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ABSTRACT 

In this study, convergence properties of spectral, numerical and Crawford gap functions via convergences of 

Hilbert space operator series in difference and ratio cases are investigated. Obtained results have been applied to 

some classes continuous functions of the operators. 
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ÖZ 

Bu çalışmada, fark ve oran durumlarında yakınsak Hilbert uzay operatör serileri üzerinden spektral, sayısal ve 

Crawford boşluk fonksiyonlarının yakınsama özellikleri incelenmiştir. Elde edilen sonuçlar operatörlerin bazı 

sürekli fonksiyon sınıflarına uygulanmıştır. 

Anahtar Kelimeler- Operatör Normu, Spektral Yarıçap, Sayısal Yarıçap, Crawford Sayısı 
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I. INTRODUCTION 

In spectral theory of linear operators, obtaining the spectrum set, the numerical range set of a given 

operator and calculating spectral radii, numerical radii and Crawford number are main questions. Generally, 

finding the set of spectrums and the numerical range of non-normal linear bounded operators is theoretically and 

technically quite difficult. 

Throughout this paper, 𝐻 and 𝐿(𝐻) denote any complex Hilbert space with (∙,∙) is the inner product and 

‖∙‖ is its corresponding norm on 𝐻 and the Banach algebra of linear bounded operators in 𝐻, respectively. 

In the literature, Gelfand formula is the only one formula used to calculate the spectral radius              

𝑟(𝐴) = sup{|𝜆|: 𝜆 ∈ 𝜎(𝐴)} of linear bounded operator 𝐴 ∈ 𝐿(𝐻). The following is the Gelfand formula: 

𝑟(𝐴) = lim
𝑛→∞

‖𝐴𝑛‖
1

𝑛     [1]. 

Note that for a linear bounded normal operator 𝐴 in 𝐻 the relation 𝑟(𝐴) = ‖𝐴‖ is true (see [2]). 

It is an easy consequence that if 𝐴, 𝐵 ∈ 𝐿(𝐻) are commutative operators, then 

𝑟(𝐴 + 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵)     [2]. 

Recall that the numerical radius of 𝐴 ∈ 𝐿(𝐻) is defined by 

𝑤(𝐴) = sup
‖𝑥‖=1

|(𝐴𝑥, 𝑥)|. 

It is known that  

          𝑤(𝐴) = sup
𝑡∈ℝ
‖Re(𝑒𝑖𝑡𝐴)‖ = sup

𝑡∈ℝ
‖Im(𝑒𝑖𝑡𝐴)‖ 

(see, e.g. [3]). It is obvious that the function 𝑤(∙) defines a norm on 𝐿(𝐻), which is equivalent to the usual operator 

norm ‖∙‖. Indeed, for every 𝐴 ∈ 𝐿(𝐻) the following inequality holds: 

‖𝐴‖

2
≤ 𝑤(𝐴) ≤ ‖𝐴‖.                                                                                                                                                (1) 

Moreover, for the linear normal bounded operator 𝐴  the relation 𝑤(𝐴) = ‖𝐴‖ is true (see [2]). 

It is well known that for every two operators 𝐴, 𝐵 ∈ 𝐿(𝐻) 

𝑤(𝐴 + 𝐵) ≤ 𝑤(𝐴) + 𝑤(𝐵)                                                                                                                                   (2) 

is valid (see [2]). 

We refer the reader to [2, 4] for the other basic information and results for the numerical radius. 

Furthermore, developments on the numerical radius inequalities (1) and (2) can be seen in [3, 5-9] and references 

there in. 

Furthermore, remember that the following spectral inclusion holds 𝜎(𝐴) ⊂ 𝑊(𝐴)̅̅ ̅̅ ̅̅ ̅̅  for the spectrum set 

𝜎(𝐴) and numerical range 𝑊(𝐴) of any 𝐴 ∈ 𝐿(𝐻)  (see [2, 4] for more information). 

For 𝐴 ∈ 𝐿(𝐻)  the Crawford number of 𝐴 is defined by 

𝑐(𝐴) = inf{|𝜆|: 𝜆 ∈ 𝑊(𝐴)}.  

