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ABSTRACT 
 
Adaptive image denoising algorithms rely on an error function that measure the distance between an estimated result and 
expectations. Selection of the error function and its parameters are crucial for a successful denoising implementation. In this paper, 
a method for determining close-to-optimal parameters for a bell-shaped error function is evaluated. The function with calculated 
parameters is employed within a gradient optimization algorithm and tested using test images with varying noise types and levels. 
The restoration results of the denoising test runs that use the proposed parameters are compared against the results of algorithms 
that employ well-known least squares and sum of absolute differences methods along with a method that combines both. The 
clear superiority of the bell-shaped error function for the proposed parameters is shown by the test results. 
 
Keywords: Adaptive iterative restoration, Bell-shaped error function, Data fidelity, Geometric tight framelet, Image denoising 
 

 
1. INTRODUCTION 
 
Digital images unsurprisingly contain noise introduced during almost all stages of handling it, including 
acquisition, transmission and compression. Denoising (reduction of noise), consequently is a 
fundamental and widely studied problem in all fields of digital image processing. Preservation of 
original information and not introducing additional artifacts while reducing noise component is one of 
the main challenges in image denoising. A wide variety of algorithms have been proposed over the past 
few decades, including various filtering-based spatial methods [28-29],  transform domain methods [25-
27], wavelet thresholding-based approaches[30] and total-variation (TV)-based approaches [31] . State-
of-the-art is represented by BM3D [32], centralized sparse representation (CSR) [33] and learned 
simultaneous sparse coding (LSSC) [34]. In all those methods, selection of error measure is of critical 
importance. Equally, results of the spatial methods also affected by the choice. L1 and L2, described in 
the following paragraphs, are two of the well-known measures used in image restoration problems. In 
this paper, we proposed a method for calculating parameters of the influence function which is used to 
switch between these two measures. We employed this adaptive schema to test images and obtained 
better results than the methods that use these individual measures and another method that use both. 
 
This section introduces the problem formulation through widely used models and terms. The following 
section describes the influence functions and motive for the proposed approach. The remaining sections 
present the experimental setup and give the results and comparisons, concluding at the end.    
Many signal/image restoration problems are modeled as inverse formulations:  
 
 Y HX                       (1) 
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where X  is the desired solution, Y is known and some inaccurate knowledge on transformation H and 
noise   exist. In addition to the difficulties caused by noise, H is an ill-conditioned sparse matrix, and 
X  is usually larger than Y  in size, so a rank deficiency exists, making (1) impossible to solve for an 
exact X  without some assumptions. For example, Y  is a set of images arranged to have a 1MNK   
matrix, where K  is the number of M N  images and X  is a 2 1r MN   matrix representing the desired 
image pixels, where r ( 1r  ) is the ratio of upsizing. In the special case of 1K   and 1r  , the problem 
can be viewed as single-image deblurring when H  is a blur matrix and as denoising when H  is a unity 
matrix. When 1r  , the problem becomes a super-resolution (SR) restoration, and when 1K  , it is 
called multiframe SR [1]. Usually, both noise and blur effects exist in observation images Y . When a 
direct solution is not possible, one resorts to optimization techniques to determine a solution, among 
infinite number of solutions, which is as consistent as possible with all available data and prior 
knowledge/assumption/expectation. Consistency is usually measured by an objective function whose 
inputs are observed data, estimated solution and/or data generated from the estimation. The indifference 
or correlation between observed data and data generated from the estimation may well be a consistency 
measure. It is very common to have an objective function to be minimized in the form of 

1

1

: ( )
n

p p
ip

i

 


   for an N-dimensional difference vector 

 
 Y HX                                                (2) 
 
