

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Geliş Tarihi : 20.11.2023 Kabul Tarihi : 15.05.2024 Received Date : 20.11.2023 Accepted Date : 15.05.2024

PİRAZOL TÜREVI BİR BİLEŞİĞİN KURAMSAL HESAPLAMALARI VE HİRSHFELD YÜZEY ANALİZİ

THEORETICAL CALCULATIONS AND HIRSHFELD SURFACE ANALYSIS OF A PYROZOLE-DERIVED COMPOUND

Gonca ÖZDEMİR TARI¹ (ORCID: 0000-0001-5919-1778)

¹Ondokuz Mayıs Üniversitesi, Vezirköprü Meslek Yüksekokulu, 55900, Samsun, Türkiye

*Sorumlu Yazar / Corresponding Author: Gonca ÖZDEMİR TARI, gozdemir@omu.edu.tr

ÖZET

Bu çalışmanın temeli, pirazol grubu bir bileşiğin kuramsal hesaplamaları üzerine kurulmuştur. Molekül yapısı daha önce X-ışını (Wang vd., 2005) ile aydınlatılmış olan bileşiğin teorik hesaplamaları yapılmış, deneysel sonuçlarla karşılaştırılmıştır. Bileşiğin en düşük enerjili kararlı durumuna ulaşabilmek için molekül Hartree Fock (HF) yöntemi ve Yoğunluk Fonksiyonel Kuramı (YFK)/B3LYP ve B3PW91 yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleriyle optimize edilmiştir. Moleküler yapının bu yöntemlerden B3LYP yöntemi ile en düşük enerjili duruma sahip olduğu belirlenmiştir. Molekülün reaktif olduğu bölgeleri belirleyebilmek için moleküler elektrostatik potansiyel haritaları, yük analizleri ve Fukui fonksiyonları belirlenmiş, sonuçlar karşılaştırılmıştır. Ayrıca, molekülde bulunan etkileşimlerin belirlenebilmesi için Hirshfeld yüzey analizi yapılmış, sonuçlar tartışılmıştır.

Anahtar Kelimeler: Doğrusal Olmayan Optik Özellikler, Hirshfeld Yüzey Analizi, Pirazol Türevi Bileşikler, Yoğunluk Fonksiyonel Kuramı.

ABSTRACT

The basis of this study is based on theoretical calculations of a pyrazole group compound. Theoretical calculations of the compound, whose molecular structure was previously illuminated with X-rays (Wang et al., 2005), were made and compared with experimental results. In order to reach the lowest energy stable state of the compound, the molecule was optimized with the Hartree Fock (HF) method and Density Function Theory (DFT)/B3LYP and B3PW91 methods and 6-311(d,p) and 6-311++(d,p) basis sets. It was determined that the molecular structure had the lowest energy state by the B3LYP method, one of these methods. In order to determine the regions where the molecule is reactive, molecular electrostatic potential maps, charge analyzes and Fukui functions were determined and the results were compared. Additionally, Hirshfeld surface analysis was performed to determine the interactions in the molecule and the results were discussed.

Keywords: Nonlinear Optical Properties, Hirshfeld Surface Analysis, Pyrazole Derivative Compounds, Density Functional Theory.

ToCite: ÖZDEMİR TARI, G., (2024). PİRAZOL TÜREVI BIR BILEŞIĞIN KURAMSAL HESAPLAMALARI VE HIRSHFELD YÜZEY ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 447-458.

G. Özdemir Tari

GİRİŞ

Pirazol, beş üyeli bir halka sistemi olup, heterosiklik bileşiklerin önemli bir kısmında yer alan, farmakolojik, biyolojik ve endüstriyel etkilerinden dolayı araştırmalarda yer alan çok önemli bir bileşik sınıfıdır. Pirazol halkası içeren kimyasal bileşiklerin literatürde antikanser, antiviral, antioksidan, anti-inflamatuar, antipiretik gibi birçok farmakoloji calısmasında kullanıldığını söylemek mümkündür (Devrim Can vd, 2016; Amir vd., 2008; Kaplancıklı vd.,2009; Demir Özkay vd., 2012; Aydın vd., 2022; Şen vd., 2018; Levent vd., 2018; Kurt vd, 2018). İlaç sektöründeki ve endüstride geniş kullanım alanı bulması pirazol bileşiklerine olan ilgiyi artırmış ve yeni sentezlerin geliştirilmesine olanak sağlamıştır. Bu çalışmanın konusu pirazol türevi bir bileşik olan, 1-[5-(4-Hydroxy-3methoxyphenyl)-3-methyl-4,5-dihydro-1*H*-pyrazol-1-yl]ethanone, C₁₃H₁₆N₂O₃, molekülünün hesaplamalı kimya yöntemiyle kuramsal hesaplarını içermektedir. Molekül daha önce x-ışınları kırınımı yöntemiyle yapısal olarak aydınlatılmış (Wang vd., 2005) ve sonuçlar elde edilen yeni sonuçlarla karşılaştırılmıştır. Hesaplamalar, Yoğunluk Fonksiyonel Kuramı (YFK) ve Hartree Fock (HF) yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleriyle yapılmış olup ilk olarak molekülün minimum enerjili olan en kararlı yapısı belirlenmiştir. Molekülün en düşük enerjileri sırasıyla 6-311(d,p) baz seti için; HF için -835.25516131 a.u., B3LYP için -840.38399581 a.u., ve B3PW91 yöntemi içinse -840.05673767 a.u. olarak bulunmuştur. Bu enerji değerlerinin 6-311++(d,p) baz seti için değerleri ise aynı sırayla eneri değerleri -835.26952090 a.u., -840.40166114 a.u. ve -840.07263242 a.u. olarak elde edilmiştir. Elde edilen enerji değerlerinden yola çıkarak en kararlı durumun B3LYP yönteminden elde edildiği ve deneysel verilerle en iyi uyumun bu yöntemle olduğu sonucuna varılmaktadır.

