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1. Introduction 

 

Greenhouse gasses which have become a part of everyday life, 

have many negative effects on the global climate and air quality. 

Greenhouse gasses are becoming more threatening because of 

these atmospheric emissions [1]. The transport sector is the sec-

ond largest producer of CO2 from fossil fuel combustion. This 

makes the transport sector the second most influential factor in 

global warming [2]. According to the International Energy 

Agency's 2020 report on EVs, the introduction of EVs was cru-

cial for reducing air pollution and greenhouse gas emissions [3]. 

EVs have higher energy efficiency than conventional internal 

combustion engine–based vehicles [4, 5]. It has been determined 

that a traditional internal combustion engine can use only 18–

25% of the energy it produces from fuel, and a vehicle with an 

electric motor and battery can use 46% of the energy it receives 

from the socket [6]. In addition, EVs recover most of the kinetic 

energy lost during deceleration by using the electric motor as a 

generator [7]. However, the problem of insufficient driving 

range in EVs remains. This is an important factor limiting the 

rapid development of EVs [8, 9]. Therefore, high–performance 

ESSs are required to power EVs. As ESSs are the most im-

portant part of EVs, there is an urgent need to improve battery 

technology. There are three types of batteries that stand out in 

EVs. These are Lead–Acid (LA), Nickel Metal Hydride (Ni–

MH), and lithium–ion batteries. In addition, there are metal–air 

batteries such as Lithium–air (Li–air) batteries for large energy 

requirements [10].  

The demand for greater distance between charges limits fu-

ture perspectives of Ni–MH batteries in fully battery powered 

EVs. Currently, much research is being conducted on Ni–MH 

batteries to fill the energy density gap in the United States (USA), 

Europe, Japan, and China. More than 10 million HEVs used Ni–

MH batteries for propulsion applications in 2018 [11, 12]. 

Recently, a lot of work has been done on the compound brake 

control strategy to increase the range and braking performance 

of EVs [13]. In one of these studies, a battery and flywheel hy-

brid energy storage system was built using regenerative braking. 

For example, the Flywheel Energy Storage System (FESS) has 

been integrated into 500 busses in London. As a result of this 

application, 20% fuel savings were achieved [14]. It is empha-

sized that this hybrid system in EVs has a critical effect on eco-

nomic and dynamic properties. The application of such hybrid 
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methods in the ESSs of EVs not only increases the cruise range 

of the EVs but also extends the service life of the batteries [15–

17]. In another study, a flywheel was used in the regenerative 

braking system of a bus [18]. The energy obtained from this sys-

tem is stored in the flywheel. Because of the study, it was deter-

mined that the fuel consumption of the bus decreased by 30%. 

In a simulation study, the energy storage efficiency of 

LiFePO4 batteries compared with that of supercapacitors (SC) 

was investigated [19]. As a result of this study, LiFePO4 batter-

ies and SCs were found to store regenerative energy with an ef-

ficiency of approximately 67% and 97%, respectively [20]. 

HEVs have distinct advantages over single–energy vehicles 

in terms of increasing system operating efficiency, extending 

battery life, and reducing pollutant emissions [21]. Fathabadi 

[22] applied a hybrid vehicle with a weight of 1880 kg and a fuel 

cell/supercapacitor. Because of this experiment, the vehicle 

achieved a power efficiency of 96.2% at a speed of 158 km/h. 

He also determined that the distance traveled was 435 km. 

In this study, the effects of ESSs used in EVs and their work-

ing principles, power and energy densities, cycle life, charge–

discharge times, and temperature on their efficiency were inves-

tigated. The obtained results were compared and analyzed. 

 

2. Energy Storage Systems Used in HEVs–EVs  

 

ESSs emerged using energy in a specific form. These systems 

can be classified as mechanical, electrochemical, chemical, elec-

trical, and thermal [23]. In the selection of ESS to be used in 

EVs, features such as energy density (Wh/kg), power density 

(W/kg), cycle efficiency (%), self–charge–discharge character-

istics, and life cycles are considered [24]. 

 

2.1. Mechanical energy storage systems 

 

Three mechanical storage systems are commonly used to gener-

ate electricity in EVs. These include compressed air energy storage 

(PAES), pumped hydro storage (PHS), and flywheel energy stor-

age (FES) [25]. FES is used as an energy storage system at a sig-

nificant level in the automotive industry [26]. 

FESS, which stores energy according to the rotating mass prin-

ciple, consists of three main parts. These are the bearing system 

that supports the rotor, the rotor system to store energy, and the 

generator/motor system that performs the energy conversion [27]. 

These systems have their own specific tasks. FESS has a high–

speed rotating mass of up to 50,000 rpm [28, 29]. Since FESS de-

pends on the square of the rotor speed according to Equation (1), 

it is clearly seen as an important parameter in the energy storage 

system [30]. In addition, flywheels have high power density, little 

environmental impact, a long–life cycle, high cycle efficiency 

(85%), and long operating life [31]. They can also store energy in 

megajoules (MJ). 