When 1p   or 2p  , this measure is called 1L  [2-5] or 2L  [6-8] norm, respectively, in image 
restoration. However, in both cases, the solution is very sensitive to noise in the observed data, forcing 
the researchers to limit the solution space using prior knowledge and expectations. Such applications of 
limitations are called regularizations. Total variation (TV) [9-10] is the most used regularization term, 
and it is the 1L  norm of the first-order derivative of error. Although TV aims to protect edges in images, 
smoothing in relatively edge-free regions locally limits flexibility. In the research described in this paper, 
we used 1L  norm of the framelet coefficients of the estimated high-resolution image [11-12]. Using the 

2L  norm, (2) becomes 

 

 
2

( , ) TY X Y HX                         (3) 

 
To minimize (3), the 1st order derivative with respect to X  is set to zero to obtain the least squares solution: 
 

  1( , )
( ) 0T TY X

X H H H Y
X

 
   


     (4) 

 
Nonlinear problems are usually solved iteratively through 1k k kX X X     update formulation. In 

addition, a damping factor called the Lagrange multiplier is usually added to diagonal elements of TH H  
because singular values may prevent inversion. The equation 
 

    1T TX H H I H Y


                         (5) 

called the Levenberg-Marquard solution of nonlinear problems [13-14] is obtained. However, the 
stability of (5) in ill-conditioned problems is questionable and may cause unrealistic solutions. To 
overcome this, the general functional 
 

  ( , ) ( , ) ( )P Y X Y X X                      (6) 
 

where   and  ( )X  are called the regularization parameter and the stabilizing functional, respectively, 
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is proposed by Tikhonov and Arsenin [15], so that the solution is found by 
 

   arg min ( , ) ( , )
X

X Y X Y X                         (7) 

 
minimization [14]. In practice, when the ( )X  functional is selected to be the energy function

2
( )X X  , as Tikhonov and Arsenin suggested,   needs to be large to eliminate noise, causing overly 

smoothed solutions. Although the motive is different, the cost function is very similar, if not the same. 

Generally, the functional is defined as 
1

( ) ( )
r

i

X DX 


 , where  :1iD i r   is a group difference 

operator. Two of the popular designs for ( )X , among several others in the literature, are 
1

( )X X 

[16] and 
1 2

1
( ) l m l m

x xX X S S X     which is used in a generalization of total variation [2] and 

called bilateral-TV. Here 
1

l
xS   and 

2

m
xS  are horizontal and vertical shift operators and   is a scalar 

between 0 and 1 for spatial decay. Bilateral-TV considers total variation in horizontal and vertical 
directions. In addition, one can also use variations in the angled directions of / 4  radians. In the 
experimental part of the proposed method, a regularization term involving the following 18 operators 
comprising these angled variations and their 1st and 2nd order derivatives, called geometric tight 
framelets [11-12] is used; 
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Discussion of the properties of these operators is somewhat lengthy and found in [11, 12] for interested 
readers. 
 
2. DATA FIDELITY TERM and THE PROPOSED METHOD 
 
The least squares error measure is the most used measure for generating approximate solutions to linear 
systems. It seems that 2L  is a decent choice when the noise has a Gaussian distribution. The sum of the 

absolute differences ( 1L ) is preferred when it is suspected that the data contain outliers. The use of 
absolute values limits the sensitivity to outliers, whereas squaring is expected to increase errors in the 
neighborhood, which is the motive for using 1L . The behavioral difference between 1L  and 2L  is 

associated with their derivatives. The derivative of 2L , 2 ( )X H Y HX     , linearly depends on X
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, making it sensitive to outliers. The derivative of 1L , ( )X H sign Y HX    , in contrast, is bounded, 

even though it is undefined at zero. Therefore, it is reasonable to employ 2L  when noise is low and to 

use 1L  otherwise. Li et al. [11,12] suggested an even, strictly convex, twice differentiable function 

bounded by 
1

Y HX M    and adaptive selection for the norms. Such a function with these and 

additional desired features is proposed by Pham et al. [17]. It is infinitely differentiable, adaptive to 
noise variance and has an asymptotically zero derivative for higher error values. Although it is desired 
to not influence the local average and the data structure with outliers, instead of completely eliminating 
their influence as Li et al. [11-12] do, it is more logical to have their contribution lessen and diminish 
gradually until they become completely irrelevant. The derivative of the function proposed in [17] 
asymptotically approaches zero and reduces the contribution of outliers. The 1L , 2L , Li et al. [11-12] 
and bell-shaped [17] functions are given in Table 1, along with their first derivatives (influence 
functions). 
 