MATERYAL VE METOD

Yapılan hesaplamaların tümü Gaussian 03W (Frisch vd., 2004) programı kullanılarak yapılmış ve elde edilen sonuçların görselleri GaussView (Dennigton vd., 2007) programı kullanılarak gösterilmiştir. Teorik çalışmalar, HF ve YFK'nın, B3LYP/B3PW91 yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleri kullanılarak yapılmıştır. Moleküle ait elektrofilik ve nükleofilik bölgeleri belirleyebilmek için sınır orbitalleri (HOMO ve LUMO) ve yük analizlerine ilaveten Moleküler Elektrostatik Potansiyel (MEP) haritaları belirlenmiştir. Tüm baz setleri için moleküle ait geometrik parametreler belirlenmiş ve sonuçlar karşılaştırılmıştır.

BULGULAR VE TARTIŞMA Optimize Yapı

Sekil 1'de x-ışınlarından elde edilmiş moleküler yapı (Wang vd., 2005) ile teorik hesaplamalardan elde edilmiş şekiller verilmektedir. Optimize edilmiş molekülün bağ uzunlukları, bağ açıları ve dihedral açılarına bakıldığında deneysel olarak elde edilmiş parametrelerle büyük bir uyum içinde olduğu söylenebilir. Pirazol halkasına ait seçilen bazı geometrik parametreler Tablo 1'de raporlanmıştır. N1-C7, N2-C9 bağ uzunlukları deneysel olarak 1.4869(18) ve 1.2763(18) Å (Wang vd., 2005) bulunmus olup teorik olarak hesaplanan bağ uzunlukları ise 1.48639 ve 1.28097 Å değerleri ile bu verilerle oldukça uyumludur. Benzer şekilde O1-C4 ve O3-C11 bağ uzunluklarına bakıldığında deneysel olarak 1.3670(16) ve 1.2285(18) Å (Wang vd., 2005) olarak bulunmusken aynı bağ uzunlukları sırasıyla 1.36407 ve 1.21838 Å olarak hesaplanmıştır ve yine deneysel verilerle uyumlu olduğu gözükmektedir.6-311++(d,p) baz seti ile elde edilen geometrik parametrelerde Tablo 1'de rapor edilmiştir. Optimizasyonda kullanılan yöntemlerin güvenilirliğini belirlemek için KOK (atomik parametreler arasındaki farkların karelerinin ortalamasının karekökü) hesaplamaları yapılmış ve Tablo 1'de verilmiştir. Elde edilen bağ uzunlukları için hata değerleri sırasıyla; HF/6-311G(d,p) için 0.0176 6-311++G(d,p) için 0.0178; B3LYP/6-311G(d,p) için 0.0132 ve 6-311++G(d,p) için 0.0125; B3PW91/6-311G(d,p) için 0.0139 ve 6-311++G(d,p) için 0.0133 olarak bulunmuştur. Hata değerleri incelendiğinde deneysel parametrelerle en iyi uyumu sağlayan optimize yapının B3LYP yöntemi ve 6-311++G(d,p) baz seti ile hesaplatılan yapı olduğu ve sistemin moleküler ve elektriksel özellikleri hesaplanırken temel setlere ilave edilen difüze ve polarize fonksiyonların doğruluğu ve verimi artırdığı gözlenmektedir. Diğer taraftan Tablo 1'de verilen molekülün sahip olduğu dihedral açılardan C2-C1-C7-N1 acısı, molekülün düzlemsel bir yapıya sahip olmadığını göstermektedir.

(a)

(b)

Şekil 1.a) Moleküle Ait X-ışını Kırınımından Elde Edilen Yapı (Wang vd., 2005) ve b) Optimize Yapıya Ait Molekül Şekillerine Ait Görünümler.

Tablo 1. Moleküle Ait Geometrik Parametrelerin Deneysel (Wang vd., 2005) Yöntemlerle Karşılaştırılması.

