

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

 Pamukkale University Journal of Engineering Sciences

737

A binary enhanced moth flame optimization algorithm for uncapacitated
facility location problems

Kapasitesiz tesis yerleşim problemleri için geliştirilmiş ikili güve alevi
optimizasyon algoritması

Ahmet ÖZKIŞ1* , Murat KARAKOYUN2

1Department of Computer Forensics Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey.
aozkis@erbakan.edu.tr

2Department of Computer Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey.
mkarakoyun@erbakan.edu.tr

Received/Geliş Tarihi: 26.07.2022
Accepted/Kabul Tarihi: 06.01.2023

Revision/Düzeltme Tarihi: 06.11.2022 doi: 10.5505/pajes.2023.49576
Research Article/Araştırma Makalesi

Abstract Öz

Moth Flame Optimization is a nature-inspired meta-heuristic algorithm
for constantly solving real-world problems. In this study, a modified
version of MFO called binary Enhanced MFO Desert Bush (binEMFO-DB)
algorithm is proposed to solve uncapacitated facility location problems.
The proposed algorithm includes three modifications: i) chaotic map-
based population initialization, ii) random flame selection, and iii)
desert bush strategy. The performance of the proposed binEMFO-DB
algorithm was tested on 15 different UFL problems from the OR-Library
and Taguchi orthogonal array design was used for parameter analysis.
The average, gap and hit values of the results obtained by the
algorithms were used as performance metrics. The performance of
binEMFO-DB is compared with the performance of state-of-the-art
algorithms. The results show that the proposed binEMFO-DB has a
successful and competitive performance in the test environment.

 Güve Alevi Optimizasyonu, sürekli gerçek dünya problemlerini çözmek
için doğadan ilham alan bir meta-sezgisel algoritmadır. Bu çalışmada,
kapasitesiz tesis yerleşim problemlerini çözmek için ikili Enhanced MFO
Desert Bush (binEMFO-DB) algoritması olarak adlandırılan MFO'nun
değiştirilmiş bir versiyonu önerilmiştir. Önerilen algoritma üç değişiklik
içermektedir: i) kaotik harita tabanlı popülasyon başlatma, ii) rastgele
alev seçimi ve iii) çöl çalısı stratejisi. Önerilen binEMFO-DB
algoritmasının performansı, OR-Library'den alınan 15 farklı UFL
problemi üzerinde test edilmiş ve parametre analizi için Taguchi
ortogonal dizi tasarımı kullanılmıştır. Algoritmalar ile elde edilen
sonuçların ortalama, boşluk ve isabet değerleri performans metriği
olarak kullanılmıştır. binEMFO-DB'nin performansı, son teknoloji
algoritmaların performanslarıyla karşılaştırılmıştır. Elde edilen
sonuçlar, önerilen binEMFO-DB'nin test ortamında başarılı ve rekabetçi
bir performansa sahip olduğunu göstermektedir.

Keywords: Moth flame optimization, Uncapacitated facility location
problem, Binary optimization, Desert bush, Transfer functions,
Taguchi.

 Anahtar kelimeler: Güve alevi optimizasyonu, Kapasitesiz tesis
yerleşim problemi, İkili optimizasyon, Çöl çalısı, Transfer
fonksiyonları, Taguchi.

1 Introduction

In the last 20 years, the use of metaheuristic algorithms has
become increasingly common for optimization problems that
cannot be solved by classical mathematical approaches or that
take a long time to solve. Metaheuristic algorithms attract the
attention of researchers because they can be easily adapted to
different optimization problems. And these algorithms obtain
near-optimal results regardless of the number of objective
functions (such as single-objective and multi-objective) and
decision variable structure (continuous, unconstrained,
constrained, discrete, and binary) [1].

In binary optimization problems (BOPs), the decision variables
can take one of the two values represented by 0 and 1. For
example, in power systems, 0 represents the "off" state, 1 the
"on" state [2]; in binary image processing, while 0 means black
color, 1 means white color [3]. Many real-world issues,
especially classification and clustering problems, cell
formation, network optimization, unit commitment, knapsack
problems, compression-related problems, seat scheduling are
considered as BOPs [4],[5]. In this study, the solution of
uncapacitated facility location problems (UFLPs) – one of the

*Corresponding author/Yazışılan Yazar

binary optimization problems-with metaheuristic algorithms
will be emphasized.

In UFLP there are customers and facilities and it is decided
which facilities should be open and which should be closed in
order to provide the most cost-effective service to customers in
different locations (at least one facility must be open).
Assuming there is a total of n facilities, the facilities can exist in
2n-1 different states.

Since the complexity of the problem increases as the number of
facilities accrue, UFLP is considered as an NP-Hard problem [6].
While traditional methods such as, branch-and-bound,
lagrangian techniques, relaxation methods, reduction schemes,
and integer programming suggested in the literature are
successful in solving low-dimensional problems, they do not
perform well in high-dimensional problems [7],[8]. For this
reason, researchers have turned to metaheuristic algorithms
that can guarantee near-optimal results, can easily adapt to
different types of problems and reach solutions in a reasonable
time with having a simple structure [6]. Most of metaheuristic
algorithms, such as particle swarm optimization (PSO) [9], grey
wolf optimizer (GWO) [10], artificial bee colony (ABC) [11],

mailto:aozkis@erbakan.edu.tr
mailto:mkarakoyun@erbakan.edu.tr
https://orcid.org/0000-0002-1899-5494
https://orcid.org/0000-0002-0677-9313

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

738

artificial algae algorithm (AAA) [12] provide solutions to
optimization problems have continuous search space in their
basic versions. For this reason, these algorithms need to be
adapted to binary problems by using techniques such as the
following [4]:

• Transfer Functions: Kennedy and Eberhart [13] in
1997 has provided the conversion of continuous
variables to binary values via the sigmoid function.
After this study, new transfer functions that convert
continuous variables into binary values have been
proposed by different researchers [14],[15],

• Angle modulation: This technique was first used in the
field of signal processing. In this method, four real-
valued parameters are converted to binary values
using the sine and cosine function [16],

• Genetic operators: Crossover operators such as single
point, n-point, uniform, discrete, simulated binary etc.
[17] are commonly used in evolutionary algorithm.
Most of these operators can be adapted to solve
continuous [11], discrete [18] and binary problems
[19],

• Logical operators: In metaheuristic algorithms, logical
operators and, or, xor and not can be used to generate
candidate solutions. If the search space is binary,
logical operators can be used directly [1],[6]; if the
search space is continuous, a strategy such as transfer
functions should be used first to convert the solutions
to the binary values [7],

• Measure of dissimilarity: These are the metrics used
to calculate the dissimilarity of two arrays in binary
structure. Jaccard’s and Dice’s similarities [7];
Euclidean, Hamming, Manhattan metrics [20] etc. are
commonly used as dissimilarity metrics of
measurement.

