded fifth order polynomial system could  
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be further augmented to accommodate L-

moments and L-correlations that are based on 

expectations of certain linear combinations of 

order statistics. The marginal and product L-

moments are known to be more robust to 

outliers than their conventional counterparts in 

the sense that they suffer less from the effects 

of sampling variability, and they enable more 

secure inferences to be made from small 

samples about an underlying probability 

distribution. On a related note, further 

expansions can be designed to handle more 

complex associations that involve higher order 

product moments. 

The salient advantages of the proposed 

algorithm and its augmented versions are as 

follows: (1) Individual components are well-

established. (2) Given their computational 

simplicity, generality, and flexibility, these 

methods are likely to be widely used by 

researchers, methodologists, and practitioners 

in a wide spectrum of scientific disciplines, 

especially in the big data era. (3) They could 

be very useful in graduate-level teaching of 

statistics courses that involve computation and 

simulation, and in training graduate students. 

(4) A specific set of moments for each variable 

is fairly rare in practice, but a specific 

distribution that would lead to these moments 

is very common; so having access to these 

methods is needed by potentially a large group 

of people. (5) Simulated variables can be 

treated as outcomes or predictors in subsequent  

 

 

statistical analyses as the variables are being 

generated jointly. (6) Required quantities can 

either be specified or estimated from a real data 

set. (7) The improved product after all these 

extensions will allow the specification of two 

prominent types of correlations (Pearson and 

Spearman correlations) and one emerging type 

(L-correlations) provided that they are within 

the limits imposed by marginal distributions. 

This makes it feasible to generate linear and a 

broad range of nonlinear associations. (8) The 

continuous part can include virtually any shape 

(skewness, low or high peakedness, mode at 

the boundary, multimodality, etc.) that is 

spanned by power polynomials; the count data 

part can be under- or over-dispersed. (9) 

Ability to jointly generate different types of 

data may facilitate comparisons among 

existing data analysis and computation 

methods in assessing the extent of conditions 

under which available methods work properly, 

and foster the development of new tools, 

especially in contexts where correlations play 

a significant role (e.g., longitudinal, clustered, 

and other multilevel settings). (10) The 

approaches presented here can be regarded as 

a variant of multivariate Gaussian copula-

based methods as (a) the binary and ordinal 

variables are assumed to have a latent normal 

distribution before discretization; (b) the count 

variables go through a correlation mapping 

procedure via the anything-to-normal 

approach; and (c) the continuous variables  
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 consist of polynomial terms involving 

normals. To the best of our knowledge, 

existing multivariate copulas are not designed 

to have the generality of encompassing all 

these variable types simultaneously. (11) As 

the mixed data generation routine is involved 

with latent variables that are subsequently 

discretized, it should be possible to see how the 

correlation structure changes when some 

variables in a multivariate continuous setting 

are dichotomized/ordinalized [7,8,54]. An 

important by-product of this research will be a 

better understanding of the nature of 

discretization, which may have significant 

implications in interpreting the coefficients in 

regression-type models when some predictors 

are discretized. On a related note, this could be 

useful in meta-analysis when some studies 

discretize variables and some do not. (12) 

Availability of a general mixed data generation 

algorithm can markedly facilitate simulated 

power-sample size calculations for a broad 

range of statistical models. 

 

APPENDIX 

The results that come out of a 

comprehensive simulation study that spans a 

wide range of parameter value combinations 

are given in Tables 3-10 below. 
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APPENDIX 

Table 3. Scenario 01/02, large Poisson rate and balanced binary/ordinal distribution 
Sample Size Variable Parameter TV AE SD      RB    SB    RMSE   CR 

100 P1 𝜆1 2.0000 1.9952       0.1399    -0.2380    3.4020    0.1399 0.9520 
 P2 𝜆2 7.0000 6.9990       0.2593    -0.0143    0.3856    0.2592 0.9540 
 B1 p1 0.4500 0.4520       0.0486    0.4333    4.0104    0.0486 0.9510 
 B2 p2 0.5000 0.4998       0.0501    -0.0340    0.3390    0.0501 0.9450 
 O1 t1 0.2500 0.2481       0.0438    -0.7600    4.3394    0.0438 0.9360 
  t2 0.5000 0.4987       0.0512    -0.2580    2.5207    0.0512 0.9410 
  t3 0.7500 0.7490       0.0439    -0.1387    2.3689    0.0439 0.9200 
 O2 t1 0.2000 0.1990       0.0415    -0.4800    2.3127    0.0415 0.9430 
  t2 0.4500 0.4488       0.0511    -0.2711    2.3882    0.0511 0.9370 
  t3 0.7500 0.7492       0.0442    -0.1000    1.6979    0.0442 0.9390 
 Correlation  P1P2 0.0789 0.0797       0.1004   1.0134    0.7960    0.1004 0.9430 
  

 P1B1 0.1907 0.1932       0.0975   1.3132    2.5692    0.0974 0.9360 
  

 P1B2    -0.0488 -0.0473       0.1011    -3.0294    1.4631    0.1010 0.9480 
  

 P1O1 0.0559 0.0566       0.1002    1.4139    0.7879 0.1002 0.9520 
  

 P1O2    -0.0784 -0.0775       0.1002    -1.1388    0.8911    0.1002 0.9470 
  

 P2B1    -0.0882 -0.0848       0.0996    -3.9237    3.4750    0.0996 0.9520 
   P2B2 0.1942 0.1956       0.0962    0.7283    1.4696    0.0962 0.9470 
  

 P2O1 0.0321 0.0311       0.0984    -3.1446    1.0256    0.0983 0.9610 
   P2O2 0.1450 0.1449       0.0988    -0.0781    0.1147    0.0987 0.9470 
  

 B1B2 0.1509 0.1499       0.1017    -0.6450    0.9569    0.1016 0.9420 
   B1O1 0.1148 0.1153       0.1003   0.4452    0.5095    0.1003 0.9490 
   B1O2    -0.0618 -0.0652       0.0979   5.4187    3.4206    0.0979 0.9560 
   B2O1    -0.0373 -0.0318       0.1015      -14.6723    5.3869    0.1016 0.9420 
   B2O2 0.1502 0.1518       0.0987   1.0362    1.5761    0.0987 0.9450 
   O1O2 0.1219 0.1181       0.0975    -3.1432    3.9308    0.0975 0.9490 