Table 1. Examined error functions, their derivatives and parameters 
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 [35] as an objective 

function on the basis that second order derivative is not continuous. Although the bell-shaped objective 
function is shown to be superior, Pham et al. [17] did not provide any method for the selection of its 
shape-defining parameters to obtain the best performance, and they applied default values. These 
parameters are quite important when switching between 1L  and 2L  type influences on data. 

Consequently, these parameters affect the success of the result. In this paper, we propose a method to 
determine the parameters of the bell-shaped function for optimal restoration. According to Hwang and 
Haddad [18] and Ko and Lee [19], the outlier border is the point beyond which sample points are 
considered outliers. The goal is to reduce the contribution of samples outside the outlier border 
gradually. For that, the maximum of the influence function (the derivative of the objective function) 
should be on the outlier border. The region that contains insiders for the bell-shaped objective function 
is marked as gray in Figure 1. Taking the derivative of the influence function (second derivative of the 
objective function) and equating it to zero as 
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as extremes and also outlier borders. The parameter b  determines how steep the function is. Because it  
 

 
 

Figure 1. The bell-shaped error function and its first and second derivatives 
 
is desired that the function behave like 1L  when the noise is high and like 2L  when the noise is low, the 

parameter b  should assume values between 0.5 and 1.0, accordingly. Therefore, the empirical selector 
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can be used for parameter b . In most applications, noise statistics are not known, but some statistical 
parameters can be estimated. According to Donoho and Johnstone [20], the standard deviation of the 
noise can be calculated using   ( ) 0.6745median D   where D  is the wavelet coefficient set in the 

HH  band of the image. This is a good point to mention related multiscale and sparse representation 
research in image denoising. Wavelets can represent data in very sparse form and therefore can be used 
in denoising by thresholding [20-21]. Finally, replacing x  in (9) with the border value estimated using 
the method described in [18] and [19] and inserting the value of b  found using (10), we obtain 
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and calculate parameter a . The parameters a  and b  completely describe the function ( )x  to be used 

in minimizations. Among several approaches proposed for minimization given in (7), the steepest 
descent method is preferred over others for its simplicity. In that case, (7) becomes 
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where   is a convergence parameter that is selected to reduce the error in every iteration.   can be 
found using 

 
 

[0,1]
arg min ( , ( , ))k kY X P Y X


  


                     (13) 

 
minimization, so that it is bounded within (0,1) and decreases the data fidelity term adaptively [22]. The 
parameter  , 
 

  
1

( )k kY HX X                            (14) 

 
can be employed as described in [23]. 
 
3. EXPERIMENTAL WORKS 
 
For a simple experiment, we generated a set of points representing noisy samples from a line in 2
using 10 , 1,...,ix i m i m   and 3 2 ,i i iy x    2(0, )N   [24]. Denoising algorithm with proposed 

parameter calculation is applied upon the samples and compared against 1L , 2L  and the 

parameters/method used by Li et al [12]. MSE (mean squared errors) and the number of iterations 
performed for converging are given in Table 2. All MSE and iteration values are the averages of 100 
experiments with different values of noise components. The results in table clearly show that the 
proposed parameter calculation is superior. Numbers of iterations do not extremely change between 
methods (somewhat decreases in the proposed method), showing that complexity of the methods are 
approximately same. This forms a basis for the image denoising algorithm with the proposed parameter 
calculation method. 
 