Heuristic methods [21] and Quantum-inspired bits [22] are also
used for binarization.

Of the methods listed above, transfer functions, angle
modulation, heuristic methods can be used to convert
continuous space to binary space. Other methods are widely
used to increase the variety of solutions already transferred to
binary space. In this study, transfer functions are used to apply
MFO, which is a continuous algorithm, to UFL, which is a binary
problem. However, different modifications have been applied
to increase the performance of the algorithm. The performance
of the proposed algorithm has been compared with the
performance of different algorithms presented in the literature.

The remainder of the paper is organized as follows: In Section
2, a literature review is given for metaheuristic-based
approaches proposed to solve BOPs. In Section 2.1, main
motivation and contribution of the study is accentuated. UFLP
problems are described in Section 3. In Section 4, the original
MFO and the proposed approach are described in detail. In
Section 5, parameter analysis, experimental studies and
comparison results are given. Finally, Section 6 contains
conclusions and discussions.

2 Literature review

A large number of various metaheuristic algorithms from past
to present that have been successful in solving UFL problems
are mentioned. While some of these algorithms are created by
initializing the position values directly with binary coding,

some of them are created by converting the continuous position
values into binary with methods called transfer functions. Both
methods are widely used in the literature. In the continuation
of this section, some prominent metaheuristic algorithms are
introduced and their suggested variants for solving binary
problems are briefly mentioned.

2.1 Binary PSO variants

PSO [8] was proposed in 1995 inspiring by the foraging
behavior of bird and fish flocks and is one of the most reputable
metaheuristic algorithms. In 1997, the first attempt to
binarization of the PSO was made by researchers Kennedy and
Eberhart who proposed the algorithm. In this binary PSO
(BPSO) [12], real variables were easily converted to binary
values using the sigmoid function. It has been observed that the
exploration capability of the BPSO is insufficient in high
dimensional problems. To overcome this problem, a new
algorithm has been proposed by Khanesar et al. [23] that
changes the velocity vector in PSO. Lin et al. [24] proposed a
binary PSO approach that extracts high utility item sets. Yuan et
al. proposed IBPSO [2] algorithm and solve with this algorithm
unit commitment problems. Main difference of the IBPSO from
basic PSO is that population initialized and updated in binary
space. Other researchers that suggested PSO variants to solve
BOPs can be mentioned as follows: Beheshti et al [14],
Nezamabadi-pour et al. [25], Guner and Sevkli [26] and Saha et
al. [27].

2.2 Binary ABC variants

ABC [28] is a metaheuristic algorithm developed by Karaboga
in 2005, inspired by the foraging behavior of honey bees.
Kashan proposed the DisABC [29] algorithm, which initialized
directly with binary values and uses Jaccard's similarity for
position update and used the UFLPs set for performance
testing. Kiran and Gunduz proposed binABC [30] which used
XOR logical operator for position update and tested this
algorithm on UFLPs. Similarly, Kiran proposed a new
stigmergic behavior-based ABC algorithm [31] and done its
performance assessment on CEC 2015 functions and UFLPs. Jia
et al. proposed bitwise based ABC, shortly bitABC [32] and
tested it on a continuous benchmark set. Ozturk proposed a
new binary ABC named GB-ABC [19] using genetic operators
and done performance assessment on a dynamic image dataset
and knapsack problems.

2.3 Binary DE variants

Differential evolution (DE) [33] is a well-known evolutionary
based algorithm proposed by Storn and Price in 1997. Pampara
proposed angle modulated DE (AMDE) [16]-a binary variant of
DE using angle modulation technique-and tested the
performance of the AMDE on classical benchmark functions.
Engelbrecht and Pampara [34] proposed two different binary
DE approaches: of these binDE, borrows the concept of binPSO,
while normDE uses normalization strategy in continuous
spaces between lower and upper bound. If the normalized value
lower than 0.5, it set to 0, otherwise it set to 1. Su and Yang
suggested a quantum-based DE (QDE) [35] algorithm. Chen et
al. suggested BLDE algorithm [21] which is learning from
already explored solutions and tested the algorithm on
knapsack problems. He et al. suggested binary DE (BDE) [36]
and addressed the BDE as feature selector on 6 different UCI
datasets. Deng et al. [37] proposed another DE variant by using
a mapping operator and s operator to solve knapsack problems.

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

739

Other DE variants for BOPs can be referred as follows: Yang
[38], Wang et al. [39], Kashan et al. [40].

2.4 Binary GSA variants

Gravitational search algorithm, GSA for short [41] is suggested
in 2009 by Rashedi et al. Main motivation of the GSA is that
mass interactions and Newtonian law of gravity. Scientists
recommending the GSA also suggested binary GSA (BGSA) [42]
in 2010 by using transfer functions. Nezamabadi-pour
proposed a binary quantum-inspired GSA (BQIGSA) [22] and
used combinatorial 0–1 knapsack problems to measure the
performance of the algorithm. Khanesar and Branson
suggested XOR based binary GSA (XOR-BGSA) [43] and used
knapsack dataset for performance evaluation.