10000 P1 𝜆1 2.0000 2.0008       0.0141   0.0391    5.5376    0.0141 0.9490 
 P2 𝜆2 7.0000 7.0003       0.0271   0.0038    0.9786    0.0271 0.9430 
 B1 p1 0.4500 0.4499       0.0050    -0.0262    2.3706    0.0050 0.9510 
 B2 p2 0.5000 0.5000       0.0051   0.0053    0.5145    0.0051 0.9390 
 O1 t1 0.2500 0.2500       0.0045   0.0095    0.5310    0.0045 0.9440 
  t2 0.5000 0.4999       0.0049   -0.0216    2.2044    0.0049 0.9480 
  t3 0.7500 0.7501       0.0044   0.0180    3.0753    0.0044 0.9540 
 O2 t1 0.2000 0.2001       0.0040   0.0346    1.7165    0.0040 0.9500 
  t2 0.4500 0.4501       0.0050   0.0179    1.6071    0.0050 0.9560 
  t3 0.7500 0.7501       0.0043   0.0127    2.2259    0.0043 0.9460 
 Correlation  P1P2 0.0789 0.0792       0.0101   0.4393    3.4248    0.0101 0.9430 
   P1B1 0.1907 0.1914       0.0096   0.3846    7.6666    0.0096 0.9490 
   P1B2    -0.0488 -0.0489       0.0097   0.2336    1.1773    0.0097 0.9530 
   P1O1 0.0559 0.0561       0.0100    0.5117    2.8578    0.0100 0.9520 
   P1O2    -0.0784 -0.0785       0.0101    0.1621    1.2605    0.0101 0.9450 
   P2B1    -0.0882 -0.0882       0.0102    0.0256    0.2223    0.0101 0.9490 
   P2B2 0.1942 0.1939       0.0096    -0.1627    3.2895    0.0096 0.9560 
   P2O1 0.0321 0.0316       0.0098    -1.3955    4.5498    0.0098 0.9560 
   P2O2 0.1450 0.1452       0.0100    0.1111    1.6182    0.0100 0.9420 
   B1B2 0.1509 0.1508       0.0098    -0.0272    0.4181    0.0098 0.9480 
   B1O1 0.1148 0.1149       0.0100    0.0710    0.8151    0.0100 0.9430 
   B1O2    -0.0618    -0.0622       0.0103    0.7170    4.3077    0.0103 0.9440 
   B2O1    -0.0373 -0.0373       0.0096    0.0031    0.0121    0.0096 0.9640 
   B2O2 0.1502 0.1501       0.0097    -0.0600    0.9303    0.0097 0.9540 
   O1O2 0.1219 0.1219       0.0095    -0.0130    0.1670    0.0095 0.9620 
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Table 4. Scenario 03/04, large Poisson rate and balanced binary/ordinal distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Size Variable Parameter TV AE     SD    RB    SB RMSE   CR 

100 P1 𝜆1 2.0000   1.9988  0.1380 -0.0595 0.8624 0.1379 0.9580 
 P2 𝜆2 7.0000   6.9979  0.2739 -0.0296 0.7556 0.2738 0.9260 
 B1 p1 0.4500   0.4504  0.0505  0.0822 0.7326 0.0505 0.9330 
 B2 p2 0.5000   0.4976  0.0525 -0.4700 4.4735 0.0526 0.9240 
 O1 t1 0.2500   0.2504  0.0433  0.1800 1.0392 0.0433 0.9490 
  t2 0.5000   0.5008  0.0498  0.1700 1.7074 0.0498 0.9480 
  t3 0.7500   0.7517  0.0428  0.2227 3.9052 0.0428 0.9280 
 O2 t1 0.2000   0.1996  0.0406 -0.2100 1.0344 0.0406 0.9500 
  t2 0.4500   0.4492  0.0491 -0.1733 1.5871 0.0491 0.9550 
  t3 0.7500   0.7502  0.0425  0.0227 0.3997 0.0425 0.9450 
 Correlation  P1P2 0.0172   0.0177  0.1021  2.9406 0.4959 0.1021 0.9420 
  

 P1B1    -0.0619  -0.0608  0.0990 -1.6395 1.0248 0.0989 0.9550 
  

 P1B2 0.0460   0.0427  0.0962 -7.1895 3.4363 0.0963 0.9560 
  

 P1O1    -0.0962  -0.0950  0.0965 -1.2477 1.2429 0.0965 0.9550 
  

 P1O2    -0.1050  -0.1015  0.1003 -3.3185 3.4752 0.1003 0.9400 
   P2B1    -0.0405  -0.0407  0.0990  0.4266 0.1748 0.0989 0.9450 
   P2B2    -0.0672  -0.0669  0.1021 -0.4419 0.2911 0.1020 0.9400 
   P2O1 0.1549   0.1605  0.0991  3.5906 5.6119 0.0992 0.9400 
   P2O2 0.1468   0.1424  0.1004 -3.0004 4.3875 0.1005 0.9420 
   B1B2 0.0897   0.0907  0.0966  1.1309 1.0498 0.0966 0.9510 
   B1O1 0.0209   0.0189  0.1008 -9.3592 1.9405 0.1007 0.9430 
  

 B1O2    -0.1080  -0.1107  0.0955  2.4979 2.8238 0.0955 0.9560 
   B2O1 0.0681   0.0689  0.0985  1.2663 0.8748 0.0985 0.9480 
   B2O2 0.1476   0.1500  0.0969  1.6017 2.4390 0.0969 0.9420 
   O1O2    -0.0526  -0.0494  0.0970 -6.0600 3.2878 0.0970 0.9600 