 

𝐸 =
1

2
 𝐼  𝜔2                                     (1) 

 

In equation (1), 𝜔(rad/s) is the angular velocity of the flywheel,  

𝐸  (J) is the amount of energy stored by the flywheel and 

 𝐼 (𝑘𝑔 𝑚2) is the moment of inertia [32]. 

FESSs in ESSs are a system with higher efficiency (90–95%) 

than other methods [33]. In EVs and HEVs, the flywheel is used 

to store energy. This energy can also be used for sudden accelera-

tion of a vehicle on steep slopes [31, 34]. Braking energy is stored 

by FESS in a short time in the regenerative braking mode [32].   

Erhan and Özdemir [14] presented the topology in Figure 1 re-

garding the integration of FESS into a hybrid system. In this topol-

ogy, charging the FESS was defined as the deceleration mode and 

discharging it was defined as the acceleration mode. In addition, a 

brushless direct current motor was used in the motor/generator 

(M/G) unit where the FESS was located. In the first case, the ki-

netic energy of the FESS was increased and stored in the flywheel. 

In the second case, this stored energy was transferred to the M/G 

unit. In this study, a recovery efficiency of 56% was achieved. In 

addition, it was determined that FESS was 30% lighter, 60% less 

volume, and 50% inexpensive than traditional CVT (continuously 

variable transmission). In addition, it was emphasized that FESSs 

require less maintenance and have fewer moving parts than CVTs.    

 

Fig. 1. Diagram of a hybrid electric vehicle with FESS 

 

2.2. Electrochemical energy storage systems 

 

References should be listed at the end of the paper in font 9. 

They should be numbered consecutively and referred to square 

brackets. Electrochemical energy storage systems can be classified 

into three parts: electrochemical capacitors, batteries, and fuel cells. 

Batteries work by converting chemical matter into electrical en-

ergy [35]. There are two types of electrochemical storage [36]. 

They are classified as primary and secondary batteries. Secondary 

batteries with higher specific energy and power are used in EVs. 

These batteries have advantages such as a flat discharge profile, 

high specific energy, low resistance, high power density, negligi-

ble memory effect, and wide temperature performance range [37]. 

In today's EV applications, nickel metal hydride batteries, lithium–

ion batteries, and lead acid batteries are mostly used [38]. 

LA batteries were the first battery technology to appear approx-

imately 130 years ago [39]. The most widely used battery type in 
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internal combustion vehicle applications [40]. In addition to this 

use, they are used in many areas because of their robustness, safe 

operation, temperature tolerance, and low cost [41]. 

 

PbO2 + H2S04→ PbSO4+ H2O + ½O2

 

               (2) 

 

Pb + H2S04→ PbSO4 + H2                              (3) 

 

In the lead acid batteries in Equation (2) and Equation (3), where 

the electrochemical reactions are given, lead dioxide (PbO2) is 

used as the positive electrode, lead (Pb) is used as the negative 

electrode and, sulfuric acid (H2SO4) solution is used as the electro-

lyte [42]. Figure 2 shows the chemical properties of the lead–acid 

batteries during charging and discharging. To generate power, the 

electrodes immersed in an electrolyte consisting of a diluted solu-

tion of H2SO4, and during discharge, H2SO4 combines with sponge 

Pb and PbO2 to form lead sulfate (PbSO4) and water [43]. During 

the discharge process, the electrolyte becomes increasingly diluted. 

Thus, during the charging process, the H2SO4 density in the elec-

trolyte increases [44, 45]. Its rated voltage is higher than 2.00–2.25 

V. Moreover, its power density is 250 W/kg, its specific energy is 

35–40 Wh/kg, its cycle life is 1500–5000, and its total service life 

is 15 years [46].           

              (a)                    (b) 

Fig. 2. LA battery chemistry a) During discharge b) During charging 

 

Nickel metal hydride batteries are based on a hydrogen storage 

electrode in a hydroxide solution [47]. These batteries have 1.5–2 

times higher energy density than Ni–Cd [48, 49]. Although their 

energy densities are low compared to lithium–ion batteries, they 

have advantages such as high–power capacity, overcharge/dis-

charge tolerance, environmental compatibility, and safety. Be-

cause of these advantages, they are more suitable for portable EVs 

and HEVs [50]. Lithium–ion batteries are a serious alternative to 

the Ni–MH batteries used in most HEVs [51]. One of the battery 

types frequently used in EVs is Ni–MH batteries [52]. Additionally, 

as of 2017, 85% of the batteries used in the listed HEVs were based 

on Ni–MH batteries [53]. However, with the rapid market devel-

opment of HEVs, it was concluded that extensive research is un-

derway to improve the cycle life of Ni–MH batteries and their en-

ergy density. 