2.5 Other variants

Other metaheuristic approaches recommended to solve BOPs
can be given as follows: Aslan et al. [6] proposed 2 different
variants of basic Jaya algorithm [44]: i) XOR-based Jaya
algorithm (JayaX), ii) local search mechanism added version of
JayaX (JayaX-LSM). Proposed approaches compared on
CEC2015 functions and UFLPs and it was seen that JayaX-LSM
outperformed than JayaX. Cinar and Kiran [45] modified the
basic tree-seed algorithm (TSA) [46] in three different
approaches: i) logic gate based (LogicTSA), ii) similarity
measurement based TSA (SimTSA), iii) Hybrid variant
(SimLogicTSA). These 3 approaches were handled on UFLP suit
and SimLogicTSA obtained better results than compared
techniques. Hakli and Ortacay proposed an improved scatter
search algorithm (scatter search-ensemble crossover, SS-EC)
[47] and compared this techniques against other techniques
founded in the literature. Bas and Ulker proposed BinSSA [7] by
modifiying basic SSA [48] with transfer functions, similarity
measures and logic gates. In [49], a crossover operator added
variant of the BinSSA was run on the feature selection problems
and obtained successful results. In [50], S-shaped and V-shaped
four different binary variants of the SSA were proposed and this
variants were run on continuous benchmark tasks. Korkmaz et
al. proposed a binary initialized AAA method [51], binAAA for
short, and compared this technique to recently proposed other
algorithms on UFLPs. Cinar proposed a binary Archimedes
optimization algorithm [52] by using 17 different transfer
functions. Karakoyun and Ozkis proposed a binary variant of
the TSA with enhanced local search module on CAP and M*
problems [53].

2.6 Main motivation and contribution of the study

As can be seen from the literature review, many metaheuristic
algorithms have been suggested for the solution of BOPs and
this effort is still ongoing by many researchers today. Although
this situation has been criticized by some scientists [54],
proposing of new techniques is highly necessary according to
the No Free Lunch (NFL) theorem [55]. According to the NFL
theorem, the high performance of any algorithm on a class of
problem is balanced by its performance on another class. That
is, no algorithm can guarantee to find the optimal solution for
all problem types. This issue encourages researchers in the
matter of recommending new techniques that produce better
results than already proposed algorithms to different types of
problems. With this motivation, in this study a recently
proposed metaheuristic algorithm, moth flame optimization
(MFO), is handled and a novel method suggested to solve BOPs.

The MFO was recommended by Mirjalili [56] in 2015, inspired
by a navigation technique that real moths use to navigate at

night. The MFO has been used by researchers [57] to solve
various optimization problems due to its simplicity, flexibility
and easy adaptability. These can be summarized as
classification [58], image processing [59], medical [60], power
energy [61], inverse problem and parameter estimation [62],
[63], scheduling [64], engineering design [65], and economic
[66]. In addition, multi-objective [67]-[69], binary [70] and
hybrid [71]-[79] variants of the MFO is available in the
literature. While MFO is a widely used type of optimizer, there
is only one MFO variant recommended for solving BOPs, as far
as we can find.

The main contribution of this study is that some performance
improvement modifications are made on the original MFO
algorithm and the binary Enhanced MFO Desert Bush
(binEMFO-DB) algorithm is suggested. The details about the
proposed algorithm are presented in section 3.2. The binEMFO-
DB algorithm was run on the UFLPs taken from OR-Library [80]
and the obtained results were compared with the results of
similar studies in the literature. The experimental results show
that the proposed algorithm is generally successful on UFLP
and has better scores when compared with the performance of
the other algorithms.

3 Problem definition: uncapacitated facility
location problem (UFLP)

UFLP is one of the main and hard binary problems faced in real
life. The problem basically consists of the facilities providing
service and the customers receiving service from these
facilities. The location of the facilities and the cost of the service
to be provided to the customers from these facilities determine
the total cost. The main purpose in solving the problem is to
determine the optimum facility location that will minimize the
total cost. Assume that n is the total number of facilities
(consisting of opened or closed facilities), the number of
possible solutions for the location of the facilities is 2n.
However, considering that at least one facility must be open in
the UFL problem, the number of these solutions becomes 2n-1.
It is clearly seen that the number of facilities (n) directly affects
the complexity of the problem. Besides, the installation cost of
the facilities causes the problem to be included in the NP-Hard
problem class [81]-[84].

In the UFL problem, while the total potential facility locations
are known, it is not known which of these facilities will be open.
A constant installation cost is required for each facility. Besides,
there is also a transportation fee between the customers and
the facility, and each customer is associated with the facility
that is easiest to reach (least cost). The main objective of the
UFLP is to minimizing the overall cost that consists of installing
the facilities and supplying customers from the facilities
[84]-[86]. Assume that 𝐹𝑇 is the set of the all facilities; the
purpose is to determine a subset (𝐹𝑠𝑢𝑏) of facilities that
minimize the total cost. Equation (1) shows the total cost where
𝐹𝑠𝑢𝑏 ⊆ 𝐹𝑇 .

𝑓(𝐹𝑠𝑢𝑏) = ∑ 𝑓𝑖

𝑖𝜖𝐹𝑠𝑢𝑏

+ ∑ min{𝑐𝑖𝑗

𝑗𝜖𝑃

| 𝑖𝜖𝐹𝑠𝑢𝑏} (1)

Where 𝑓𝑖 is the cost of an open facility, 𝑐𝑖𝑗 is the cost between

𝑖𝑡ℎ facility and 𝑗𝑡ℎ customer and 𝑃 is set of the customers. In
UFLP, a solution (x) is presented with a binary vector
(𝑥 ∈ {0, 1}𝑞 , where q is number of potential facilities) which
𝑥𝑖 = 1 or 𝑥𝑖 = 0 if 𝑖𝑡ℎ facility is open or close, respectively. The
notation 𝐹𝑠𝑢𝑏1 = 𝐹𝑠𝑢𝑏1(𝑥) = {𝑖 ∈ 𝐹𝑠𝑢𝑏: 𝑥𝑖 = 1} is used to

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

740

represent the open facilities in solution x. Then the fitness
function of the UFLP can be expressed mathematically as follow
[84]:

𝑀𝑖𝑛 𝑓(𝑥) = ∑ 𝑓𝑖

𝑖𝜖𝐹𝑠𝑢𝑏
1 (𝑥)

+ ∑ min{𝑐𝑖𝑗

𝑗𝜖𝑃

| 𝑖𝜖𝐹𝑠𝑢𝑏
1 (𝑥) | 𝑥

∈ {0, 1}𝑞 − {0}}

(2)

OR-Library [80] is a useful resource that presents to the
researchers a large data set for the UFLP. The properties of 15
different problems taken from the OR-Library are given in
Table 1.