10000 P1 𝜆1 2.0000   2.0000  0.0143 -0.0017 0.2337 0.0143 0.9410 
 P2 𝜆2 7.0000   6.9992  0.0265 -0.0118 3.1271 0.0265 0.9550 
 B1 p1 0.4500   0.4496  0.0050 -0.0848 7.6435 0.0050 0.9460 
 B2 p2 0.5000   0.5001  0.0050  0.0106 1.0594 0.0050 0.9490 
 O1 t1 0.2500   0.2502  0.0043  0.0942 5.5233 0.0043 0.9570 
  t2 0.5000   0.5002  0.0049  0.0326 3.3310 0.0049 0.9510 
  t3 0.7500   0.7500  0.0045  0.0058 0.9617 0.0045 0.9540 
 O2 t1 0.2000   0.1997  0.0039 -0.1278 6.4889 0.0039 0.9360 
  t2 0.4500   0.4497  0.0048 -0.0581 5.4616 0.0048 0.9480 
  t3 0.7500   0.7500  0.0043 -0.0061 1.0474 0.0043 0.9430 
 Correlation  P1P2 0.0172   0.0171  0.0099 -0.9153 1.5889 0.0099 0.9490 
   P1B1   -0.0619  -0.0621  0.0097  0.4678 2.9869 0.0097 0.9550 
   P1B2    0.0460   0.0465  0.0099  1.1459 5.3300 0.0099 0.9530 
   P1O1   -0.0962  -0.0961  0.0102 -0.0280 0.2642 0.0102 0.9380 
   P1O2   -0.1050  -0.1049 

-0.1049 
 0.0100 -0.1259 1.3154 0.0100 0.9490 

   P2B1   -0.0405  -0.0409  0.0099  0.8270 3.3707 0.0099 0.9440 
   P2B2   -0.0672  -0.0672  0.0101  0.0090 0.0603 0.0101 0.9450 
   P2O1    0.1549   0.1548  0.0096 -0.1035 1.6654 0.0096 0.9580 
   P2O2     0.1468   0.1467  0.0094 -0.0796 1.2392 0.0094 0.9620 
   B1B2    0.0897   0.0899  0.0099  0.2498 2.2610 0.0099 0.9550 
   B1O1    0.0209   0.0210  0.0096  0.3741 0.8131 0.0096 0.9530 
   B1O2   -0.1080  -0.1081  0.0101  0.1271 1.3557 0.0101 0.9460 
   B2O1    0.0681   0.0678  0.0102 -0.3375 2.2604 0.0102 0.9450 
   B2O2    0.1476   0.1469  0.0097 -0.4828 7.3258 0.0097 0.9510 
   O1O2   -0.0526  -0.0525  0.0101 -0.1716 0.8922 0.0101 0.9380 
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Table 5. Scenario 05/06, large Poisson rate and imbalanced binary/ordinal distribution 

Sample Size Variable Parameter TV       AE       SD RB SB    RMSE  CR 

100 P1 𝜆1 2.0000 2.0023     0.1390  0.1165 1.6758    0.1390    0.9520 
 P2 𝜆2 7.0000 7.0100     0.2688  0.1431 3.7282    0.2688    0.9470 
 B1 p1 0.8000 0.7995     0.0408 -0.0675 1.3232    0.0408    0.9330 
 B2 p2 0.9000 0.9004     0.0307  0.0444 1.3009    0.0307    0.9240 
 O1 t1 0.6500 0.6501     0.0485  0.0154 0.2063    0.0484    0.9360 
  t2 0.8000 0.7993     0.0402 -0.0850 1.6901    0.0402    0.9470 
  t3 0.9000 0.9005     0.0306  0.0556 1.6360    0.0306    0.9390 
 O2 t1 0.5000 0.5006     0.0494  0.1100 1.1140    0.0493    0.9140 
  t2 0.8000 0.8010     0.0395  0.1200 2.4318    0.0395    0.9280 
  t3 0.9000 0.9008     0.0307  0.0844 2.4771    0.0307    0.9320 
 Correlation  P1P2 0.0789 0.0740     0.0963 -6.1466 5.0310    0.0964    0.9540 
  

 P1B1 0.1907 0.1821     0.0889 -4.5045 9.6659    0.0892    0.9650 
  

 P1B2    -0.0488    -0.0450     0.1019 -7.7583 3.7143    0.1020    0.9380 
  

 P1O1 0.0559 0.0527     0.1012 -5.7095 3.1519    0.1012    0.9490 
  

 P1O2    -0.0784    -0.0803     0.1009  2.3651 1.8376    0.1009    0.9370 
  

 P2B1    -0.0882    -0.0888     0.1026  0.6346 0.5456    0.1026    0.9410 
  

 P2B2 0.1942 0.1850     0.0936 -4.7374 9.8297     0.0940    0.9560 
   P2O1 0.0321 0.0349     0.1013  8.7773 2.7798    0.1013    0.9430 
   P2O2 0.1450 0.1403     0.1033 -3.2978 4.6321    0.1033    0.9290 
   B1B2 0.1509 0.1534     0.1180  1.6891 2.1601    0.1179    0.8800 
   B1O1 0.1148 0.1111     0.0875 -3.2815 4.3066    0.0875    0.9690 
   B1O2    -0.0618    -0.0615     0.1031 -0.5192 0.3113    0.1030    0.9390 
   B2O1    -0.0373    -0.0349     0.1007 -6.2317 2.3054    0.1007    0.9490 
   B2O2 0.1502 0.1492     0.0776 -0.6747 1.3061    0.0776    0.9760 
   O1O2 0.1219 0.1199     0.1047 -1.6597 1.9325    0.1047    0.9320 