	Deneysel	HF		YFK/			
	(Wang vd.,	6-311(d,p)	6-311++(d, p)	B3LYP		B3PW91	
	2005)			6-311(d, p)	6-311++(d,p)	6-311(d,p)	6-311++(d,p)
Bağ Uzunluğu							
N1-C11	1,3443(18)	1,36405	1,36160	1,37810	1,37675	1,37427	1,37349
N1-N2	1,4055(16)	1,37739	1,37845	1,38380	1,38740	1,37385	1,37604
N1-C7	1,4869(18)	1,46604	1,46604	1,48639	1,48372	1,47744	1,47660
01-C4	1,3670(16)	1,34934	1,34973	1,36407	1,36659	1,35807	1,35982
N2-C9	1,2/63(18)	1,25406	1,24495	1,28097	1,28146	1,28073	1,28100
03-C11	1,2285(18)	1,19441	1,19705	1,21838	1,22123	1,21673	1,21901
C4-C5	1,3/30(2)	1,3/0/9	1,37208	1,38695	1,38/5/	1,38541	1,38577
C4-C3	1,4009(19)	1,40587	1,40429	1,41336	1,41128	1,41134	1,40970
02-C3	1,3/11(18)	1,34400	1,34321	1,36098	1,36052	1,35517	1,35484
02-013	1,4090(2)	1,39700	1,39760	1,41858	1,42003	1,41160	1,41214
C5-C6	1,3927(19)	1,39513	1,39451	1,39724	1,39699	1,39488	1,39495
C1-C0 C1-C2	1,3/82(19)	1,3/0/0	1,37250	1,38039	1,38807	1,38457	1,58576
C1-C2 C1-C7	1,4000(2)	1,40028	1,59802	1,40445	1,40188	1,40105	1,40012
C1-C7	1,5105(18)	1,51599	1,51/02	1,51562	1,51/00	1,51127	1,51240
C2-C3	1,3633(19)	1,5/329	1,57751	1,39017	1,39228	1,56614	1,38930
C9-C10	1,4000(10)	1,49430	1,49447	1,49222	1,49220	1,46/10	1,46709
C7-C8	1,4920(2)	1,30949	1,50951	1,51450	1,51505	1,50895	1,50855
C1-C8 C11 C12	1,3343(18)	1,34037	1,54000	1,55515	1,33373	1,54000	1,54/01
Maha faab	1,4990(2)	1,30941	1,50944	1,51405	1,51550	1,50674	1,50/90
Maks.jark VOV		0,03409	0,03143	0,0330	0,03243	0,03103	0,0294
		0,0170	0,0178	0,0152	0,0125	0,0139	0,0155
C11 N1 N2	121 66(12)	121 40272	121 52670	122 50027	122 28228	122 75186	122 66046
C11-N1-N2 C11 N1 C7	121,00(12) 125,55(12)	121,40275	121,52070	122,30957	122,36236	122,73180	122,00040
N2-N1 C7	113 27(10)	123,14230	113 14625	113 20750	113 24480	113 57360	123,20307
C0 N2 N1	113,27(10) 107,38(12)	100 52034	109 46423	108 08758	108 88/37	108 88/37	108 00028
01 C4 C5	107,36(12) 122.96(12)	123 33033	109,40423	103,58758	123 57603	100,00457	123 37450
01-C4-C3	122,90(12) 117,38(13)	117 29617	117 /38/3	117 10047	117 16036	123,37003	117 20013
$C_{5} C_{4} C_{3}$	117,36(13) 119,66(12)	110 36360	110 83207	110 32042	110 26185	110 26185	110 33268
$C_{3} O_{2} C_{13}$	119,00(12) 118,37(12)	119,50500	120.94470	119,32042	117,20105	117,20105	117,00520
C3-02-C13	110,37(12) 120,27(12)	120.06067	110 02258	120.02822	121 00929	121 00828	120.06546
$C_{4} - C_{3} - C_{0}$	120,27(13) 118.89(12)	118 94627	120 31686	110,93822	121,00858	121,00858	110 12650
C6 C1 C7	110,09(12) 110,43(13)	120 57941	120,51030	120 63544	120 72817	120 72817	120 36450
C2-C1-C7	119, 43(13) 121.68(12)	120,37941	120,70130	120,03544	120,72317	120,72817	120,30450
C1-C6-C5	120,84(13)	120,43849	121 29956	120,32939	120,10292	120,10292	120,43732
C3-C2-C1	120,04(13) 120,48(13)	121,18815	124,20039	121,20982	120,17700	121,22633	120,13570
02-C3-C2	125, 22(13)	125 11174	115 85484	125,28310	125 22087	125 22087	121,10702
02-C3-C4	123,22(13) 114,99(12)	115 63821	119 24246	115 46091	115 52658	115 52658	115 76723
C2-C3-C4	119,78(13)	119,05021	122 47803	119 25577	119 25224	119,52050	119 25261
N2-C9-C10	122 19(14)	122 41555	113 76716	122 13674	122 21846	122 11216	122 20058
N2-C9-C8	114.96(12)	113 80119	123 78159	113 68056	113 65099	113 51308	113 53493
C10-C9-C8	122 84(13)	123 78159	113 13908	124 17943	124 12397	124 36648	124 25826
N1-C7-C1	112,04(13) 112,73(11)	113 13908	113 34093	112 68905	113 18447	112 53233	112 97427
N1-C7-C8	100.64(10)	100 99880	100 74011	100 71212	100 74011	100 72146	100 80390
C1-C7-C8	115 89(12)	113 72638	113 66960	114 33092	113 66960	113 94173	113 51778
03-C11-N1	120.05(12)	120 46210	120 11600	120 15216	120 11600	120 11063	120.05417
03-C11-C12	121,63(13)	122,40210	122,75129	123,66309	123,40392	123,87249	123,59429
NI-C11-C12	118 33(14)	116 63168	116 80773	116 18473	116 47998	116.01637	116 34803
C9-C8-C7	103 66(11)	102 26778	102 26582	102 77557	102 67071	102 59318	102 58242
Mak fark	100,00(11)	4.9983	4.8222	5.4452	5.1500	5.6136	5.2819
KOK		1.9688	2.0702	1.9708	1.9121	2.0595	1.9895
Torsivon acisi		1,5000	_,0/0_	1,000	1,7121	2,0070	1,5050
C11-N1-N2-C9	164.29(13)	161.13861	162.18644	165.34321	165.01429	166.57597	166.67045
C7-N1-N2-C9	-2.11(15)	-2.21097	-3.21391	-3.53668	-4.53875	-4.67815	-4.58133
01-C4-C5-C6	-177.85(13)	-179.73028	-179.66713	-179.70186	-179.56839	-179.66409	-179.46475
C3-C4-C5-C6	2.6(2)	-0.08466	-0.08712	-0.15183	-0.17594	-0.16138	-0.06712
C2-C1-C6-C5	-1,8(2)	0,55610	0,48435	0,66801	0,41957	0,62018	0,31044
C7-C1-C6-C5	177.73(12)	-177.28591	-177.00858	-178.07220	-176.66562	-177.78634	-176.63073
C4-C5-C6-C1	-0,2(2)	-0,40183	-0,35136	-0,15183	-0,29316	-0,40414	-0,25641
C6-C1-C2-C3	1,3(2)	-0,23690	-0,18964	-0,33885	-0,08095	-0,28108	-0,04486
C7-C1-C2-C3	-178,18(12)	177,60823	177,29334	178,40531	176,98080	178,13434	176,89403
C13-O2-C3-C2	2,9(2)	-2,66570	-2,98339	-1,49034	-2,03365	-1,53824	-2,18983
C13-O2-C3-C4	-177,34(14)	177,25113	176,81223	178,33630	177,60252	178,25773	177,51019
C1-C2-C3-O2	-179,16(13)	179,67149	179,54664	179,58677	179,24139	179,51130	179,41543
C1-C2-C3-C4	1,1(2)	-0,24258	-0,24258	-0.23383	-0,38285	-0,27768	-0,27494
01-C4-C3-O2	-2,42(19)	0,14548	0,17440	0,21792	0,27830	0,22120	0,04417
C5-C4-C3-O2	177,17(13)	-179,52135	-179,42950	-179,36096	-179,15051	179,31313	-179,38979
O1-C4-C3-C2	177,39(13)	-179,93249	179,98230	-179,94429	179,93661	-179,96984	179,76246
C5-C4-C3-C2	-3,0(2)	0,40067	0,37840	0,47683	0,50779	0,49583	0,32849
N1-N2-C9-C10	-179,20(13)	179,18319	179,28445	179,46218	179,19201	179,53003	179,39417
N1-N2-C9-C8	0,16(17)	-1,27124	-1,34616	-1,16982	-1,70547	-1,47436	-1,47801
C11-N1-C7-C1	72,79(17)	79,44547	79,03854	75,20266	77,07346	75,28664	75,41396
N2-N1-C7-C1	-121,11(12)	-117,53700	-115,90477	-115,99171	-113,50603	-113,49490	-113,39669
C11-N1-C7-C8	-163,13(13)	-158,62904	-159,13371	-162,55004	-161,20759	-162,99774	-163,11049
N2-N1-C7-C8	2,98(14)	4,38849	5,92298	6,2558	8,21292	8,22073	8,07885
C6-C1-C7-N1	-109,30(14)	-137,83972	-141,98431	-130,03604	-145,72212	-132,54800	-143,66713
C2-C1-C7-N1	70,21(16)	44,35058	40,56752	51,24024	37,24427	49,06318	39,43205
C6-C1-C7-C8	135,50(13)	107,67496	103,55623	115,74985	100,13098	113,58723	102,34557
C2-C1-C7-C8	-45,00(18)	-70,13474	-73,89194	-62,97388	-76,90263	-64,80159	-74,55524
N2-N1-C11-O3	-172,01(13)	-167,81673	-169,53889	-170,85062	-171,97821	-172,26809	-172,56599
C7-N1-C11-O3	-7,0(2)	-6,15301	-5,68958	-3,04808	-3,50118	-1,84901	-2,17511