Table 2. Test results on noisy samples of a line in 2R  
 

m 2  
Proposed Li [12] 1L  2L  

MSE #iter. MSE #iter MSE #iter. MSE #iter. 

10 
1 0.09 41 0.1 68 0.16 96 0.09 93 
3 1.62 50 2.45 77 2.80 108 3.33 78 
5 3.64 80 3.95 85 4.62 120 5.59 87 

100 
1 1.07 66 1.17 76 1.31 82 1.28 79 
3 1.53 70 1.56 81 2.07 96 1.96 78 
5 1.94 81 2.01 86 3.00 103 3.27 84 

500 
1 1.04 78 1.25 79 1.36 91 1.26 81 
3 1.11 84 1.36 89 1.39 138 1.48 90 
5 1.20 86 1.42 96 1.44 142 1.77 98 

 
The bell-shaped error measurement function with the proposed parameters is tested against 1L , 2L  and 
the images with varying levels of Gaussian and impulse noise. The test images are obtained using

rv sp
ijk i j kY HX       , where H represents a disk filter of 7 pixels in diameter for imposing blur 

onto clean images. Blurring is followed by adding various types and amounts of noise. Here, i
 , sp

k  

and rv
j  are noise images representing Gaussian noise, salt&pepper (sp) noise (or impulse noise) and 

random positioned/valued (rv) noise (rv is described as Gaussian noise added onto randomly selected 
image pixels) respectively, where indices i , j and k  identify different amounts/characteristics such that 

test images with varying Peak-Signal-to-Noise-Ratios (PSNRs) are obtained. 
 
For Gaussian noise, the standard deviations are selected to be 0 (no Gaussian noise), 3 and 5. 
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Salt&pepper noise is obtained by randomly assigning 0 or 255 (equal probability) to a randomly selected 
%  (where  0,5,10, ,50  ) of all pixels of images whose pixel values range from 0 to 255. 

Random-valued noise images, on the other hand, are generated in a manner similar to sp-type noise, but 
instead of assuming values of just 0 or 255, random values with uniform distribution between 0 and 255 
are used as interference. Noise combinations of these types are applied on test images and four denoising 
methods are tested on these. It should be noted that for all methods that are compared, the same pre-
generated noise image is added onto test images. Iterations are terminated with the stopping criteria 

8
1 2 2

10k k kX X X 
    which is determined empirically. After the restoration process, results are 

compared for all images whose original (not distorted) images are available. Selected results, images 
and graphs that best represent the rest are given in the following discussion, with a note that the results 
omitted here are characteristically similar to those presented. PSNR results for permutations of 

 0,3,5   (for Gaussian noise) and rv
j  for  0,25,50  percent (out of the tested  0,5,10, ,50  

percent) are given in Table 3.  
 
Table 3. Resulting PSNR values for blur plus rv

i j
   noise cases. In every cell, the PSNR values for the input 

image, 1L , 2L , Li et al. [11-12] and proposed method results are listed in that order. 
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24.1
24.2

L1 
L2 
Li 

prop. 

50% 

input 12.0 
26.3 
24.9 
27.8 
28.7 

11.7 
32.6 
31.3 
35.3 
37.7 

11.3 
24.0 
22.8 
25.6 
27.3 

12.3 
26.7 
25.1 
29.3 
30.1 

11.7
24.0
23.4
25.8
26.7

11.9
25.0
24.9
26.2
26.5

11.6 
33.9 
31.5 
36.8 
37.8 

11.3 
22.6 
22.9 
23.9 
24.8 

12.3
24.9
25.3
26.7
27.0

11.7
23.6
23.5
23.9
24.1

11.9
24.6
24.8
25.6
25.9

11.7 
32.0 
30.1 
34.8 
36.7 

11.3 
22.3 
22.8 
23.6 
24.2 

12.3
24.2
24.7
25.7
26.4

11.7
23.3
23.3
23.7
23.9

L1 
L2 
Li 

prop. 
 