 

 

 

2.3. Electrical energy storage systems 

 

Supercapacitors (SC) are also electrochemical capacitors [54]. 

When voltage is applied to the capacitor, opposite charges accu-

mulate on the surface of each electrode separated by the dielectric 

[55]. This allows the capacitor to store electrical energy, as shown 

in Figure 3 and Figure 4 SCs are divided into two groups: Pseudo-

capacitor and electrochemical double–layer capacitors (EDLCs) 

[56]. The EDLC consists of conductive porous electrodes. Capac-

itors whose capacitance depends on the electrostatic absorption of 

electrolyte ions on the surface area are EDLCs. These capacitors 

are based on energy storage from reversible redox reactions at the 

electrolyte/electrode interface [57]. 

 

Fig. 3. EDLC schematic diagram of supercapacitors 

 

Pseudocapacitors, unlike EDLCs, involve a reversible Faradic 

redox reaction. This rapid reaction occurs at the electrode of the 

capacitors. When potential is applied, charges begin to be gener-

ated. These charges are then transferred through the double–layer 

formation of the EDLC [58]. As in batteries, so–called capacitors 

also involve the addition and separation of charges. However, in 

terms of power density, using an electrolyte makes pseudocapaci-

tors more efficient. Here, the capacitance is in an electrochemical 

form and largely depends on the active sites present. Faradic 

charge is stored in the electrodes of these capacitors [59]. 

 

Fig. 4. Pseudocapacitor (M represents metal atom) 

 

Supercapacitors can directly accumulate electrical energy be-

cause of the electrochemical double layer effect. At the same time, 
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supercapacitors can be charged and discharged at a very high spe-

cific current (A/kg), 100 times greater than that of a battery [35]. 

EDLCs and redox/pseudosupercapacitors are limited to practi-

cal applications because of their low energy density [60]. There-

fore, typical SCs are used because of their high specific power 

(W/kg) [35]. It is also very interesting in energy storage because of 

its high energy density, fast charge/discharge rate, and ability to 

operate for a lifetime without requiring maintenance [61]. Other 

reasons for using SCs in EVs are their stable electrical properties 

and wide temperature range [62]. However, SCs have low specific 

energy densities. Therefore, they are not suitable for long–distance 

driving as an independent energy source. 

The best application of SCs would be in plug–in (rechargeable) 

HEVs (PHEV) and EVs. It is suitable for use in combination with 

batteries designed for long cycle life, high energy density, and low 

cost [63]. High currents can be produced by the motor because of 

regenerative braking. SCs can capture and store this energy effi-

ciently [64]. Improvements can be made in the overall efficiency 

of the system when this application is implemented. Simultane-

ously, SCs greatly reduce the dynamic stress on the batteries and 

peak currents, which also extends the battery life [63].  

Since 2013, HEA or EV automotive manufacturers have devel-

oped prototypes using UCs instead of batteries to increase the effi-

ciency of the powertrain and store braking energy [65]. Today's 

HEA technology increases the efficiency of EVs, improve the en-

vironmental perspective, and reduce the cost [66, 67]. 

Typically, SCs are used because of their high specific power 

(W/kg) [35]. However, the specific energy of current commercial 

SCs is lower than that of most batteries. In Figure 5, the energy–

power density change of various energy storage systems is given 

[62]. 

 

 

Fig. 5. Power density by the energy density of various energy stor-

age systems [68] 

 

3. Hybrid Energy Storage Systems 

 

If the battery is used as the sole energy source of an EV, the 

power and economy of vehicles will be greatly limited [69, 70]. 

The battery pack is generally recognized as the most expensive sin-

gle component in an average configured EV. This accounts for ap-

proximately 35–45% of the total production cost [71]. In addition 

to their high cost, battery performance, driving range, power out-

put, cycle life, safety, etc. affect the overall performance of EVs. 

However, finding the perfect battery chemistry is also not easy. 

Therefore, hybrid ESS is promising, and it is a widely used solu-

tion where the battery is expensive [72].  

HEVs can be expressed as the integration of more power sources 

(internal combustion engine, fuel cell, etc.) on the vehicle. In other 

words, an HEV consists of two or more energy sources (battery, 

flywheel, etc.) [73]. For example, Arslan [74] obtained electrical 

energy by driving a linear generator with an internal combustion 

engine to solve the range problem of small EVs. 

In the FC/battery/SC topology, FC is the main energy source. 

Batteries and supercapacitors are used as two auxiliary energy 

sources [75–77]. For example, in HEVs, different energy sources 

such as batteries, SCs, or FCs can be used to power the electric 

drive system. However, only a portion of the energy exchange ca-

pacity of SCs can be used in the SC/battery configuration [78]. In 

addition, a hybrid FC/SC/battery configuration provides the long-

est battery lifetime [79, 80]. 