10000 P1 𝜆1 2.0000 1.9989     0.0142    -0.0526 7.4149    0.0142    0.9440 
 P2 𝜆2 7.0000 7.0007     0.0258 0.0095 2.5871    0.0258    0.9540 
 B1 p1 0.8000 0.7999     0.0040    -0.0080 1.6001    0.0040    0.9510 
 B2 p2 0.9000 0.9001     0.0030 0.0155 4.7191    0.0030    0.9550 
 O1 t1 0.6500 0.6500     0.0048 0.0025 0.3375    0.0048    0.9480 
  t2 0.8000 0.7999     0.0041    -0.0098 1.9000    0.0041    0.9530 
  t3 0.9000 0.9000     0.0031    -0.0033 0.9401    0.0031    0.9330 
 O2 t1 0.5000 0.4999     0.0054    -0.0119 1.1008    0.0054    0.9410 
  t2 0.8000 0.7998     0.0039    -0.0222 4.5252    0.0039    0.9430 
  t3 0.9000 0.9000     0.0029    -0.0023 0.6946    0.0029    0.9540 
 Correlation  P1P2 0.0789 0.0788     0.0099    -0.0448 0.3586    0.0099    0.9510 
   P1B1 0.1907 0.1835     0.0091    -3.7723    79.0325    0.0116    0.9010 
   P1B2    -0.0488    -0.0497     0.0100     1.8121 8.8263    0.0101    0.9490 
   P1O1 0.0559 0.0559     0.0102 0.1595 0.8757    0.0102    0.9470 
   P1O2    -0.0784    -0.0784     0.0097    -0.0078 0.0635    0.0097    0.9620 
   P2B1    -0.0882    -0.0890     0.0095 0.8826 8.2038    0.0095    0.9580 
   P2B2 0.1942 0.1888     0.0089    -2.7915    60.7903    0.0104    0.9330 
   P2O1 0.0321 0.0321     0.0095    -0.0364 0.1224    0.0095    0.9590 
   P2O2 0.1450 0.1457     0.0102 0.4530 6.4226    0.0102    0.9440 
   B1B2 0.1509 0.1504     0.0120    -0.3256 4.0959    0.0120    0.8840 
   B1O1 0.1148 0.1147     0.0085    -0.0817 1.0982    0.0085    0.9740 
   B1O2    -0.0618    -0.0623     0.0107 0.8284 4.7951    0.0107    0.9420 
   B2O1    -0.0373    -0.0376     0.0107 1.0065 3.5121    0.0107    0.9190 
   B2O2 0.1502 0.1503     0.0074 0.0517 1.0527    0.0074    0.9920 
   O1O2 0.1219 0.1222     0.0108 0.2243 2.5418    0.0108    0.9300 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anat. J. Pharm. Sci 2022:1(1) 

 

27



 

 

 

 

 

Table 6. Scenario 07/08, large Poisson rate and imbalanced binary/ordinal distribution 
Sample Size Variable Parameter TV AE SD RB SB    RMSE CR 

100 P1 𝜆1 2.0000 2.0031     0.1400 0.1575 2.2506    0.1399    0.9550 
 P2 𝜆2 7.0000 6.9920     0.2627 -0.1140 3.0375    0.2627    0.9430 
 B1 p1 0.8000 0.7992     0.0391 -0.0988 2.0230    0.0390    0.9340 
 B2 p2 0.9000 0.8986     0.0307 -0.1522 4.4619     0.0307    0.9280 
 O1 t1 0.6500 0.6504     0.0462 0.0662 0.9304    0.0462    0.9540 
  t2 0.8000 0.8000     0.0399 0.0062 0.1253    0.0399    0.9290 
  t3 0.9000 0.8996     0.0297 -0.0400 1.2135    0.0297    0.9380 
 O2 t1 0.5000 0.5013     0.0509 0.2660 2.6108    0.0509    0.9350 
  t2 0.8000 0.8008     0.0408 0.1000 1.9600    0.0408    0.9420 
  t3 0.9000 0.9006     0.0310 0.0700 2.0292    0.0310    0.9150 
 Correlation  P1P2 0.0172 0.0160     0.1004 -6.9688 1.1954    0.1003    0.9440 
  

 P1B1    -0.0619    -0.0632     0.1073 2.1596 1.2452    0.1072    0.9280 
  

 P1B2 0.0460 0.0473     0.0986 2.9042 1.3552    0.0985    0.9500 
  

 P1O1    -0.0962    -0.0950     0.0971 -1.1919 1.1799    0.0971    0.9540 
  

 P1O2    -0.1050    -0.1034     0.0946 -1.4833 1.6473    0.0945    0.9620 
  

 P2B1    -0.0405    -0.0385     0.0971 -4.9782 2.0790    0.0971    0.9470 
  

 P2B2    -0.0672    -0.0702     0.1008 4.3457 2.8995    0.1008    0.9420 
   P2O1 0.1549 0.1521     0.0996 -1.8303 2.8463    0.0996    0.9390 
   P2O2 0.1468 0.1424     0.1018 -2.9973 4.3226    0.1019    0.9460 
   B1B2 0.0897 0.0803     0.1147   -10.4572 8.1773    0.1150    0.9050 
   B1O1 0.0209 0.0175     0.1007   -16.3906 3.4006    0.1007    0.9480 
   B1O2    -0.1080    -0.1061     0.1081 -1.7358 1.7338    0.1081    0.9200 
   B2O1 0.0681 0.0671     0.0888 -1.4635 1.1216    0.0888    0.9720 
   B2O2 0.1476 0.1518     0.0719 2.8645 5.8767    0.0720    0.9920 
   O1O2    -0.0526    -0.0526     0.1012 0.0605 0.0315    0.1011    0.9470 