Similarly, results for permutations of  0,3,5   and sp
k  for  0,40,80  (out of the tested

 0,5,10, ,80  percent) are listed in Table 4. In Table 3 and 4, rows show input PSNR, 1L  output, 2L  

output, Li et al. [11-12] method output and the proposed method output in that order. Proposed method 
clearly outperforms the others in rv

i j
   cases as shown in Table 3. In sp

i k
   cases, however, the 

proposed method generated the best or next to best results in PSNR measure. 
 
Figure 2 shows PSNR_in-vs-PSNR_out results for the ‘cameraman’ test image set. Figures 2a and 2c 
are the cases with rv- and sp-type noise, respectively, whereas Figures 2b and 2d illustrate the restoration 
abilities of four methods on images with Gaussian noise of 5   in addition to rv and sp noise with 
varying levels. Analysis on the results reveals that the proposed function is clearly superior to others, 
except with some low input-PSNR cases. In high input-PSNR cases, all methods exhibit some 
performance drops. 1L  is always outperformed by the other methods. 
Figures 3 to 7 visually compare four methods and demonstrate the behavior of the proposed parameters. 
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Figures 3 and 4 exemplify the clear superiority of the bell-shaped objective function with calculated 
parameters on over 1L , 2L  and the method of Li et al. [11-12] on the reduction of the artifacts and 
spurious pixels. These are the cases with output images with similar PSNR. Although the output image 
PSNRs are close, 1L  , 2L and method of Li clearly shows some artifacts, while the proposed method 

output generated minimum artifact. With 
sp
k

   (11.1dB), all methods tend to lose texture. 
 
Table 4. Resulting PSNR values for blur plus sp

i k
   cases. In every cell, the PSNR values for the input image, 

1L , 2L , Li et al. [11-12] and proposed method results are listed in that order. 

 
 

i
   =0  =3  =5 

sp
k   

gold 
hill 

house
camer 
aman 

boat 
bar 
bara

gold
hill 

house
camer
aman 

boat
bar 
bara

gold
hill 

house 
camer 
aman 

boat 
bar 
bara 

0% 

input 25.3 
27.2 
32.7 
32.4 
32.9 

35.3 
44.9 
45.4 
45.1 
45.7 

22.9 
24.8 
34.1 
30.8 
34.5 

25.2 
27.3 
33.3 
34.0 
35.5 

23.4
24.3
30.3
29.6
31.4

25.1
26.4
27.3
27.0
27.4

33.7 
38.5 
40.5 
40.1 
40.7 

22.8 
24.4 
27.0 
25.6 
27.1 

25.0
26.9
28.3
28.1
28.5

23.3
24.1
25.0
24.4
25.3

24.7
25.7
26.4
26.5
26.6

31.7 
36.5 
37.9 
38.4 
38.9 

22.61 
23.93 
25.38 
25.30 
25.59 

24.66 
25.87 
27.02 
27.15 
27.33 

23.08
23.85
24.39
24.20
24.26

L1 
L2 
Li 

prop. 

40% 

input 11.2 
27.1 
31.9 
31.8 
32.0 

11.2 
43.7 
42.9 
42.5 
43.0 

10.8 
24.6 
33.1 
32.9 
33.2 

11.4 
27.4 
34.4 
34.2 
34.4 

11.8
24.4
29.8
29.2
29.9

11.2
26.1
27.0
26.8
27.1

11.2 
36.6 
39.9 
39.3 
39.8 

10.8 
24.4 
26.4 
25.7 
26.2 

11.4
26.4
28.1
27.6
28.1

11.1
24.0
24.6
24.3
24.7

11.2
25.3
26.4
26.4
26.4

11.2 
35.0 
37.9 
37.6 
37.9 

10.86 
23.28 
25.52 
25.09 
25.47 

11.40 
25.31 
26.98 
26.97 
27.16 

11.06
23.70
24.25
24.13
24.23

L1 
L2 
Li 

prop. 