Yi et al. [81] created the hybrid vehicle model consisting of a 

battery and capacitor, as shown in Figure 6. In this model, the dis-

tribution of power between energy storage devices was examined. 

Additionally, the in case of developing an energy management 

strategy, reducing power consumption in EVs and thus extending 

battery life has also been investigated. 

 

 

Fig. 6. HEV block diagram  

 

Batteries are insufficient to store the current that occurs during 

short–term regenerative braking [82]. Depending on the size of the 

selected FESS, battery fatigue can be reduced by up to 30% with 

the hybrid system topology [83]. 

Alpaslan et al. [84] emphasized that meeting the energy demand 

and achieving the desired vehicle range depend on the selection of 

FECV components, and the vehicle' curb weight and operating 

conditions should also be considered. In addition, they also stated 

that the selection should be made according to the rotor–stator type 

of the electric motor (brushless and permanent magnet), current 

type (AC or DC), and energy or power rate of the storage unit (e.g. 

Lithium–ion battery, NiMH battery and SC). 
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Yildiz and Özel [85] investigated the energy consumption per-

formance of topologies in power transmission systems and the us-

ability of minimized electric motors in hydrogen fuel cell electric 

vehicle models. In this work, a 68 kW Proton Exchange Membrane 

(PEM) fuel cell and a supercapacitor with a maximum storage en-

ergy of 7 kWh were used as the two main energy sources. The su-

percapacitor was preferred as the main energy source for regener-

ative braking. Based on the New European Driving Cycle (NEDC) 

and Federal Test Procedure (FTP–75) drive cycles, the state–of–

charge ratios of the supercapacitors were also compared. As a re-

sult, it was found that the miniaturized electric motor structure can 

recover more energy than other structures. 

Boyacıoğlu et al. [86] stated that PEM fuel cells, which use hy-

drogen as fuel, will be widely used in EVs in the future. Accord-

ingly, it has been stated that it will lead to increased use of EVs and 

increased hydrogen fuel production. In addition, it was emphasized 

that the use of PEM fuel cell electric vehicles contributes greatly 

to the reduction of greenhouse gasses in the transportation sector. 

Kurtulmus and Karakaya [87], in their study on the use of FESS 

in regenerative braking systems of EVs, compared the amount of 

energy obtained at the maximum and minimum angular velocities 

of two flywheels with the same radii and different masses. The en-

ergy difference between the two flywheels was found to be 23% 

and 13% at maximum and minimum rpm, respectively. In addition, 

the power obtained from the flywheels at maximum and minimum 

rpm was determined to be 23% and 3%, respectively. 

4. Conclusions 

With the development of various technologies, reducing costs, 

and finding ESS solutions, HEVs and EVs will be widely used 

technologies in the future. In this article, the main issue is dif-

ferent energy storage technologies and HEVs used for EVs. At 

the same time, the regenerative braking systems used in HEVs 

and EVs are also discussed. Because of these investigations, it 

was determined that the energy released when the vehicle goes 

downhill or in case of sudden braking can be stored with higher 

efficiency. 

Flywheels had high power density, a long–life cycle, long op-

erating life, little environmental impact, and 85% cycle effi-

ciency. Therefore, it has been observed that the energy gener-

ated because of regenerative braking can be stored to a large ex-

tent by the flywheel system. According to this result, the range 

problem can be minimized by using FESS, and accordingly, the 

service life of the batteries can be extended. In addition, it has 

been determined that the lowest–cost LiFePO4 battery among 

lithium batteries is frequently preferred in EVs. However, 

LiFePO4 batteries store energy with an efficiency of 67%, 

whereas supercapacitors store it with an efficiency of 97%. 

Other than the lithium batteries used in HEVs and EVs, other 

batteries are also used. The use of Ni–MH batteries in 85% of 

HEVs has been found to be a serious alternative to lithium bat-

teries. In addition, more than 10 million HEVs in 2018 saw the 

use of Ni–MH batteries for propulsion applications. 

Generally, an average configured battery pack is the most ex-

pensive single component in an EV. It has been determined that 

this constitutes approximately 35–45% of the total production 

cost. Also, not only cost but also driving range, power output, 

safety, cycle life, etc. It affects the overall performance of EVs 

in various ways. It is also not easy to find the perfect battery 

chemistry. Therefore, it was concluded that hybrid ESS should 

be used instead of a single source. 

Various topologies have been developed for the use of fuel 

cells, which are high–energy densities and clean energy sources, 

in EVs and HEVs. According to these topologies, the range 

problem in electric vehicles can be overcome with fuel cell ve-

hicles. By using various ESSs, hybrid designs can be developed 

to develop high–efficiency, low–cost, and long–range vehicles. 
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