10000 P1 𝜆1 2.0000 1.9995     0.0143 -0.0263 3.6637    0.0143    0.9420 
 P2 𝜆2 7.0000 6.9999     0.0258 -0.0020 0.5327    0.0258    0.9560 
 B1 p1 0.8000 0.8001     0.0039 0.0183 3.7198    0.0039    0.9520 
 B2 p2 0.9000 0.8999     0.0031 -0.0064 1.8729    0.0031    0.9420 
 O1 t1 0.6500 0.6499     0.0047 -0.0088 1.2048    0.0047    0.9530 
  t2 0.8000 0.8000     0.0040 -0.0047 0.9360    0.0040    0.9600 
  t3 0.9000 0.9000     0.0031 -0.0012 0.3436    0.0031    0.9550 
 O2 t1 0.5000 0.5000     0.0050 -0.0044 0.4401    0.0050    0.9420 
  t2 0.8000 0.8001     0.0039 0.0083 1.6814    0.0039    0.9540 
  t3 0.9000 0.9000     0.0030 0.0007 0.2112    0.0030    0.9490 
 Correlation  P1P2 0.0172 0.0177     0.0099 2.8101 4.9052    0.0099    0.9470 
   P1B1    -0.0619    -0.0627     0.0104 1.3465 7.9766    0.0105    0.9320 
   P1B2 0.0460 0.0452     0.0099 -1.7359 8.0515    0.0099    0.9450 
   P1O1    -0.0962    -0.0945     0.0095 -1.6856    17.1194    0.0096    0.9560 
   P1O2    -0.1050    -0.1035     0.0096 -1.4060    15.3555    0.0097    0.9600 
   P2B1    -0.0405    -0.0405     0.0099 -0.1261 0.5188    0.0099    0.9400 
   P2B2    -0.0672    -0.0684     0.0105 1.7352    11.0966    0.0106    0.9330 
   P2O1 0.1549 0.1562     0.0098 0.8458    13.4212    0.0098    0.9400 
   P2O2 0.1468 0.1472     0.0102 0.2822 4.0702    0.0102    0.9430 
   B1B2 0.0897 0.0893     0.0114 -0.3827 3.0228    0.0114    0.9170 
   B1O1 0.0209 0.0213     0.0097 1.8356 3.9361    0.0097    0.9550 
   B1O2    -0.1080    -0.1081     0.0105 0.0704 0.7274    0.0105    0.9340 
   B2O1 0.0681 0.0683     0.0089 0.3796 2.8931    0.0089    0.9740 
   B2O2 0.1476 0.1475     0.0077 -0.0732 1.3938    0.0077    0.9900 
   O1O2    -0.0526    -0.0533     0.0099 1.2760 6.7619    0.0099    0.9550 
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Table 7. Scenario 09/10, small Poisson rate and balanced binary/ordinal distribution 
Sample Size Variable Parameter TV       AE SD RB SB     RMSE CR 

100 P1 𝜆1 0.2000 0.2000 0.0432 0.0100 0.0463     0.0432     0.9450 
 P2 𝜆2 0.7000 0.6944 0.0862    -0.8014 6.5107     0.0863     0.9400 
 B1 p1 0.4500 0.4543 0.0496 0.9667 8.7622     0.0498     0.9450 
 B2 p2 0.5000 0.5032 0.0525 0.6440 6.1379     0.0525     0.9360 
 O1 t1 0.2500 0.2520 0.0442 0.7880 4.4605     0.0442     0.9410 
  t2 0.5000 0.4994 0.0509    -0.1200 1.1796     0.0508     0.9440 
  t3 0.7500 0.7486 0.0414    -0.1853 3.3607     0.0414     0.9350 
 O2 t1 0.2000 0.2008 0.0402 0.3950 1.9637      0.0402     0.9630 
  t2 0.4500 0.4503 0.0492 0.0644 0.5891     0.0492     0.9410 
  t3 0.7500 0.7488 0.0426    -0.1573 2.7685     0.0426     0.9440 
 Correlation  P1P2 0.0789 0.0841 0.1056 6.6603 4.9753     0.1056     0.9260 
  

 P1B1 0.1907 0.1897 0.0922    -0.4970 1.0280     0.0921     0.9580 
  

 P1B2    -0.0488    -0.0514 0.0993 5.3863 2.6483     0.0993     0.9470 
  

 P1O1 0.0559 0.0565 0.1019 1.0770 0.5906 0.1018     0.9350 
  

 P1O2    -0.0784    -0.0811 0.0996 3.4758 2.7373     0.0996     0.9430 
  

 P2B1    -0.0882    -0.0851 0.0954    -3.5652 3.2950     0.0954     0.9550 
  

 P2B2 0.1942 0.1989 0.0944 2.4232 4.9867     0.0944     0.9540 
   P2O1 0.0321 0.0349 0.0981 8.8730 2.9033     0.0981     0.9580 
   P2O2 0.1450 0.1418 0.0968    -2.2247 3.3324     0.0968     0.9610 
   B1B2 0.1509 0.1539 0.1001 1.9745 2.9764     0.1001     0.9420 
   B1O1 0.1148 0.1137 0.0976    -0.9709 1.1421 0.0976     0.9520 
   B1O2    -0.0618    -0.0602 0.0965    -2.5860 1.6559     0.0965     0.9540 
   B2O1    -0.0373    -0.0370 0.1000    -0.7159 0.2667     0.1000     0.9440 
   B2O2 0.1502 0.1457 0.1037    -2.9893 4.3315     0.1037     0.9290 
   O1O2 0.1219 0.1235 0.0984 1.3143 1.6287     0.0984     0.9460 