80% 

input 08.3 
26.7 
30.6 
30.5 
30.5 

08.2 
41.8 
40.1 
38.83
39.9 

08.0 
24.7 
30.9 
30.7 
30.5 

08.5 
27.1 
33.1 
33.0 
32.9 

08.2
24.3
28.2
28.0
27.7

08.3
25.7
26.7
26.5
26.6

08.2 
35.6 
38.9 
37.7 
38.1 

08.0 
23.1 
25.7 
25.0 
25.2 

08.5
25.7
27.6
27.1
27.2

08.2
23.7
24.3
24.1
24.3

08.3
25.0
26.2
26.2
26.1

08.2 
33.7 
36.9 
37.2 
37.0 

08.0 
22.8 
25.0 
24.6 
24.6 

08.5 
24.9 
26.8 
26.6 
26.6 

08.2 
23.6 
24.1 
24.0 
24.0 

L1 
L2 
Li 

prop. 
 

 
 

Figure 2. PSNR_in-vs-PSNR_out results for the ‘cameraman’ test set with the given noise types 
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(a) (b) (c) (d) (e) 

Figure 3. A section of the ‘barbara’ test image with a) sp
k

  (11.10dB), b) restored with 1L  (24.00dB), c) 2L  

(24.62dB), d) Li et al. [11-12] (24.28dB) and e) bell-shaped   with optimized parameters (26.65 dB).  
 

 
(a) (b) (c) (d) (e) 

Figure 4. a) Boat image with rv
j

   noise where  =5 and s=50 (50% of all pixels are randomized with uniform 

distribution). Restored by the b) 1L , c) 2L  and d) Li et al. [11-12] methods and  e) the bell-shaped 

function with calculated parameters. Visible artifacts are scattered around the images in the results from 
the 1L , 2L  and Li et al methods. 

 
(a) (b) (c) (d) (e) 

Figure 5. A section of the ‘barbara’ test image with a) rv
j

  (11.71dB), b) restored with 1L  (24.06dB), c) 2L  

(24.43dB) d) Li et al. [11-12]  (25.82dB) and e) bell-shaped   with optimized parameters (26.68 dB). 

Although 1L  and 2L  were able to retain texture, artifacts introduced by 1L , 2L  and Li et al. [11-12] are 

clearly visible. 

(a) (b) (c) (d) (e) (f) 
Figure  6. a) Original ‘kennedy’ image and b) tie close-up. Images restored by the c) 1L , d) 2L , e) Li et al. [11-

12]  methods and f) the bell-shaped   with optimized parameters.  

(a) (b) (c) (d) (e) (f) 
Figure 7. a) Original ‘goldenhorn’ image and b) a close-up of the corner text. Images restored by the c) 1L , d) 2L  

e) Li et al. [11-12]  methods and f) the bell-shaped   with optimized parameters. 

Figures 6 and 7 present examples in which clean originals are not available so that a visual comparison 
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needs to be made. The bell-shaped objective function  with the proposed parameters is superior to the 
other objective functions that were examined, in PSNR measure and reduced artifacts. This is due to its 
balancing nature between the 1L  and 2L  norms, consequently allowing decent deblurring/sharpening 
while doing quite a good job at removing noise of different types. 
 
4. CONCLUSION 
 
Both 1L  and 2L  error measures have their own virtues in image denoising algorithms. It is reasonable 

to employ 2L  when noise is low and to use 1L  otherwise. Selection of the error function and its 
parameters are crucial for a successful denoising implementation. We employed a bell-shaped weighted 
switching function whose parameters are calculated from the image statistics and obtained successful 
results. Although the bell-shaped function has been used by Pham and Schutte[16], we additionally 
provided a mechanism to calculate shape-defining parameters of the function where they used default 
values. The overall performance is also affected by the definition of local outliers which needs and 
aimed to be researched in further study. 
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