It is easily seen that the following inequality holds for every 𝐴 ∈ 𝐿(𝐻): 

0 ≤ 𝑐(𝐴) ≤ 𝑟(𝐴) ≤ 𝑤(𝐴) ≤ ‖𝐴‖. 

Throughout this paper, for 𝐴 ∈ 𝐿(𝐻) the spectral gap, the numerical gap and the Crawford gap functions 

in difference cases will be denoted by 

g𝑟(𝐴) ≔ ‖𝐴‖ −  𝑟(𝐴), g𝑟(𝐴): 𝐿(𝐻) → [0,∞), 

g𝑤(𝐴) ≔ ‖𝐴‖ −  𝑤(𝐴), g𝑤(𝐴): 𝐿(𝐻) → [0,∞), 

g𝑐(𝐴) ≔ ‖𝐴‖ −  𝑐(𝐴), g𝑐(𝐴): 𝐿(𝐻) → [0,∞), 

respectively. 

Similarly, for 𝐴 ∈ 𝐿(𝐻) and 𝐴 ≠ 0, the spectral gap, the numerical gap and the Crawford gap functions 

in ratio cases will be denoted by 𝑞𝑟(𝑇) =
 𝑟(𝑇) 

‖𝑇‖
, 𝑞𝑤(𝑇) =

 𝑤(𝑇) 

‖𝑇‖
  and 𝑞𝑐(𝑇) =

 𝑐(𝑇) 

‖𝑇‖
 , respectively [10]. The similar 

problems for square matrices have been investigated in [11]. 
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Demuth's open problem in 2015 and the works of Kittaneh and his researcher group in this area had a 

significant impact on forming the subject discussed in this paper (see [8, 9, 12]). 

Some studies related to this area can be found in [13-18]. 

This work is organized as follows: In Section 2, convergence properties of spectral, numerical and 

Crawford gap functions via convergences of Hilbert space operator series in difference and ratio cases have been 

investigated. Note that here a new inequality for difference Crawford numbers of two operator has been obtained. 

In Section 3, obtained results have been applied to some classes continuous functions of the operators. 

 

II. ON THE CONVERGENCE OF SOME SPECTRAL CHARACTERISTICS ON THE 

CONVERGENCE OF OPERATOR SERIES 

Firstly, define the uniform convergence of operator series from [19]. 

Definition 2.1. Let 𝐻 be a Hilbert space and for any 𝑛 ≥ 1, 𝐴𝑛 ∈ 𝐿(𝐻). The operator series ∑ 𝐴𝑛
∞
𝑛=1  is said to 

converges uniformly to 𝐴 ∈ 𝐿(𝐻) if for any 𝜀 > 0 there is some 𝑛0 ∈ ℕ such that for all 𝑛 > 𝑛0 it is true that 

‖𝐴 − 𝑆𝑛‖ ≤ 𝜀, 

where 𝑆𝑛 = ∑ 𝐴𝑚: 𝐻 → 𝐻, 𝑛 ≥ 1.
𝑛
𝑚=1  

Now give the following simple fact. 

Remark 2.2. If the series ∑ ‖𝐴𝑛‖
∞
𝑛=1  is convergent, then series ∑ 𝐴𝑛

∞
𝑛=1 : 𝐻 → 𝐻 uniformly converges in 𝐻. 

              Now we give results on the difference gaps repeatedly. 

Theorem 2.3. Let  𝐴𝑛 ∈ 𝐿(𝐻), 𝑛 ≥ 1, the series ∑ 𝐴𝑛
∞
𝑛=1  uniformly converges to some operator 𝐴 ∈ 𝐿(𝐻) and for 

any 𝑖, 𝑗 ≥ 1 the operators 𝐴𝑖 and 𝐴𝑗 are commutative. Then 

𝑔𝑟(𝐴) = lim
𝑛→∞

𝑔𝑟(𝑆𝑛). 

Proof. In this case it is clear that 

𝐴𝑆𝑛 = 𝑆𝑛𝐴, 𝑛 ≥ 1. 

Then from the subadditivity property of spectral radius  

𝑟(𝐴) ≤ 𝑟(𝐴 − 𝑆𝑛) + 𝑟(𝑆𝑛), 

𝑟(𝑆𝑛) ≤ 𝑟(𝐴 − 𝑆𝑛) + 𝑟(𝐴). 