SÜ Mühendislik Bilimleri Dergisi, 27(2), 2024				451		KSU J Eng Sci, 27(2), 202		
Araştırma Makalesi			(G Özdemir Tal	ri	Resear	ch Article	
N2-N1-C11-C12	8 1(2)	12 50733	10 72888	9 09323	7 91119	7 48223	6 77574	
C7-N1-C11-C12	173,06(13)	174,17105	174,57820	176,89577	176,38821	177,90131	177,16662	
N2-C9-C8-C7	1,70(17)	3,90162	4,91115	4,97240	6,68588	6,44746	6,36192	
C10-C9-C8-C7	-178,96(13)	-176,55992	-175,72867	-175,67451	-174,23133	-174,58317	-174,53104	
N1-C7-C8-C9	-2.58(14)	-4.52878	-5.93065	-6.14542	-8.16741	-8.02437	-7.91111	

Elde edilen sonuçların x-ışını kırınımından elde edilen verilerle uyum sağlaması hem optimizasyon işleminin hem de seçilen yöntemlerin uygunluğunu ve de güvenirliğini ortaya koymaktadır. Teorik çalışma ile deneysel verilerin sonuçlarında gözlenen küçük farklılıklar ise, teorik çalışmaların gaz form ve etkileşimsiz ortamda hesaplanması ile açıklanabilmektedir.

114,94394

113,20916

112,69265

113,18021

115,72231

Moleküler Elektrostatik Potansiyel Haritası

119,30(13)

116,98488

C1-C7-C8-C9

Molekül yüzeyindeki değişken olan yük bölgelerinin ve bu bölgelerin molekülün elektrofilik ve nükleofilik bölgelerini belirlemeyi hedeflemektedir. Kırmızıdan maviye doğru renk geçişleri ile yorumlanan haritalarda, kırmızı ile belirtilen bölgeler en negatif bölgeleri temsil ederken, mavi ile belirtilen bölgeler en pozitif bölgeleri temsil etmektedir. Ayrıca bu haritalar, molekülde tepkimelerin gerçekleşeceği bölgelerin belirlenmesinde ve molekül içi oluşan hidrojen bağlarının tahmininde bize önemli bilgiler sunmaktadır. Şekil 2'de moleküle ait en negatif bölgelerin oksijen atomları üzerinde en pozitif bölgelerin ise hidrojenler üzerinde yerelleştiği söylenebilir. Benzer şekilde MEP haritalarındaki sonuçları karşılaştırmak için molekülün yük analizleri sonucu nükleofilik ve elektrofilik bölge tayinleri yapılmıştır. Moleküler yapıya ait en negatif yük değerleri ise O3 atomu için -0.061474, O2 atomu için -0.0551615, O1 atomu içinse -0.0571782 olarak gözlenmiştir, en pozitif değer ise O1 atomuna bağlı hidrojende gözlenmiş olup değeri +0.05827832'dir ve elde edilen değerler molekül içi hidrojen bağını destekler niteliktedir.