Table 1. The properties of the OR-Library problems

Problem Type Dimension Optimum Cost

Cap71

Small

16 x 50 932615.750
Cap72 16 x 50 97779.400
Cap73 16 x 50 1010641.450
Cap74 16 x 50 1034976.975

Cap101

Medium

25 x 50 796648.438
Cap102 25 x 50 854704.200
Cap103 25 x 50 893782.113
Cap104 25 x 50 928941.750

Cap131

Large

50 x 50 793439.563
Cap132 50 x 50 851495.325
Cap133 50 x 50 893076.713
Cap134 50 x 50 928941.750

CapA
Huge

100 x 1000 17156454.478
CapB 100 x 1000 12979071.580
CapC 100 x 1000 11505594.330

When categorized according to their dimensions, it is seen that
there are 4 different problem types. While Cap71-74 problems
are in the small problem type with 16 facilities and 50
customers, Cap101-104 problems constitute the medium
problem type with 25 facilities and 50 customers. Cap131-134
is included in the big problem type with 50 facilities and 50
customers. Finally, CapA, CapB and CapC problems provide a
very large problem type with 100 facilities and 1000 customers.

4 Moth flame optimization (MFO) algorithms

In this section, the basic MFO algorithm, binary MFO algorithm
and the proposed binEMFO-DB algorithm were presented with
details.

4.1 Basic MFO algorithm

The MFO [56] algorithm which is proposed by Mirjalili is
inspired by the nocturnal flight strategy of moths. Moths have a
flying mechanism which uses the moon light with a stable angle.
The mechanism that they use for navigation is called as
transverse orientation. This strategy provides an effective and
comfort travelling in a long straight distance. On the other hand,
the moths are affected from artificial lights and try to act similar
with having an angle with this artificial light.

The flying of the moths by keeping a constant angle between
them and the light causes a spiral movement. Figure 1 shows
the spiral flying of the moths around the light. It can be
observed that the transverse orientation strategy is effective
only for the far lights like moonlight [56]-[58],[87],[88].

According to the Figure 1 it can be seen that the moths
eventually close towards the light source. The MFO algorithm
was mathematically developed by modeling the behavior of
moths with the light source. Like other metaheuristic

algorithms, the MFO is also an iterative and population-based
algorithm. The algorithm basically consists of moths and
flames.

Figure 1. Spiral flying of moths around the light

While each moth in the population represents a possible
solution, each variable that constitutes the position of the moth
represents one dimension of the problem. As mentioned before
the MFO is population based. Let’s assume that 𝑁 is the
population size and 𝐷 is the dimension of the problem then the
population of the moths can be represented with a matrix as
follow:

𝑀 = [

𝑚11 ⋯ 𝑚1𝐷

⋮ ⋱ ⋮
𝑚𝑁1 ⋯ 𝑚𝑁𝐷

] (3)

Where 𝑀 is the population of the moths there is an array of the
fitness values that related with the positions. The array of the
fitness values (𝑂𝑀) can be represented as follow:

𝑂𝑀 = [

𝑂𝑀1

𝑂𝑀2

⋮
𝑂𝑀𝑁

] (4)

The moths in population are required an updating process to
improve their position. In updating process each moth needs a
reference flame that is unique. With the location update of the
moths by feeding from different flames, it is aimed to avoid the
local optima and to make an effective search at the global level.
The position of the flames has the same size as the moths and is
represented similarly as follow:

𝐹 = [
𝑓11 ⋯ 𝑓1𝐷

⋮ ⋱ ⋮
𝑓𝑁1 ⋯ 𝑓𝑁𝐷

] (5)

There is also an array of fitness values for these flames
represented as follow:

𝑂𝐹 = [

𝑂𝐹1

𝑂𝐹2

⋮
𝑂𝐹𝑁

] (6)

It should not be forgotten that moths and flames are the same
in terms of presentation and structure. The difference between
them is the way they are treated within the population. The

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

741

moths update their positions for each iteration, while the
flames are array of the best positions ever found. On the other
hand, moths are assisted by a flame as a reference point during
the position update process [56]. The mathematical model of
the position update that inspired by Figure 1 is given in Eq. (7).

𝑀𝑖 = 𝐷𝑖 ∗ 𝑒𝑏𝑡 ∗ cos(2𝜋𝑡) + 𝐹𝑗 (7)

𝐷𝑖 = |𝐹𝑗 − 𝑀𝑖| (8)

Where 𝑀𝑖 = (𝑚𝑖1, 𝑚𝑖2, … 𝑚𝑖𝐷) and 𝐹𝑗 = (𝑓𝑖1, 𝑓𝑖2, … 𝑓𝑖𝐷) are the

positions of the 𝑖𝑡ℎ moth and 𝑗𝑡ℎ flame respectively, 𝐷𝑖 is the
distance between 𝑖𝑡ℎ moth and related 𝑗𝑡ℎ flame that calculated
by Eq. (8), 𝑡 is a number generated randomly in [-1, 1] and
generated by Eq. (9) and 𝑏 is a constant value to determine the
form of the logarithmic spiral.

𝑡 = (𝑎 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1

𝑎 = −1 + 𝑘 ∗ (−
1

𝐾
)

(9)

where 𝑘 is the current iteration number, and 𝐾 is the maximum
iteration number.

To have a better position updating process, the number of the
flames is decreased for each iteration by using Eq. (10) as
follow:

𝑓𝑙𝑎𝑚𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑜𝑢𝑛𝑑 (𝑁 − 𝑘 ∗
𝑁 − 𝑘

𝐾
) (10)

where 𝑘 is the current iteration number, 𝐾 is the maximum
iteration number and 𝑁 is the maximum flame number that is
equal to population size at the beginning of the algorithm.

The MFO algorithm has a similar processing mechanism as
other metaheuristic algorithms. The parameters of the
algorithm must be set in first step. Then a random population
is generated within the boundary of the solution space. For each
moth (position) in population, fitness values are calculated and
the flames are assigned. The main loop of algorithm is started.

1. Set parameters of the algorithm
2. Generate first population randomly within solution space
3. while termination criterion is not met do
4. Update flame_number using Eq. (10)
5. Calculate fitness values of the each moth in population
6. if first iteration then
7. Sort the population according to the fitness values from

best to worst
8. Assign the flames with the whole population
9. else
10. Merge the population and flames
11. Sort the merged solutions from best to worst
12. Select flame_number best solution and assign to flames
13. end if
14. foreach moth in Population with i ≤ N do
15. Generate t value using Eq. (9)
16. if i < flame_number then
17. Update the position of the ith moth with ith flame using

Eq. (7)
18. else
19. Update the position of the ith moth wit flame_numberth

flame using Eq. (7)
20. end if
21. end foreach
22. end while

23. return best solution as output

Algorithm 1. The main steps of the MFO algorithm

In this loop, for each moth the position update procedure
works, the number of the flames is updated and best position is
saved for each iteration step. The loop continues until the
termination criterion is met [56], [57]. Algorithm 1 shows the
main steps of the MFO algorithm.