10000 P1 𝜆1 0.2000 0.1999 0.0045    -0.0696 3.0750     0.0045     0.9420 
 P2 𝜆2 0.7000 0.7000 0.0082 0.0028 0.2406     0.0082     0.9570 
 B1 p1 0.4500 0.4497 0.0048    -0.0640 5.9429     0.0049     0.9560 
 B2 p2 0.5000 0.4997 0.0049    -0.0536 5.4576     0.0049     0.9580 
 O1 t1 0.2500 0.2499 0.0044    -0.0466 2.6391     0.0044     0.9410 
  t2 0.5000 0.4999 0.0048    -0.0293 3.0506 0.0048     0.9510 
  t3 0.7500 0.7498 0.0042    -0.0241 4.2607     0.0042     0.9580 
 O2 t1 0.2000 0.2000 0.0038    -0.0230 1.1983     0.0038     0.9590 
  t2 0.4500 0.4500 0.0048     0.0044 0.4106     0.0048     0.9580 
  t3 0.7500 0.7498 0.0042    -0.0222 3.9557     0.0042     0.9640 
 Correlation  P1P2 0.0789 0.0887 0.0108   12.5004    91.1400     0.0146     0.8100 
   P1B1 0.1907 0.1937 0.0095     1.5923    32.0573     0.0099     0.9510 
   P1B2    -0.0488    -0.0486 0.0099    -0.5130 2.5282     0.0099     0.9570 
   P1O1 0.0559 0.0558 0.0099    -0.0879 0.4943     0.0099     0.9580 
   P1O2    -0.0784    -0.0788 0.0099     0.4916 3.8779     0.0099     0.9430 
   P2B1    -0.0882    -0.0881 0.0104    -0.1767 1.5040     0.0104     0.9400 
   P2B2 0.1942 0.1949 0.0093     0.3750 7.8721     0.0093     0.9500 
   P2O1 0.0321 0.0318 0.0102    -0.9066 2.8477     0.0102     0.9360 
   P2O2 0.1450 0.1445 0.0095    -0.3743 5.7251     0.0095     0.9560 
   B1B2 0.1509 0.1514 0.0098 0.3247 4.9800     0.0098     0.9470 
   B1O1 0.1148 0.1153 0.0097 0.4417 5.2369     0.0097     0.9520 
   B1O2    -0.0618    -0.0618 0.0101    -0.0096 0.0588 0.0101     0.9500 
   B2O1    -0.0373    -0.0371 0.0100    -0.4224 1.5764     0.0100     0.9500 
   B2O2 0.1502 0.1500 0.0097    -0.1460 2.2564     0.0097     0.9530 
   O1O2 0.1219 0.1217 0.0100    -0.1731 2.1000     0.0100     0.9440 
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Table 8. Scenario 11/12, small Poisson rate and balanced binary/ordinal distribution 
Sample Size Variable Parameter TV AE SD RB SB     RMSE  CR 

100 P1 𝜆1 0.2000 0.2005     0.0442 0.2500 1.1316     0.0442     0.9470 
 P2 𝜆2 0.7000 0.6978     0.0827  -0.3129 2.6482     0.0827     0.9520 
 B1 p1 0.4500 0.4496     0.0491  -0.0844 0.7735     0.0491     0.9420 
 B2 p2 0.5000 0.4990     0.0502  -0.2100 2.0927     0.0502      0.9370 
 O1 t1 0.2500 0.2493     0.0442  -0.2800 1.5821     0.0442     0.9400 
  t2 0.5000 0.4998     0.0510  -0.0460 0.4511     0.0510     0.9360 
  t3 0.7500 0.7500     0.0435 0.0000 0.0000     0.0434     0.9250 
 O2 t1 0.2000 0.1968     0.0399  -1.5850 7.9408     0.0400     0.9460 
  t2 0.4500 0.4505     0.0508 0.1022 0.9062     0.0507     0.9290 
  t3 0.7500 0.7487     0.0456  -0.1733 2.8506     0.0456     0.9320 
 Correlation  P1P2 0.0172 0.0149     0.0995   -13.7388 2.3786     0.0994     0.9540 
  

 P1B1    -0.0619    -0.0628     0.0994 1.5404 0.9588     0.0993     0.9470 
  

 P1B2 0.0460 0.0485     0.0978 5.5041 2.5877     0.0978     0.9530 
  

 P1O1    -0.0962    -0.0955     0.0950  -0.7321 0.7410 0.0950     0.9600 
  

 P1O2    -0.1050    -0.1002     0.0971  -4.5392 4.9074     0.0972     0.9540 
  

 P2B1    -0.0405    -0.0417     0.0983 2.9416 1.2135     0.0983     0.9590 
  

 P2B2    -0.0672    -0.0638     0.1009  -5.1396 3.4248     0.1009     0.9460 
   P2O1 0.1549 0.1551     0.1003 0.0874 0.1350     0.1003     0.9410 
   P2O2 0.1468 0.1483     0.0975 0.9772 1.4717     0.0975     0.9530 
   B1B2 0.0897 0.0921     0.1026 2.6919 2.3528     0.1026     0.9430 
   B1O1 0.0209 0.0179     0.0994   -14.4660 3.0401 0.0994     0.9510 
   B1O2    -0.1080    -0.1052     0.0964  -2.5911 2.9033     0.0964     0.9560 
   B2O1 0.0681 0.0701     0.1007 3.0470 2.0592     0.1007     0.9480 
   B2O2 0.1476 0.1439     0.0981  -2.5112 3.7770     0.0982     0.9440 
   O1O2    -0.0526    -0.0520     0.1001  -1.0517 0.5527     0.1000     0.9470 

10000 P1 𝜆1 0.2000 0.2001     0.0044 0.0662 3.0201     0.0044     0.9550 
 P2 𝜆2 0.7000 0.6996     0.0086  -0.0541 4.4001     0.0086     0.9490 
 B1 p1 0.4500 0.4501     0.0050 0.0138 1.2351     0.0050     0.9460 
 B2 p2 0.5000 0.4997     0.0049  -0.0610 6.2412     0.0049     0.9570 
 O1 t1 0.2500 0.2501     0.0045 0.0203 1.1352     0.0045     0.9450 
  t2 0.5000 0.5000     0.0051  -0.0057 0.5580 0.0051     0.9400 
  t3 0.7500 0.7501     0.0041 0.0138 2.4967     0.0041     0.9550 
 O2 t1 0.2000 0.2001     0.0040 0.0465 2.3025     0.0040     0.9620 
  t2 0.4500 0.4501     0.0050 0.0161 1.4407     0.0050     0.9450 
  t3 0.7500 0.7503     0.0043 0.0437 7.6743     0.0043     0.9560 
 Correlation  P1P2 0.0172 0.0197     0.0101 14.5791 24.8092     0.0104     0.9450 
   P1B1    -0.0619    -0.0615     0.0092  -0.5137 3.4550     0.0092     0.9660 
   P1B2 0.0460 0.0460     0.0102  -0.1012 0.4545     0.0102     0.9410 
   P1O1    -0.0962    -0.0954      0.0100  -0.8153 7.8785     0.0100     0.9570 
   P1O2    -0.1050    -0.1053     0.0098 0.3148 3.3805     0.0098     0.9530 
   P2B1    -0.0405    -0.0402     0.0098  -0.7422 3.0615     0.0098     0.9590 
   P2B2    -0.0672    -0.0670     0.0100  -0.2784 1.8779     0.0100     0.9480 
   P2O1 0.1549 0.1550     0.0097 0.0345 0.5497     0.0097     0.9460 
   P2O2 0.1468 0.1459     0.0095  -0.6182 9.5337     0.0096     0.9520 
   B1B2 0.0897 0.0891     0.0101  -0.6855 6.1165     0.0101     0.9420 
   B1O1 0.0209 0.0212     0.0097 1.5166 3.2714     0.0097     0.9550 
   B1O2    -0.1080    -0.1085     0.0098 0.4387 4.8277 0.0098     0.9610 
   B2O1 0.0681 0.0686     0.0100 0.8376 5.7179     0.0100     0.9390 
   B2O2 0.1476 0.1473     0.0102  -0.2288 3.3156     0.0102     0.9410 
   O1O2    -0.0526    -0.0526     0.0095 0.0789 0.4347     0.0095     0.9640 
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Table 9. Scenario 13/14, small Poisson rate and imbalanced binary/ordinal distribution 
Sample Size Variable Parameter TV AE SD RB   SB     RMSE   CR 