Since the series ∑ 𝐴𝑛
∞
𝑛=1  is uniformly converges to 𝐴, then 

             |𝑟(𝐴) − 𝑟(𝑆𝑛)| ≤ 𝑟(𝐴 − 𝑆𝑛) ≤ ‖𝐴 − 𝑆𝑛‖
𝑛→∞
→   0. 

So, it is obtained that 

𝑟(𝐴) = lim
𝑛→∞

𝑟(𝑆𝑛). 

Consequently, it is clear that 

|𝑔𝑟(𝐴) − 𝑔𝑟(𝑆𝑛)| = |(‖𝐴‖ − 𝑟(𝐴)) − (‖𝑆𝑛‖ − 𝑟(𝑆𝑛))| ≤ ‖𝐴 − 𝑆𝑛‖ + |𝑟(𝐴) − 𝑟(𝑆𝑛)| ≤ 2‖𝐴 − 𝑆𝑛‖, 𝑛 ≥ 1. 

Then, since the series ∑ 𝐴𝑛
∞
𝑛=1  is uniformly converges to 𝐴, then we get 

              𝑔𝑟(𝐴) = lim
𝑛→∞

𝑔𝑟(𝑆𝑛). 

 

Theorem 2.4. If the operator series ∑ 𝐴𝑛
∞
𝑛=1 , 𝐴𝑛 ∈ 𝐿(𝐻), 𝑛 ≥ 1 uniformly converges to operator 𝐴 ∈ 𝐿(𝐻), then 

𝑔𝑤(𝐴) = lim
𝑛→∞

𝑔𝑤(𝑆𝑛). 

Proof. From the subadditivity property of numerical radius function it is clear that 

|𝑤(𝐴) − 𝑤(𝑆𝑛)| ≤ 𝑤(𝐴 − 𝑆𝑛) ≤ ‖𝐴 − 𝑆𝑛‖ → 0, 𝑛 → ∞. 

From this and uniform convergence of operator series ∑ 𝐴𝑛
∞
𝑛=1  to operator 𝐴 it is established that 

𝑤(𝐴) = lim
𝑛→∞

𝑤(𝑆𝑛). 
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Therefore, the following inequality 

|𝑔𝑤(𝐴) − 𝑔𝑤(𝑆𝑛)| ≤ |‖𝐴‖ − ‖𝑆𝑛‖| + 𝑤(𝐴 − 𝑆𝑛) ≤ ‖𝐴 − 𝑆𝑛‖ + ‖𝐴 − 𝑆𝑛‖ ≤ 2‖𝐴 − 𝑆𝑛‖, 𝑛 ≥ 1 

is hold. Consequently, since the series ∑ 𝐴𝑛
∞
𝑛=1  is uniformly converges to 𝐴, then we have 

               𝑔𝑤(𝐴) = lim
𝑛→∞

𝑔𝑤(𝑆𝑛). 

              Now prove the following proposition. 

Lemma 2.5. For any 𝐴, 𝐵 ∈ 𝐿(𝐻) the following relation 

|𝑐(𝐴) − 𝑐(𝐵)| ≤ 𝑤(𝐴 ± 𝐵) 

is hold. 

Proof. In this case, for any 𝑥 ∈ 𝐻 with ‖𝑥‖ = 1, the following relation 

|(𝐴𝑥, 𝑥)| = |((𝐴 + 𝐵)𝑥, 𝑥) − (𝐵𝑥, 𝑥)| ≥ |((𝐴 + 𝐵)𝑥, 𝑥)| − |(𝐵𝑥, 𝑥)| 

is true. Then from the last relation it is clear that 

𝑐(𝐴) ≥ 𝑐(𝐴 + 𝐵) − 𝑤(𝐵).                                                                                                                      (3) 

Similarly, from the following inequality 

|((𝐴 + 𝐵)𝑥, 𝑥)| = |(𝐴𝑥, 𝑥) − (𝐵𝑥, 𝑥)| ≥ |(𝐴𝑥, 𝑥)| − |(𝐵𝑥, 𝑥)| 

satisfying for any 𝑥 ∈ 𝐻 with ‖𝑥‖ = 1, it implies that 

𝑐(𝐴 + 𝐵) ≥ 𝑐(𝐴) − 𝑤(𝐵).                                                                                                                      (4) 

Consequently, from inequalities (3) and (4) it implies that 

|𝑐(𝐴 + 𝐵) − 𝑐(𝐴)| ≤ 𝑤(𝐵). 