4.2 Binary MFO algorithm

The basic MFO algorithm is proposed to solve continues
optimization problems. However, in binary optimization
problems such as UFLP, a binary solution structure is needed to
calculate the objective function and to handle the problem. The
position update strategy of continuous algorithms is not
suitable for binary optimization problems. Therefore, using a
private transfer function to convert from continuous form to
binary form is an appropriate approach to solving the problem.
The main purpose of a transfer function is to convert each
dimension of a continuous solution into binary values (0 or 1).
Transfer functions are generally classified into two topics as S-
shaped and V-shaped according to the shape of the transfer
function [15], [89]. Table 2 shows four S-shaped and four V-
shaped transfer functions used in this study.

Table 2. Transfer functions: S-shaped and V-shaped.

S-shaped V-shaped

S1:
1

1 + 𝑒−2𝑥 V1: |erf (
√𝜋

2
𝑥)|

S2:
1

1 + 𝑒−𝑥 V2: |tanh (𝑥)|

S3:
1

1 + 𝑒
−𝑥
2

 V3: |
𝑥

√1 + 𝑥2
|

S4:
1

1 + 𝑒
−𝑥
3

 V4: |
2

𝜋
arctan (

𝜋

2
𝑥)|

Since the MFO is a continuous algorithm, the transfers functions
are given in Table 2 were used to achieve a binary MFO. In
binary MFO, the moths generate and update their position in
continuous form. However, before calculate the value of the
objective function, a transfer function is used to generate the
binary solution and then objective function is called.

4.3 Proposed algorithm

In this paper, an enhanced binary MFO algorithm is proposed
with some modifications to improve the performance. In this
section, the modifications are presented in sub sections and the
proposed binary MFO algorithm explained with details.

4.3.1 Modifications

After converting the basic MFO algorithm to binary by using
transfer functions, three modifications were applied to improve
the performance of the algorithm.

4.3.1.1 Chaotic map-based initialization

In population-based optimization algorithms, first population
initialization is a very important and critical process. The
distribution of members in the population in the solution space
directly affects the convergence of the algorithm and the quality
of the solution it will obtain. Unless a specific method is
specified, optimization algorithms randomly generate the first
population. The success of the algorithm is compromised if the
initial population cannot be effectively distributed in the

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

742

solution space. In order to eliminate this problem, researchers
have suggested and used different approaches. Recently,
randomly generated parameters of optimization algorithms
have started to be obtained with chaotic maps. The initial
population can also be included in these parameters.
Researchers stated that the values generated by chaotic maps
have a more balanced distribution than randomly generated
values and use the search space more effectively [90] – [92]. In
this study, chaotic maps with different characteristics were
tested and the map suitable for the problem was selected and
used. Details on the selection of the chaotic map are given in
Section 5.1.

4.3.1.2 Flame selection strategy

In the MFO algorithm, each moth chooses a flame as a reference
and updates its position with Eq. (7). In the basic MFO
algorithm, how the flame (that used as a reference) is
determined is given in lines 16-20 in Algorithm 1. Initially, the
moths in the population match the flame of the same index in
the flame array, respectively. However, in each iteration step,
the number of flames decreases and the flames that moths will
reference are limited. As the iteration progresses, since the
number of flames is less than the number of moths, all the
moths with an index number greater than the number of flames
refer to the last flame in the flame array. This situation causes
the moths in the population to tend to a specific position. To
avoid this situation, a new flame selection strategy has been
proposed. In this proposed strategy, moths with an index
greater than the number of flames is ensured to refer to a
randomly selected flame from the flame array instead of the
flame in the last index. With this change, it is aimed to add
diversity to the moths during the position update process.
Flame selection of the basic MFO algorithm and the proposed
strategy are shown in Figure 2(a) and Figure 2(b), respectively.

Figure 2. Flame selection. (a): Basic MFO. (b): Proposed
strategy.

4.3.1.3 Desert bush

Desert bush, known as the resurrection plant, is a plant species
famous for its longevity in arid desert environments. Adapted
to the desert environment, desert bush can survive for years
without water, in which case it dries up until it retains only 3%
of its mass. When living conditions get too harsh, the plant's
survival mechanism allows it to gradually dry out, turning its
leaves brown and curling. It gives the plant a ball appearance
and all its metabolic functions are minimized. When the
drought situation increases, its roots are freed from the land

and become a free drum plant drifting on dry ground under the
influence of the blowing winds. No matter how dry or damaged
it is, thanks to the special biological structure of its leaves, the
plant retains its ability to absorb water and open itself even
years after it dies. The desert bush reproduces by spores; it
does not contain seeds or flowers in its structure. The plant,
which drifts freely in an arid environment, opens its twisted
branches when exposed to a humid environment, allowing the
spores to spill, so that the spilled spores are revived in a humid
environment [93], [94]. Figure (3) shows the life cycle of a
desert bush.

As can be seen from Figure (3), a desert bush that encapsulates
itself in bad conditions, resurrects when it finds a suitable
environment. This feature of the desert bush has been
mathematically modeled and applied to the proposed
algorithm as a new strategy. In the proposed strategy, it is
aimed to achieve resurgence if the positions of members in the
population do not improve by a specified number of iterations
and there is no improvement in the global best position. In the
modeling, the global best position is selected as the reference
point (desert bush), and members (spores) in the population
are repositioned according to this point. Algorithm 2 shows the
position update of a member according to the modelled desert
bush strategy.