Şekil 2. Moleküle Ait Moleküler Elektrostatik Potansiyel Haritası.

Yük Analizi ve Fukui Fonksiyonları

Bu analizler ile molekülde meydana gelen kimyasal reaksiyonların anlaşılması ve elektro-nükleofilik bölgelerin belirlenmesi sağlanmaktadır. Mulliken ve doğal yük analizleri tüm hesaplama yöntemleri ile elde edilmiş ve sonuçlar Tablo 2'de verilmiştir. B3LYP yöntemine ve Mulliken yük analizine göre elde edilen sonuçlara bakıldığında en negatif yükler O3>O2>N1>N2>O1>C1>C5 iken doğal yük analizine göre ise C12>O1>O3>C10>O2>C8>N1>N2>C2>C5>C1>C7>C1 olarak bulunmuştur. Benzer şekilden pozitif yükler Mulliken yük analizine göre sıralanacak olursa C11>C13>C3>C4>C10>C12>C9>C8>C6>C2 şeklinde, doğal yük analizine göre sıralanacak olursa C11>C4>C3>C9 şeklinde sonuçlar elde edilmektedir.

G. Özdemir Tari

NPA	HF	B3LYP	B3PW91	Mulliken	HF	B3LYP	B3PW91
C1	-0,03645	-0,04459	-0,04683	C1	-0,076288	-0,064816	-0,076611
C2	-0,28226	-0,29118	-0,29951	C2	-0,007315	0,019285	0,032149
C3	0,34139	0,29313	0,28921	C3	0,282347	0,173326	0,178840
C4	0,34323	0,30475	0,29982	C4	0,211252	0,144958	0,150964
C5	-0,25638	-0,26992	-0,27624	C5	-0,011984	-0,028874	-0,029816
C6	-0,18678	-0,19701	-0,20364	C6	0,003399	0,037775	0,040688
C7	0,02901	-0,02566	-0,03569	C7	0,200365	0,125350	0,105187
C8	-0,39295	-0,44262	-0,45385	C8	0,060626	0,045082	0,049215
C9	0,31994	0,26574	0,26076	C9	0,129284	0,081973	0,096313
C10	-0,53424	-0,60797	-0,62160	C10	0,132133	0,108864	0,116118
C11	0,85361	0,70780	0,70074	C11	0,498581	0,342333	0,367808
C12	-0,59004	-0,65822	-0,67420	C12	0,107460	0,079576	0,080817
C13	-0,08398	-0,19615	-0,21035	C13	0,254837	0,214705	0,212470
01	-0,70653	-0,65862	-0,65432	01	-0,187759	-0,104142	-0,106805
O2	-0,58434	-0,51316	-0,50439	O2	-0,452819	-0,336913	-0,338627
03	-0,70658	-0,61411	-0,61012	O3	-0,480573	-0,361609	-0,371082
N1	-0,40035	-0,31036	-0,30418	N1	-0,427173	-0,301773	-0,318307
N2	-0,30894	-0,27807	-0,27613	N2	-0,236337	-0,175100	-0,189321

Fukui fonksiyon analizinde ise elde edilen doğal yük analiz sonuçları kullanılmaktadır. Fukui fonksiyonları ile molekülde yer alan atomların sahip oldukları nükleofilik, elektrofilik ve serbest radikal atağa olan yatkınlıklar belirlenmektedir. Hesaplamalara göre elde edilen nükleofilik bölgeler C1, C2, C5, C6, C7, C8, C9,C10, C12, C13 atomları üzerinde, elektrofilik bölgeler ise C3, C4, C11 atomları üzerinde gözlenmiştir. Sonuçlar Tablo 3'de verilmiştir. Molekülün yük analizi ve FF sonuçlarına bakıldığında, molekülün nükleofilik özelliği daha belirgindir sonucuna varılabilmektedir.

	q^{o}	q^+	q	f_k^+	f_k	$\Delta f(r)$
01	-0,65862	-0,34663	-0,33817	0,31199	-0,32045	0,63244
O2	-0,51316	-0,28468	-0,26618	0,22848	-0,24698	0,47546
O3	-0,61411	0,06616	-0,31394	0,68027	-0,30017	0,98044
N1	-0,31036	0,41822	-0,16464	0,72858	-0,14572	0,87430
N2	-0,27807	-0,25381	-0,10698	0,02426	-0,17109	0,19535
C1	-0,04459	-0,02530	0,00314	0,01929	-0,04773	0,06702
C2	-0,29118	-0,15424	-0,11013	0,13694	-0,18105	0,31799
C3	0,29313	0,18477	0,13100	-0,10836	0,16213	-0,27049
C4	0,30475	0,18308	0,17146	-0,12167	0,13329	-0,25496
C5	-0,26992	-0,11818	-0,12777	0,15174	-0,14215	0,29389
C6	-0,19701	-0,09028	-0,11023	0,10673	-0,08678	0,19351
C7	-0,02566	-0,03509	-0,00847	-0,00943	-0,01719	0,00776
C8	-0,44262	-0,21599	-0,21761	0,22663	-0,22501	0,45164
C9	0,26574	0,38169	0,18678	0,11595	0,07896	0,03699
C10	-0,60797	-0,29746	-0,30176	0,31051	-0,30621	0,61672
C11	0,70780	0,12629	-0,11023	-0,58151	0,81803	-1,39954

Tablo 3. Moleküle Ait Doğal Yüklerden Elde Edilmiş Fukui Fonksiyonları.