100 P1 𝜆1 0.2000 0.1983 0.0431 -0.8650 4.0120     0.0431     0.9480 
 P2 𝜆2 0.7000 0.6972 0.0817 -0.4029 3.4497     0.0818     0.9580 
 B1 p1 0.8000 0.7990 0.0405 -0.1188 2.3437     0.0405     0.9260 
 B2 p2 0.9000 0.9003 0.0297      0.0356 1.0767     0.0297     0.9350 
 O1 t1 0.6500 0.6492 0.0482 -0.1262 1.7024     0.0481     0.9420 
  t2 0.8000 0.7996 0.0408 -0.0475 0.9304     0.0408     0.9360 
  t3 0.9000 0.8996 0.0295 -0.0411 1.2551     0.0295     0.9480 
 O2 t1 0.5000 0.4998 0.0497 -0.0500 0.5027     0.0497     0.9400 
  t2 0.8000 0.7986 0.0400 -0.1775 3.5529     0.0400     0.9290 
  t3 0.9000 0.8986 0.0299 -0.1556 4.6825     0.0299     0.9430 
 Correlation  P1P2 0.0789 0.0891 0.1041    12.9317 9.7983     0.1045     0.9410 
  

 P1B1 0.1907 0.1541 0.0639   -19.1716  57.1841     0.0736     0.9800 
  

 P1B2    -0.0488    -0.0491 0.1140      0.7002 0.2998     0.1139     0.9210 
  

 P1O1 0.0559 0.0659 0.1077 18.0311 9.3477     0.1082     0.9260 
  

 P1O2    -0.0784    -0.0735 0.0930 -6.2267 5.2530     0.0930     0.9660 
  

 P2B1    -0.0882    -0.0865 0.1063 -1.9815 1.6444     0.1063     0.9380 
  

 P2B2 0.1942 0.1675 0.0720   -13.7434  37.0844     0.0767     0.9850 
   P2O1 0.0321 0.0331 0.1021 3.2181 1.0115     0.1020     0.9410 
   P2O2 0.1450 0.1518 0.1054 4.6654 6.4218     0.1055     0.9330 
   B1B2 0.1509 0.1472 0.1246  -2.4195 2.9289     0.1246     0.8690 
   B1O1 0.1148 0.1154 0.0879 0.4896 0.6399     0.0878     0.9720 
   B1O2    -0.0618    -0.0636 0.1031 2.8783 1.7260     0.1030     0.9340 
   B2O1    -0.0373    -0.0335 0.1050    -10.2231 3.6282     0.1050     0.9450 
   B2O2 0.1502 0.1507 0.0750 0.3500 0.7012     0.0749     0.9910 
   O1O2 0.1219 0.1154 0.1067  -5.3959 6.1674     0.1068     0.9210 

10000 P1 𝜆1 0.2000 0.2002 0.0045       0.1037 4.6156     0.0045     0.9500 
 P2 𝜆2 0.7000 0.6997 0.0082  -0.0434 3.6874     0.0082     0.9620 
 B1 p1 0.8000 0.8000 0.0040  -0.0017 0.3442     0.0040     0.9490 
 B2 p2 0.9000 0.8999 0.0030  -0.0160 4.8281     0.0030     0.9570 
 O1 t1 0.6500 0.6500 0.0048 0.0035 0.4754     0.0048     0.9520 
  t2 0.8000 0.8002 0.0040 0.0234 4.6355     0.0040     0.9540 
  t3 0.9000 0.9001 0.0031 0.0107 3.1142     0.0031     0.9430 
 O2 t1 0.5000 0.5003 0.0051 0.0523 5.0880     0.0051     0.9410 
  t2 0.8000 0.8002 0.0039 0.0272 5.5610     0.0039     0.9520 
  t3 0.9000 0.9001 0.0029 0.0107 3.2758     0.0029     0.9490 
 Correlation  P1P2 0.0789 0.0884 0.0103 12.0554  91.9103     0.0140     0.8240 
   P1B1 0.1907 0.1546 0.0061    -18.9012    590.3726     0.0366     0.0030 
   P1B2    -0.0488    -0.0531 0.0115 8.7482 37.2820     0.0122     0.8810 
   P1O1 0.0559 0.0585 0.0105 4.6811 24.8621     0.0108     0.9330 
   P1O2    -0.0784    -0.0752 0.0094  -4.0710 34.0389     0.0099     0.9530 
   P2B1    -0.0882    -0.0913 0.0107 3.5480 29.3393     0.0111     0.9180 
   P2B2 0.1942 0.1666 0.0069    -14.2143    400.1801     0.0285     0.1110 
   P2O1 0.0321 0.0327 0.0103 1.8198 5.6625     0.0103     0.9430 
   P2O2 0.1450 0.1497 0.0102 3.1951  45.5079     0.0112     0.9210 
   B1B2 0.1509 0.1508 0.0122  -0.0478 0.5889     0.0122     0.8800 
   B1O1 0.1148 0.1147 0.0088  -0.0692 0.9007     0.0088     0.9700 
   B1O2    -0.0618    -0.0617 0.0108  -0.2162 1.2391     0.0108     0.9280 
   B2O1    -0.0373    -0.0371 0.0105  -0.4077 1.4502     0.0105     0.9460 
   B2O2 0.1502 0.1503 0.0072 0.0886 1.8397     0.0072     0.9910 
   O1O2 0.1219 0.1221 0.0104 0.1381 1.6135     0.0104     0.9370 
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Table 10. Scenario 15/16, small Poisson rate and imbalanced binary/ordinal distribution 
Sample Size Variable Parameter TV AE        SD RB SB     RMSE        CR 