Figure 3. Life cycle of a desert bush.

function [newSol] = DesertBush(gBest, moth, lb, ub)
 sr = 0.02;
 newSol = gBest;
 for i=1:size(gBest,2) //size(gBest,2) = dimension
 if rand < 0.5 //Choose if current dimension will change
or not
 // To decide the direction of the step
 if rand<0.5 //A negative step
 lb_i = lb;
 ub_i = gBest(1,i);
 sSize = -(ub_i - lb_i)*sr;
 else //A positive step
 ub_i = ub;
 lb_i = gBest(1,i);
 sSize = (ub_i - lb_i)*sr;
 end
 xNew = gBest(1,i) + sSize; //Add negative or positive
step size
 newSol(1,i) = xNew;
 else
 newSol(1,i) = moth(1,i);
 end
 end
end

Algorithm 2. The code of the modelled desert bush strategy

According to Algorithm 2, the member's position is first
synchronized to the global best position. A loop is then started
to determine the value of each dimension. For the current
dimension, firstly, it is determined whether there will be a

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

743

change or not with a selection. If there will be a change, a
selection is made again about which direction it will be.
According to the selection made, the step size is determined and
the position change of the dimension is performed. Here, sr is a
constant variable that limits the step size.

4.3.2 The proposed binEMFO-DB algorithm

The MFO [54] that is proposed by Mirjalili is a continuous
algorithm. In this study, the MFO algorithm was applied to solve
the UFL problem. However, since UFLP is a binary problem, it is
not possible to directly apply the basic MFO algorithm. For this
reason, firstly, the MFO algorithm is binarized by using transfer
functions. Then, some modifications were used to increase the
success of the binary MFO algorithm on UFLP. The pseudo code
of the proposed algorithm, named binEMFO-DB, is given in
Algorithm 3.

The first step of the proposed algorithm is parameter settings.
The parameters which are generated in parameter analyses
process are set and algorithm starts. Then, first population is
generated in boundaries by using chaotic map, instead of a
random population and for entire population objective function
is called and fitness values are generated. The main loop is

1. Set parameters of the algorithm
2. Generate first population within solution space by using

chaotic map
3. Generate binary position by using transfer function
4. Calculate fitness values of the members in population
5. while termination criterion is not met do
6. Update flame_number using Eq. (10)
7. Calculate fitness values of the each moth in population
8. if first iteration then
9. Sort the population according to the fitness values from

best to worst
10. Assign the flames with the whole population
11. else
12. Merge the population and flames
13. Sort the merged solutions from best to worst
14. Select flame_number best solution and assign to flames
15. end if
16. foreach moth in Population with i ≤ N do
17. Generate t value using Eq. (9)
18. if i < flame_number then
19. Update the position of the ith moth with ith flame

using Eq. (7)
20. else
21. Choose a random flame as reference flame
22. Update the position of the ith moth with random

selected flame using Eq. (7)
23. end if
24. Generate binary position of the moth by using transfer

function
25. Calculate fitness value of the moth
26. end foreach
27. Update global best position
28. //Control Desert Bush strategy
29. if global best has better position
30. Reset DBCounter //DBCounter = 0
31. else
32. Increase DBCounter //DBCounter ++
33. if DBCounter >= dbMax //dbMax: Maximum fail number
34. Apply Desert Bush strategy given with Algorithm 2
35. Reset DBCounter
36. end if
37. end if
38. end while

39. return best solution as output

Algorithm 3. The pseudo code of the binEMFO-DB algorithm

started, in which members update their positions. In this loop,
different from the basic MFO, a new selection strategy was
applied in flame selection. In this selection strategy given
between lines 18-23 of Algorithm 3, it is aimed to prevent the
population from being directed to a specific flame and to
provide diversity as a solution to the algorithm. In addition,
desert bush strategy has been applied to the basic MFO
algorithm. With this strategy, it is aimed to give the population
resurgence when it cannot generate better positions. When the
termination criterion is met and the loop is completed, the best
position found is given as the solution and the algorithm is
finished.

5 Experimental study

In this section, the parameter analyses process and the
experimental results obtained were presented comparatively.

5.1 Parameter analyses

Here, the analysis made on the selection of the transfer function
to use MFO as a binary algorithm and the analysis made to
obtain the optimum values of the specific parameters of the
proposed algorithm were presented.

5.1.1 Transfer function analyses for binary MFO

In order to apply the MFO algorithm developed for the solution
of continuous problems to a binary problem, continuous values
need to be converted into binary. Transfer functions are
generally used for this process. It was desired to obtain the best
results by applying eight different transfer functions given in
Table 2. The algorithm was applied with 30 runs for each
transfer function. As a success criterion, the hit value obtained
from the total runs was used. Hit is the case of finding the
optimum value of the problem studied.

According to the results in Table 3, the binary MFO algorithm
achieved a total of 300 hits with the S3 transfer function as a
result of 450 runs (problem number × run number). Therefore,
the basic binary MFO algorithm was run with the S3 transfer
function and the obtained results were used in comparisons.

Table 3. Transfer functions analyses for binary MFO by using
hit values.

P/TF S1 S2 S3 S4 V1 V2 V3 V4

Cap71 30 30 30 30 26 26 30 30

Cap72 30 30 30 30 20 19 30 30

Cap73 30 30 30 30 15 12 30 30

Cap74 30 30 30 30 21 18 27 30

Cap101 29 29 30 30 6 8 17 27

Cap102 29 30 30 30 9 10 14 17

Cap103 27 25 29 27 11 9 15 22

Cap104 29 30 30 30 13 19 20 23

Cap131 5 13 16 7 2 1 0 0

Cap132 11 14 10 2 2 0 0 0

Cap133 6 6 12 3 1 2 1 0

Cap134 19 23 23 16 5 3 2 0

CapA 1 2 0 0 0 0 0 0

CapB 0 0 0 0 0 0 0 0

CapC 0 0 0 0 0 0 0 0

Total Hit 276 292 300 265 131 127 186 209

5.1.2 Parameter analyses of the proposed method

As mentioned in previous sections, the proposed method has
some modifications. Based on these modifications some specific

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

744

parameters should be determined. The selection of the transfer
function, the determination of the chaotic map from which the
initial population will be generated, and the maximum number
of fail for the applying of the desert bush strategy are the special
parameters that the algorithm needs to be optimized. However,
population size is also considered as a general parameter that
needs to be optimized. Table 4 shows the information about the
parameters that should be optimized.

Table 4. Specific parameters of the proposed algorithm.