KSÜ Mü Araştırm	KSÜ Mühendislik Bilimleri Dergisi, 27(2), 2024 Araştırma Makalesi			453 G. Özdemir Tari			KSU J Eng Sci, 27(2), 2024 Research Article
	C12	-0,65822	-0,27835	-0,32704	0,37987	-0,33118	0,71105
	C13	-0,19615	-0,04407	-0,09510	0,15208	-0,10105	0,25313
	$f_k^+(r)$	$= q_k(r)(N +$	$(1) - q_k(r)(N); f$	$q_k^{-}(r) = q_k(r)$	$(N) - q_k(r)(N)$	$(-1), \Delta f(r) = $	$f_k^+(r) - f_k^-(r)$

HOMO-LUMO ve Kimyasal Aktivite Parametreleri

HOMO, moleküldeki en yüksek enerjili dolu orbitali LUMO ise, moleküldeki en düşük boş orbitali temsil etmektedir ki bu orbitallere sınır orbitalleri denilmektedir ve molekülün en kararlı olduğu durumuna ait orbitaller Şekil 3'de verilmiştir. HOMO orbitallerinin fenil halkası üzerinde konumlandığı, LUMO orbitallerinin ise pirazol halkası üzerinde konumlandığı görülmektedir. Sınır orbitallerinin belirlenmesi, molekülün kimyasal kararlılığın belirlenmesinde oldukça önem taşımaktadır. HOMO-LUMO aralığının küçük olması bu orbitaller arası etkileşimin ve reaksiyonların daha kolay olacağı anlamına gelmektedir.

HOMO (-5.6970 eV)

LUMO (-0.5004 eV)

 2η

Şekil 3. Molekülün HOMO-LUMO Şekilleri.

Tablo 4'te molekülün en kararlı olduğu hali üzerinden sınır orbitalleri ve bunlardan türetilmiş nicelikler verilmektedir. Tablodaki değerlere göre B3LYP yönteminden elde edilen n=2.5983 değeri ile yüksek sertlik ve S=0.1924 değeriyle ile düşük yumuşaklık değerine sahip olduğunu ve bu durumun ise molekülün düşük kimyasal aktivitesiyle kararlı bir yapıya sahip olduğu sonucuna ulaşabiliriz.

	HF	B3LYP	B3PW91
İyonizasyon enerjisi, I	8,0233	5,6970	5,7438
Elektron ilgisi, A	-3,6381	0,5004	0,5303
Enerji aralığı, ΔE	11,6614	5,1966	5,2135
Elektronegatiflik, χ	2,1926	3,0987	3,1370
Kimyasal sertlik, η	5,8307	2,5983	2,6067
Kimyasal yumuşaklık, ^S	0,000085	0,1924	0,1918
Elektrofilik indeks, ω	0,4122	1,8477	1,8875

Tablo 4. Moleküle Ait Sınır Orbitalleri ve Kimyasal Aktivite Parametreleri.

Moleküle Ait Doğrusal Olmayan Optik Özellikler

KSÜ Mühendislik Bilimleri Dergisi, 27(2), 2024	454	KSU J Eng Sci, 27(2), 2024
Araștırma Makalesi		Research Article
	G. Özdemir Tari	

Son araştırmalarında gösterdiği gibi doğrusal olmayan optik özellikler taşıyan materyaller optik sinyal işleme, bilgi teknolojileri, lazer ve hologramlarda, veri kaydetme ve optik bağlantı materyallerinin tasarımında endüstriyel uygulamalarda oldukça sık şekilde kullanılmaktadır (Uzun S vd., 2019; Özdemir Tarı G., 2022). Moleküle ait dipol moment (μ), doğrusal kutuplanabilirlik (α), yönelime bağlı kutuplanabilirlik (β) değerleri hesaplanmış ve Tablo 5'de verilmiştir. Molekülün en kararlı durumuna ait, doğrusal olmayan optik özelliklerini belirleyen β değerlerine bakıldığında 5.9352x10⁻³⁰ esu değeriyle, NLO materyali olan referans üre değeri (Adant, M., 1995) ile karşılaştırıldığında yaklaşık 45 kez daha büyük bir değere sahip olduğu söylenebilir. Elde edilen bu yüksek β değeri ile bileşik, doğrusal olmayan optik materyal olarak kullanılabilecek bir potansiyeldedir sonucuna ulaşılabilir.

6-311G(d,p)	Dipo (Deb	ol Moment oye)	Doğrusa Yönelim kutuplar	l kutuplanabilirlik, e bağlı nabilirlik (esu)	1.	mertebeden kutuplanabilirlik (esu)
HF	μ	0,6263779	α _{xx}	168,53138	β_{xxx}	202,9924624
	μ_y	1,2489407	α_{xy}	12,1360036	β_{xxy}	30,6263039
	μ_z	-0,978439	α_{xz}	147,441023	β_{xyy}	97,0704712
	μ	1,7057	α_{yy}	0,7294252	β_{yyy}	57,1760482
			α_{yz}	8,6315885	β_{xxz}	-72.5935859
			α_{zz}	136,5141546	β_{xyz}	-39.4365488
			α	22,3280	β_{yyz}	-15.6953897
			Δα	36,9716	β_{xzz}	106.8567344
					β_{yzz}	-49.6307124
					β_{zzz}	-39.3558178
					β	3.6991x10 ⁻³⁰
B3LYP	μ_x	0,3258089	α_{xx}	188,9995875	β_{xxx}	325,92611
	μ_y	1,2107285	α_{xy}	15,7151304	β_{xxy}	59,720389
	μ_z	-0,8428013	α_{xz}	170,9027615	β_{xyy}	166,1337673
	μ	1,5107	α_{yy}	0,1359049	β_{yyy}	107,748209
			α_{yz}	7.7792799	β_{xxz}	-127.4224469
			α_{zz}	144.6779382	β_{xyz}	-67.0346817
			α	24.8986	β_{yyz}	-45.0931223
			Δα	53.0650	β_{xzz}	156.6721
					β_{yzz}	-71.4929071
					β_{zzz}	-32.1971933
					β	5.9352x10 ⁻³⁰
<i>B3PW91</i>	μ_x	0,3096032	α_{xx}	186,7422707	β_{xxx}	314,4736652
	μ_y	1,2098049	α_{xy}	15,1111070	β_{xxy}	53,6877921
	μ_z	-0,863515	α_{xz}	169,0522344	β_{xyy}	156,9056944
	μ	1,5182	α_{yy}	0,24741370	β_{yyy}	101,2537389
			α_{yz}	7.57021770	β_{xxz}	-125.6129266
			α_{zz}	145.3365696	β_{xyz}	-64.1059505
			α	24.7284	β_{yyz}	-51.5982364
			Δα	49.3288	β_{xzz}	152.7357596
					β_{yzz}	-73.5049714
					β_{zzz}	-37.3452347
					β	5.7448x10 ⁻³⁰