100 P1 𝜆1 0.2000 0.2011     0.0470 0.5550 2.3602     0.0470     0.9220 
 P2 𝜆2 0.7000 0.7020     0.0825 0.2814 2.3883     0.0825     0.9590 
 B1 p1 0.8000 0.7975     0.0396  -0.3150 6.3692     0.0396     0.9370 
 B2 p2 0.9000 0.8997     0.0304  -0.0300 0.8874     0.0304     0.9340 
 O1 t1 0.6500 0.6504     0.0468 0.0662 0.9197     0.0467     0.9480 
  t2 0.8000 0.8006     0.0400 0.0712 1.4242     0.0400     0.9370 
  t3 0.9000 0.8993     0.0292  -0.0778 2.4002     0.0292     0.9520 
 O2 t1 0.5000 0.4994     0.0491  -0.1280 1.3045     0.0490     0.9310 
  t2 0.8000 0.7993     0.0404  -0.0825 1.6354     0.0403     0.9320 
  t3 0.9000 0.8997     0.0301  -0.0378 1.1283     0.0301     0.9310 
 Correlation  P1P2 0.0172 0.0251     0.1063 45.4862 7.3680     0.1065     0.9360 
  

 P1B1    -0.0619    -0.0628     0.1052 1.5171 0.8924     0.1051     0.9440 
  

 P1B2 0.0460 0.0479     0.0868 4.1982 2.2260     0.0867     0.9720 
  

 P1O1    -0.0962    -0.0923     0.0884  -4.0359 4.3894 0.0885     0.9720 
  

 P1O2    -0.1050    -0.0993     0.0894  -5.4672 6.4216     0.0895     0.9690 
  

 P2B1    -0.0405    -0.0471     0.1057 16.2741 6.2461     0.1058     0.9460 
  

 P2B2    -0.0672    -0.0756     0.1071 12.4024 7.7895     0.1073     0.9300 
   P2O1 0.1549 0.1627     0.1087 5.0129 7.1481     0.1089     0.9130 
   P2O2 0.1468 0.1524     0.1044 3.7728 5.3068     0.1045     0.9240 
   B1B2 0.0897 0.0870     0.1148  -2.9310 2.2900     0.1148     0.9130 
   B1O1 0.0209 0.0176     0.0969    -15.7111 3.3865 0.0969     0.9530 
   B1O2    -0.1080    -0.1067     0.1062  -1.2228 1.2431    0.1062     0.9290 
   B2O1 0.0681 0.0662     0.0895  -2.7920 2.1246    0.0894     0.9770 
   B2O2 0.1476 0.1452     0.0713  -1.6152 3.3456    0.0713     0.9920 
   O1O2    -0.0526    -0.0492     0.0962  -6.4908 3.5478    0.0962     0.9580 

10000 P1 𝜆1 0.2000 0.1999     0.0045  -0.0501 2.2245    0.0045     0.9490 
 P2 𝜆2 0.7000 0.7001     0.0083 0.0165 1.3951    0.0083     0.9500 
 B1 p1 0.8000 0.8002     0.0040 0.0300 5.9610    0.0040     0.9490 
 B2 p2 0.9000 0.9001     0.0030 0.0113 3.3572    0.0030     0.9410 
 O1 t1 0.6500 0.6499     0.0050  -0.0095 1.2445    0.0050     0.9410 
  t2 0.8000 0.7999     0.0041  -0.0092 1.8108    0.0041     0.9620 
  t3 0.9000 0.8999     0.0030  -0.0129 3.8432    0.0030     0.9530 
 O2 t1 0.5000 0.4999     0.0049  -0.0242 2.4439    0.0049     0.9560 
  t2 0.8000 0.7998     0.0039  -0.0191 3.8714    0.0039     0.9400 
  t3 0.9000 0.8999     0.0030  -0.0081 2.4519    0.0030     0.9550 
 Correlation  P1P2 0.0172 0.0193     0.0097 12.1725    21.6611    0.0099     0.9520 
   P1B1    -0.0619    -0.0650     0.0106 5.1414    29.8670    0.0111     0.9180 
   P1B2 0.0460 0.0426     0.0088  -7.3484    38.4502    0.0094     0.9590 
   P1O1    -0.0962    -0.0899     0.0085  -6.5609    74.2276    0.0106     0.9370 
   P1O2    -0.1050    -0.0993     0.0088  -5.3898    64.1506    0.0105     0.9420 
   P2B1    -0.0405    -0.0411     0.0102 1.2961 5.1523    0.0102     0.9480 
   P2B2    -0.0672    -0.0708     0.0105 5.3360    34.0149    0.0111     0.9180 
   P2O1 0.1549 0.1623     0.0106 4.7332    68.8938    0.0129     0.8580 
   P2O2 0.1468 0.1508     0.0107 2.7025    37.0181    0.0114     0.9070 
   B1B2 0.0897 0.0898     0.0113 0.1579 1.2525    0.0113     0.9170 
   B1O1 0.0209 0.0212     0.0098 1.3036 2.7856    0.0098     0.9490 
   B1O2    -0.1080    -0.1080     0.0103  -0.0175 0.1832    0.0103     0.9470 
   B2O1 0.0681 0.0685     0.0082  0.5891 4.8953    0.0082     0.9790 
   B2O2 0.1476 0.1476     0.0075  -0.0230 0.4497    0.0075     0.9900 
   O1O2    -0.0526    -0.0521     0.0099  -1.0038 5.3125    0.0099     0.9480 
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