In this case, if we take 𝐵 − 𝐴 instead of 𝐵 in the last inequality, we have 

|𝑐(𝐴) − 𝑐(𝐵)| ≤ 𝑤(𝐴 − 𝐵). 

Also, from the last relation if we take −𝐵 instead of 𝐵, then we have 

|𝑐(𝐴) − 𝑐(𝐵)| ≤ 𝑤(𝐴 + 𝐵). 

In this way, the lemma's proof is complete. 

Theorem 2.6. If the operator series ∑ 𝐴𝑛
∞
𝑛=1 , 𝐴𝑛 ∈ 𝐿(𝐻), 𝑛 ≥ 1 uniformly converges to operator 𝐴 ∈ 𝐿(𝐻), then 

𝑐(𝐴) = lim
𝑛→∞

𝑐(𝑆𝑛), 

𝑔𝑐(𝐴) = lim
𝑛→∞

𝑔𝑐(𝑆𝑛). 

Proof. Indeed, by Lemma 2.5, we have  

|𝑐(𝐴) − 𝑐(𝑆𝑛)| ≤ 𝑤(𝐴 − 𝑆𝑛) ≤ ‖𝐴 − 𝑆𝑛‖ → 0, 𝑛 → ∞. 

Hence the validity of claim 

𝑐(𝐴) = lim
𝑛→∞

𝑐(𝑆𝑛) 

is clear. And also, since  

|𝑔𝑐(𝐴) − 𝑔𝑐(𝑆𝑛)| ≤ ‖𝐴 − 𝑆𝑛‖ + |𝑐(𝐴) − 𝑐(𝑆𝑛)| ≤ 2‖𝐴 − 𝑆𝑛‖, 𝑛 ≥ 1, 

the validity of second claim of theorem is established. 

 For the ratio gaps the following claim is true. 

Theorem 2.7. If the operator series ∑ 𝐴𝑛
∞
𝑛=1 , 𝐴𝑛 ∈ 𝐿(𝐻), 𝑛 ≥ 1 uniformly converges to operator 𝐴 ∈ 𝐿(𝐻) such 

that for any 𝑛 ≥ 1  𝑆𝑛 ≠ 0 and 𝐴 ≠ 0, then the following conclusions are true 

(a) If for any 𝑛 ≥ 1  𝑆𝑛𝐴 = 𝐴𝑆𝑛, then 𝑞𝑟(𝐴) = lim
𝑛→∞

𝑞𝑟(𝑆𝑛), 

(b) 𝑞𝑤(𝐴) = lim
𝑛→∞

𝑞𝑤(𝑆𝑛), 
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(c) 𝑞𝑐(𝐴) = lim
𝑛→∞

𝑞𝑐(𝑆𝑛). 

Proof. In this case from Theorem 2.3, Theorem 2.4 and Theorem 2.6, it implies that 

(a) |𝑞𝑟(𝐴) − 𝑞𝑟(𝑆𝑛)| ≤
 𝑟(𝐴)+‖𝐴‖ 

‖𝑆𝑛‖‖𝐴‖
‖𝐴 − 𝑆𝑛‖

𝑛→∞
→   0, 

(b) |𝑞𝑤(𝐴) − 𝑞𝑤(𝑆𝑛)| ≤
 𝑤(𝐴)+‖𝐴‖ 

‖𝑆𝑛‖‖𝐴‖
‖𝐴 − 𝑆𝑛‖

𝑛→∞
→   0, 

(c) |𝑞𝑐(𝐴) − 𝑞𝑐(𝑆𝑛)| ≤
 𝑐(𝐴)+‖𝐴‖ 

‖𝑆𝑛‖‖𝐴‖
‖𝐴 − 𝑆𝑛‖

𝑛→∞
→   0. 