Tablo 5. Moleküle Ait Optik Özellik Hesaplamaları ve Bileşenleri.

Molekülün Termodinamik Özellikleri

Entropi, 151 kapasitesi ve entalpi gibi değişkenler termodinamik fonksiyonlar olarak adlandırılırlar. Birçok termodinamik fonksiyon belirlenirken değişkenlerin birbirlerine göre değişimleri incelenir. Termodinamik fonksiyonlardan, molekülün toplam enerjisine gelen katkılar (öteleme, elektronik, dönme ve titreşim) belirlenerek tabloda verilmiştir. Tablo 6 incelendiğinde, elektronik için 0.000, öteleme ve dönme için 0.889 titreşim için 193.953 ve toplam enerji için 195.730 değerleri elde edilmiştir. Termal enerjiye en büyük katkının titreşim enerjisinden geldiği gözükmektedir.

Tablo 6. Moleküle Ait Termodinamik Fonksiyonlar ve Bileşenleri.

G. Özdemir Tari

6-311G(d,p)	HF	B3LYP	B3PW91
Termal, E (cal/mol K)			
Elektronik	0.000	0,000	0.000
Öteleme	0,889	0,889	0,889
Dönme	0,889	0,889	0,889
Titresim	193,953	181,947	182,512
Toplam	195,730	183,724	184,289
Isı kapasitesi, Cv (cal/mol K)	,	,	,
Elektronik	0,000	0,000	0,000
Öteleme	2,981	2,981	2,981
Dönme	2,981	2,981	2,981
Titreșim	56,336	60,739	60,583
Toplam	62,298	66,701	66,544
Entropi, S (cal/mol K)		-	
Elektronik	0,000	0,000	0,000
Öteleme	42,427	42,427	42,427
Dönme	33,320	33,341	33,307
Titreşim	59,697	63,698	63,433
Toplam	135,444	139,466	139,166
Dönme Sıcaklıkları (Kelvin)			
Α	0,02959	0,02890	0,02895
В	0,01286	0,01312	0,01329
С	0,01200	0,01179	0,01203
Dönme sabitleri (GHz)			
A	0,61661	0,60228	0,60328
В	0,26794	0,27328	0,27682
С	0,24997	0,24557	0,25059
Sıfır-nokta tireşim enerjisi	185,08488	172,46905	173,05879
(kcal/mol)			
Sıfır-nokta düzeltmesi*	0,294952	0,274847	0,275787
Enerjide termal düzeltme*	0,311916	0,292783	0293683
Entalpide termal düzeltme*	0,312861	0,293728	0,294628
Gibbs serbest enerjisine	0,248507	0,227463	0,228505
termal düzeltme*			
Elektronik ve sıfır nokta	-834,960210	-840,109149	-839,780951
enerjisinin toplamı *			
Elektronik ve termal	-834,943245	-840,091212	-839,763054
enerjilerin toplamı *			
Elektronik ve termal entalpi	-834,942301	-840,090268	-839,762110
toplamı *			
Elektronik ve termal serbest	-835,006654	-840,156533	-839,828232
enerjilerin toplamı *			
Tonlam enerii (Hartree)	-835 2551613	-840 3839958	-840 0567377

Hirshfeld Analizi

Kristal yapıya ait molekül içi etkileşimleri Hirshfeld yüzey analizi yöntemi ile Crystal Explorer 3.0 programı kullanılarak belirlenmiştir (Wolff D.S.K. vd., 2012). Moleküller arası etkileşimleri belirleyebilmek içinse 2-boyutlu parmak izi yöntemi kullanılmıştır. Elde edilen haritalar kırmızı ve mavi renklerin bulunduğu yerlere göre yorumlanır. Kırmızı bölgeler Van der Waals yarıçaplarından daha kısa, mavi bölgeler ise Van der Waals yarıçaplarından daha uzun etkileşimlere karşılık gelmektedir. Bir başka deyişle kırmızı olarak gözükmekte olan bölgeler aktif hidrojen bağının bulunduğu yerleri temsil etmektedir. Yüzey analizi ve molekülün sahip olduğu etkileşimler ile Şekil 5'de verilmiştir. Molekül için d_{norm} -0.650 ile 1.418 a.u. aralığındadır. Şekle göre, O3 atomu civarının moleküller arası

G. Özdemir Tari

hidrojen bağı için aktif olduğu görülebilmektedir. Deneysel sonuçlarda aktif olan bu bölgede moleküller arası O1-H1…O3 bağı olduğu zaten rapor edilmiştir (Wang vd., 2005).

Şekil 5. Molekülün Hirshfeld Yüzeyi (d_{norm} -0.650 ile 1.418 a.u.)