Description Sign Values
Transfer function tf [1 2 3 4 5 6 7 8]

Chaotic map cm [1 2 3 4 5 6 7 8]
Maximum fail

number for
desert bush

strategy

dbMax [5 10 15 20 25 30 35 40]

Population size N [30 40 50 60 70 80 90 100]

The values of the transfer function parameter consist of the
options given in Table 2. The list of the chaotic maps was given
below in Table 5. The potential values selected for the
maximum number of fail parameter were determined as 5 10
15 20 25 under normal conditions. However, due to the use of
Taguchi method [95] in parameter analysis, 30 35 40 values
have been added to ensure that the level of this parameter is the
same as the other two parameters. In most of the studies in the
literature, values between 40 and 100 are used as the
population number. Therefore, this range was used in this
study as well. However, as stated earlier, the value of 30 was
added for the population number, since the levels of the
parameters must be the same.

Table 5. Chaotic maps.

 # Name
1 Chebyshev map
2 Circle map
3 Gauss/Mouse map
4 Iterative map
5 Logistic map
6 Piecewise map
7 Sine map
8 Singer map

As mentioned above, the number of possible values of tf, cm,
dbMax and N parameters that need to be optimized is
determined as 8, 8, 5 and 7, respectively. The number of all
possible combinations for these parameters is 8×8×5×7 = 2240.
Applying each combination with 30 runs for 15 problems
requires a very long process time. Therefore, a more effective
process was followed by using the Taguchi method, which is
frequently preferred in parameter analysis and gives successful
results [96]. Taguchi's orthogonal array design approach was
used in this study. In this approach, the level of each parameter
must be equal. That's why; the dbMax and N parameters have
been expanded and made into 8 levels as shown in Table 4. In
this case, the total number of combinations is 8×8×8×8 = 4096.
With the Taguchi orthogonal array design approach applied in
this study, 512 combinations were obtained and tested. Each of
these combinations was applied with 30 runs on the 15
problems given in Table 1. In this case, there are 450 (15x30)
results for each combination. As the success criterion, the hit
value obtained from the total results of the combinations was
used. According to the experimental results obtained in the
parameter analysis, it was seen that the parameter combination
tf=S2, cm=Piecewise, dbMax=5 and N=80 achieved the most

successful result with 402 total hits. Therefore, the results
obtained with this parameter combination were used for the
proposed algorithm.

5.1.3 The effect of modifications on the success of the
proposed algorithm

In order to analyze the effect of each modification on the
success of the proposed algorithm, eight different experimental
algorithms were run according to the combinations given in
Table 6. The red cross below the modification indicates that the
modification was not used in that experimental study, and the
green checkmark indicates that it was used. For example, In
Exp3, only "random flame selection" modification was applied,
"chaotic map" and "desert bush" modifications were not
applied. In Exp8, by applying all 3 modifications, the algorithm
proposed in this study is obtained.

Eight different experimental algorithms given in Table 6 were
run on CAP problems with 30 repetitions for N=80 and 80,000
maximum fitness assessment numbers (maxFEs). The average
cost and standard deviation values of experimental algorithms
for each problem are given in Table 7. In addition, the success
rank of the algorithms for each problem and the average
success rank achieved over the problem set is also presented in
the same table.

Table 6. 8 different experimental algorithms obtained with 3
modifications.

Chaotic map
Random flame

selection
Desert
bush

 Exp1

 Exp2

 Exp3

 Exp4

 Exp5

 Exp6

 Exp7

 Exp8

In Table 7, it is seen that all algorithms can reach optimal
solutions for all runs on Cap71-74 and Cap102, Cap104
problems. This can be explained by the fact that these problems
are relatively low-dimensional and easy problems. On the
Cap101 problem, all algorithms except Exp2 and Exp5 obtain
optimal solutions, while algorithms other than Exp1, Exp2 and
Exp6 reach optimal solutions on the Cap103 problem. The
performances of the algorithms for Cap131-134, which are
defined as large type problems, have begun to diverge from
each other. While only Exp3 algorithm reach optimal solutions
in all runs in Cap131, Exp7 and Exp8 algorithms achieve equal
success and share the second place. In Cap132 problem, while
Exp3, Exp4, Exp6, Exp7 and Exp8 algorithms reach optimal
solutions in all runs; Exp2, Exp5 and Exp1 algorithms ranked as
2nd, 3rd and 4th. places respectively. In Cap133 problem, the
Exp8 algorithm takes the first place by obtaining the best mean,
while Exp6 and Exp7 share the second place with an equal
performance.

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

745

Table 7. Mean, standard deviation, and rank values of the experimental algorithms on the CAP problems.

 Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7
Exp8 (proposed

algorithm)
Problem

Cap71

mean 932615.75 932615.75 932615.75 932615.75 932615.75 932615.75 932615.75 932615.75

std. 0 0 0 0 0 0 0 0

rank 1 1 1 1 1 1 1 1

Cap72

mean 977799.40 977799.40 977799.40 977799.40 977799.40 977799.40 977799.40 977799.40
std. 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1

Cap73

mean 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45 1010641.45
std. 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1

Cap74

mean 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98 1034976.98
std. 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1

Cap101

mean 796648.44 796705.79 796648.44 796648.44 796677.11 796648.44 796648.44 796648.44
std. 0 218.26 0 0 157.07 0 0 0
rank 1 3 1 1 2 1 1 1

Cap102

mean 854704.20 854704.20 854704.20 854704.20 854704.20 854704.20 854704.20 854704.20
std. 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1

Cap103

mean 893804.72 893884.02 893782.11 893782.11 893782.113 893823.62 893782.113 893782.113
std. 68.97 310.94 0 0 0 189.18 0 0
rank 2 4 1 1 1 3 1 1

Cap104

mean 928941.75 928941.75 928941.75 928941.75 928941.75 928941.75 928941.75 928941.75
std. 0 0 0 0 0 0 0 0
rank 1 1 1 1 1 1 1 1

Cap131

mean 793692.97 793582.94 793439.56 793496.92 793760.26 793525.59 793468.24 793468.24
std. 394.46 326.09 0 218.26 401.97 262.50 157.07 157.07
rank 6 5 1 3 7 4 2 2

Cap132

mean 851560.95 851501.15 851495.33 851495.33 851517.20 851495.33 851495.33 851495.33
std. 200.24 31.91 0 0 119.82 0 0 0
rank 4 2 1 1 3 1 1 1

Cap133

mean 893348.90 893249.16 893200.11 893157.71 893322.25 893147.25 893147.25 893134.19
std. 450.58 421.56 266.63 251.67 440.48 215.24 215.24 222.59
rank 7 5 4 3 6 2 2 1