 

Example 2.8. Consider the following sequence of operators in Hilbert space of complex-valued functions 𝐿2(0, 1) 
in form: 

 𝐴𝑛𝑓(𝑡) ≔  
1

 𝑛(𝑛+1) 
∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑓 ∈ 𝐿2(0, 1), 𝐴𝑛: 𝐿

2(0, 1) → 𝐿2(0, 1), 𝑛 ≥ 1. 

Then it is clear that 𝐴𝑛𝐴𝑚 = 𝐴𝑚𝐴𝑛, 𝑚, 𝑛 ≥ 1, 𝑆𝑛 = ∑ 𝐴𝑚
𝑛
𝑚=1 = (1 −

1

 𝑛+1 
) ∫ 𝑓(𝑡)𝑑𝑡

𝑥

0
, 𝑛 ≥ 1 and the sequence 

(𝑆𝑛) uniformly converges to Volterra integration operator 

 𝐴𝑓(𝑥) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑓 ∈ 𝐿2(0, 1), 𝐴: 𝐿2(0, 1) → 𝐿2(0, 1). 

 It is known that ‖𝐴‖ =
2

 𝜋 
 and 𝜎(𝐴) = {0} [2]. Therefore, by Theorem 2.3 and Theorem 2.7, it implies 

that 

 lim
𝑛→∞

𝑔𝑟(𝑆𝑛) =
2

 𝜋 
  and lim

𝑛→∞
𝑞𝑟(𝑆𝑛) = 0. 

Example 2.9. Consider the following sequence of operators in real space 𝐿2(0, 1) in form:  

𝐴𝑛𝑓(𝑥) ≔ ∫
𝑡

 (1 + (𝑛 − 1)𝑡)(1 + 𝑛𝑡) 
𝑓(𝑡)𝑑𝑡

𝑥

0

, 𝑓 ∈ 𝐿2(0, 1), 𝐴𝑛: 𝐿
2(0, 1) → 𝐿2(0, 1), 𝑛 ≥ 1. 

In this case, it is clear that  

𝑆𝑛𝑓(𝑥) ≔ ∫(1 −
1

 1 + 𝑛𝑡 
) 𝑓(𝑡)𝑑𝑡

𝑥

0

, 𝑓 ∈ 𝐿2(0, 1), 𝑛 ≥ 1. 

Using the Lebesgue Dominated Convergence Theorem it can be proved that the series ∑ 𝐴𝑛
∞
𝑛=1  uniformly 

converges to the Volterra integration operator 

 𝐴𝑓(𝑥) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑓 ∈ 𝐿2(0, 1), 𝐴: 𝐿2(0, 1) → 𝐿2(0, 1). 

 It well known that ‖𝐴‖ =
2

 𝜋 
 and 𝜎(𝐴) = {0} [2] and numerical radius 𝑤(𝐴) =

1

 2 
 [20]. Then by Theorem 

2.4, Theorem 2.6 and Theorem 2.7 we have 

 lim
𝑛→∞

𝑔𝑤(𝑆𝑛) =
2

 𝜋 
−

1

 2 
=
 4−𝜋 

2𝜋
  and lim

𝑛→∞
𝑞𝑤(𝑆𝑛) =

𝜋

4
 , 

lim
𝑛→∞

𝑔𝑐(𝑆𝑛) =
2

 𝜋 
  and lim

𝑛→∞
𝑞𝑐(𝑆𝑛) = 0. 

   

III. APPLICATION 

Now it will be given one important function class (Λ𝜔)+ (see [21]). Let 𝜔 be a modulus of continuity, 

i.e., 𝜔 be a nondecreasing continuous function on [0,∞) such that 𝜔(0) = 0 and for 𝑥 > 0  𝜔(𝑥) > 0 with 

property 𝜔(𝑥 + 𝑦) ≤ 𝜔(𝑥) + 𝜔(𝑦), 𝑥, 𝑦 ∈ [0,∞). And also, it will be denoted by 𝔻 ≔ {𝑧 ∈ ℂ ∶  |𝑧| < 1} unit 

disc and 𝔸(𝔻) class of all analytic functions on 𝔻. 