Hisrhfeld yüzeyine en fazla katkıyı sunan bazı etkileşimlere ait 2-boyutlu parmak izi haritaları Şekil 6'da verilmektedir. O…H/H…O etkileşimleri incelenecek olursa iki keskin sivri uç oldukça belirgin bir şekilde gözükmektedir ve bu durum mevcut hidrojen bağlarının bir özelliğidir. Bu etkileşim Hirshfeld yüzeyine % 23.6 katkı sunarken, C…H/H…C ve N…H/H…N etkileşimlerinin Hirshfeld yüzeyine katkısı sırasıyla %13.9 ve %4.6 şeklinde belirlenmiştir.

Şekil 6. Moleküle ait bazı etkileşimlerin ait 2-boyutlu parmak izi haritaları.

SONUÇLAR

1-[5-(4-Hydroxy-3-methoxyphenyl)-3-methyl-4,5-dihydro-1*H*-pyrazol-1-yl]ethanone molekülünün kuramsal hesaplamaları HF ve YFK/B3LYP ve B3PW91 yöntemleri ve 6-311(d,p) ve 6-311++(d,p) baz setleri ile incelenmiştir. Molekülün optimizasyonu sonucunda elde edilen geometrik parametreler x-ışını kırınımından elde edilen parametrelerle karşılaştırılmış ve sonuçlar yorumlanmıştır. Ayrıca molekülün HOMO-LUMO orbitalleri, MEP haritaları, Fukui fonksiyonları ve de Hirshfeld yüzey analizleri yapılmış ve moleküldeki mevcut etkileşimleri desteklediği belirlenmiştir. Diğer taraftan molekülün sahip olduğu termal özellikler ve doğrusal olmayan optik özellikler belirlenerek molekülün deneysel olarak elde edilemeyen fiziksel ve kimyasal özelliklerine ulaşılmıştır. Molekülün elde edilen 1. mertebeden kutuplanabilirlik değerleriyle gelecekteki çalışmalarda optik materyal olarak kullanıma uygun olduğu söylenilebilmektedir.

KSÜ Mühendislik	Bilimleri	Dergisi,	27(2),	2024
Araştırma Makales	i			

G. Özdemir Tari

Teşekkür

Acknowledgement Bu çalışmanın yazarı olarak herhangi bir destek ve teşekkür beyanımın olmadığını bildiririm.

Yazarların Katkısı

Author contribution Tüm yazarlar çalışmaya eşit katkıda bulunmuştur.

Çıkar Çatışması Beyanı

Conflicts of interest "Yazarlar herhangi bir çıkar çatışması olmadığını beyan eder"

Etik Beyanı

Declaration of ethical code

"Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir."

KAYNAKLAR

Amir M, Kumor, H. & Suroor A Khan, (2008). Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. *Bioorg Med Chem Lett.*;18:918-22.

Aydın A., Turanlı S., Akkurt M., Banoğlu E. & Özçelik N., (2022) Pirazol'ün Kristal Yapısı ve Hirshfeld Yüzey Analizi, *Bilim ve Düzce Üniversitesi Teknoloji Dergisi*, 10 128-138.

Can Ö.D., Turan N. & Alyu F., (2016). 1,3,5-triaril-4,5-dihidro-1h-pirazol türevi bazı bileşiklerin benzodiazepin reseptörleri aracılıklı anksiyolitik-benzeri etkileri, *Çukurova Medical Journal*;41(2):304-315.

Demir Özkay Ü., Can Ö. D., & Kaplancikli Z. A., (2012). Antinociceptive activities of some triazole and pyrazoline moieties-bearing compounds. *Med Chem Res.*;21:1056-61.

Dennigton R. II, (2007). GaussView, Version 4.1.2, Semichem, Inc., Shawnee Mission.

Frisch M. J. G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01, (2004). Gaussian, Inc., Wallingford CT.

Kaplancikli Z.A., Turan-Zitouni G, Ozdemir A, Can Ov, Chevallet P., (2009) Synthesis and antinociceptive activities of some pyrazoline derivatives. *Eur J Med Chem.*; 44:2606-10.

Kurt H., Çetin A. & Bozarı S., (2018). Iğdır Üniversitesi Fen Bilimleri Enst. Dergisi, 8(2):223-229.

Levent S. d., (2013), "Pyrazole derivatives as inhibitors of arachidonic acid-induced platelet aggregation," *European Journal of Medicinal Chemistry*, vol. 64, pp. 42–53.

Özdemir Tarı G., Karadeniz Fen Bilimleri Dergisi, 12(1), 178-192, 2022.

Şen, F., "4-(3-metil-3-fenilsiklobütil)-2-(2-(piridin-4-ylmetilen)hidrazinil) tiyazol'un sentezi, karakterizasyonu, kristalografik yapısı ve Hirshfeld yüzeyinin incelenmesi," *Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, c. 8, s. 1, ss. 157–168, 2018. Cilt: 8 Sayı: 1, 157 - 168, 31.03.2018.

Uzun S. & Demircioğlu Z, Karadeniz Fen Bilimleri Dergisi, (2019) 9(2), 275-288.

Wang S. Zhu W., Yang W., & Zhou, L., (2005). 1-[5-(4-Hydroxy-3-methoxyphenyl)-3-methyl-4,5-dihydro-1*H*-pyrazol-1-yl]ethanone, *Acta Cryst. E61*, o3985–o3986.

Wolff D. S. K., Grimwood D. J., McKinnon J. J., Turner M. J., & M.A. Spackman, Crystal Explorer (Version 3.1), *Univ. West. Aust.* (2012).

M. Adant, M. Dupuis, J.L. Bredas, Int. J. Quantum Chem. 56 (1995) 497-507.