Let us denote one space of analytic functions 

(Λ𝜔)+ ≔ {𝑓 ∈ 𝔸(𝔻) ∶  ‖𝑓‖Λ𝜔 = sup
𝑢,𝑣∈𝔻
𝑢≠𝑣

|𝑓(𝑢)−𝑓(𝑣)|

𝜔(|𝑢−𝑣|)
< ∞}. 
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Given a modulus of continuity 𝜔, it will be defined the function 𝜔∗ by  

𝜔∗(𝑥) ≔ 𝑥∫
𝜔(𝑡)

𝑡2

∞

𝑥

𝑑𝑡, 𝑥 > 0. 

Note that lim
𝑥→0+

𝜔∗(𝑥) = 0. 

 Recall that the following result has been proved in [21]. 

Theorem 3.1. There exists a constant 𝑐 > 0 such that for every modulus continuity 𝜔, for every 𝑓 ∈ (Λ𝜔)+ and 

for arbitrary contractions 𝑇 and 𝑆, the following inequality holds 

 ‖𝑓(𝑇) − 𝑓(𝑆)‖ ≤ 𝑐‖𝑓‖Λ𝜔𝜔∗(‖𝑇 − 𝑆‖). 

 Here we will investigate how the results obtained in the previous section will change for operator-

functions. 

Theorem 3.2. Let (𝐴𝑛) be a sequence of bounded linear operators in 𝐻 such that for any 𝑛 ≥ 1 the operator     

𝑆𝑛 ≔ ∑ 𝐴𝑚
𝑛
𝑚=1  is a contraction operator. If the series ∑ 𝐴𝑛

∞
𝑛=1  uniformly converges to the  𝐴: 𝐻 → 𝐻, then for any 

𝑓 ∈ (Λ𝜔)+, the following statements are correct: 

(1) If for any 𝑛 ≥ 1  𝑆𝑛𝐴 = 𝐴𝑆𝑛, then 𝑔𝑟(𝑓(𝐴)) = lim
𝑛→∞

𝑔𝑟(𝑓(𝑆𝑛)), 

(2) 𝑔𝑤(𝑓(𝐴)) = lim
𝑛→∞

𝑔𝑤(𝑓(𝑆𝑛)), 

(3) 𝑔𝑐(𝑓(𝐴)) = lim
𝑛→∞

𝑔𝑐(𝑓(𝑆𝑛)), 

(4) If for any 𝑛 ≥ 1  𝑆𝑛𝐴 = 𝐴𝑆𝑛 and 𝑓(𝐴) ≠ 0, then 𝑞𝑟(𝑓(𝐴)) = lim
𝑛→∞

𝑞𝑟(𝑓(𝑆𝑛)), 

(5) 𝑞𝑤(𝑓(𝐴)) = lim
𝑛→∞

𝑞𝑤(𝑓(𝑆𝑛)), 𝑓(𝐴) ≠ 0, 

(6) 𝑞𝑐(𝑓(𝐴)) = lim
𝑛→∞

𝑞𝑐(𝑓(𝑆𝑛)), 𝑓(𝐴) ≠ 0. 

Proof. Let 𝑓 is any function of (Λ𝜔)+ and contraction operators sequences (𝑆𝑛) in 𝐻 which uniformly converges 

to operator 𝐴 ∶ 𝐻 → 𝐻. Then 𝐴 is a contraction operator. Moreover, since 𝑓 ∈ (Λ𝜔)+, then by Theorem 3.1, there 

exists 𝑐 > 0 such that ‖𝑓(𝐴) − 𝑓(𝑆𝑛)‖ ≤ 𝑐‖𝑓‖Λ𝜔𝜔∗(‖𝐴 − 𝑆𝑛‖), 𝑛 ≥ 1.  

          Consequently, since lim
𝑛→∞

𝜔∗(‖𝐴 − 𝑆𝑛‖) = 0, then the operator sequences (𝑓(𝑆𝑛)) uniformly converges 

to 𝑓(𝐴). Thus, the validity of the claims of this theorem under corresponding conditions it is clear from Theorems 

2.3, 2.4 and Theorems 2.6, 2.7. 
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