Cap134

mean 929129.92 928941.75 928941.75 928941.75 929318.10 928941.75 928941.75 928941.75
std. 1030.67 0 0 0 1432.24 0 0 0
rank 2 1 1 1 3 1 1 1

CapA

mean 17869403.08 17156454.48 17418566.26 17156454.48 17928883.17 17166266.93 17475008.71 17156454.48
std. 384572.22 0 244881.89 0 386185.06 49391.95 326438.49 0
rank 5 1 3 1 6 2 4 1

CapB

mean 13327830.12 13034533.46 13244952.36 13026598.76 13361023.17 13045987.73 13261062.51 13024905.67
std. 160836.07 62284.36 162338.62 49753.05 165772.61 68600.81 129384.60 39614.03
rank 7 3 5 2 8 4 6 1

CapC

mean 11802434.05 11574746.53 11722427.13 11528700.38 11814749.39 11584708.71 11708865.54 11536635.1
std. 163366.47 56766.08 150635.73 27875.15 141498.66 82561.52 102017.29 32729.71
rank 7 3 6 1 8 4 5 2

Mean
rank

3.133 2.200 1.933 1.333 3.333 1.867 1.933 1.133

In Cap134 problem, while Exp2, Exp3, Exp4, Exp6, Exp7 and
Exp8 algorithms reach optimal solutions in all runs; Exp1 and
Exp5 algorithms rank as 2nd and 3rd places respectively. In the
CapA problem, while Exp2, Exp4 and Exp8 takes the first place
by reaching the optimal solution in all runs; Exp6, Exp3, Exp7,
Exp1 and Exp5 achieve 2nd, 3rd, 4th, 5th and 6th places,
respectively. In the CapB problem, the Exp8 algorithm takes the
first place by achieving the best result, while the Exp4
algorithm performs close to the Exp8 and takes the second
place. Finally, in the CapC problem, the Exp4 algorithm takes
the first place by obtaining the best result, while the Exp8
algorithm takes the second place with a small difference.
When a general evaluation is made, it is observed that the Exp8
algorithm ranked first in 13 of the 15 problems and achieve the
best ranking with a mean success rank of 1.133. While the Exp4
algorithm is the second most successful algorithm with a mean
success rank of 1.333; Exp6 takes the 3rd place with a mean
success rank of 1.867.

The common point of the 3 algorithms, which are the most
successful in order of mean success rank, is the "desert bush"
modification. From this point of view, it can be said that the

modification that makes the most important contribution to the
proposed algorithm is "desert bush". Additionally, Exp5
algorithm with only "chaotic map" modification had a worse
result in terms of mean success rank than Exp1 algorithm
without any modification. This shows that applying "chaotic
map" modification alone does not contribute to the success of
the algorithm. The fact that the Exp8 algorithm has a better
mean success rank than the Exp4 algorithm shows that the
"chaotic map" modification contributes to the algorithm when
used together with the "random flame selection" and "desert
bush" modifications.

As a result, the values presented in Table 7 clearly show the
contribution of all 3 modifications to the proposed algorithm.

5.2 Experimental environment and results

15 different UFL problems taken from OR-Library [80] were
used to evaluate the performance of the proposed algorithm. All
problems were run for 30 repeats and the maxFEs is set as
80,000 for each run to be a fair comparison. Experimental
studies were conducted using Matlab 2016 version on
Windows 10 64-bit operating system.

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

746

The performance comparison was made over the results of
studies in the literature that used the same problem set. In the
articles compared, it is seen that all or some of the average,
standard deviation, best, worst, hit or gap values of the
obtained results were used as performance criteria. Here, hit is
the number of times the algorithm reaches the optimum
solution and gap is the ratio of deviation of the best solution
found by the algorithm from the optimum solution. The
mathematical expression of the gap is given in Eq. (11).

𝑔𝑎𝑝 =
𝑚𝑒𝑎𝑛 − 𝑜𝑝𝑡

𝑜𝑝𝑡
 𝑥 100 (11)

Here, mean is the average value of all runs and opt is the value
of optimum solution for the related problem. Which of these
performance criteria are given in the compared study, the same
metric values are given for the proposed approach.

5.2.1 Comparison with other algorithms

In Table 8, the proposed algorithm is compared over the best,
worst, average and gap values of the SS-EC [47] algorithm.
When the results are examined, it is seen that while both
algorithms reach optimal results in Cap71, Cap72, Cap73,
Cap74, Cap104 and Cap134 problems, the proposed algorithm
achieves superior results for other problems. When all the
results are compared, the proposed algorithm in 12 of the 15
problems reached the optimal solution in all 30 runs and
outperformed the SS-EC method.

In Table 9, the proposed algorithm is compared with the PSO
and ABC variants [30] on standard deviation and gap values.
Algorithms were ranked according to their performance for
each problem. Average achievements are given at the bottom of
the table. In addition, W/D/L results of the algorithms are also
given. Here, win means that the proposed algorithm is more
successful, lost means that the compared algorithm is more
successful, and draw means that both algorithms perform
equally. The Mean-Rank below the table shows the average
success rank of each algorithm on the problem set. On the other
hand, Final-Rank gives the success order of the algorithms
according to the Mean-Rank value. The proposed algorithm
achieved the most successful results on the entire problem set

and took first place in both the Mean-Rank and Final-Rank
rankings. When the obtained results are examined, it is seen
that PSO variants suffer from trapping into local-minima even
in small size problems. ABC variants, on the other hand, are
successful in small and medium-sized problems, while they are
stuck in the local minimum for large and huge problems. The
proposed binEMFO-DB algorithm showed equal or better
performance in all problems from the compared algorithms and
ranked first in the average ranking.

In Table 10, the proposed algorithm is compared with DE and
genetic algorithm (GA) variants [45],[51] on the gap and hit
values. When the results are examined, DisDE/rand algorithm
has slightly better than the binEMFO-DB algorithm by achieving
404 total hits whereas the proposed algorithm has 402 hits. On
the other hand, when the gap results are examined, the
proposed binEMFO-DB method reaches optimal solutions in 12
of the 15 problems in all runs, while the DisDE/rand method
reaches optimal solutions in all runs for only 7 problems.

In Table 11, the proposed binEMFO-DB algorithm is compared
with the recently proposed binAAA and SimLogicTSA
algorithms [45],[51] over gap and hit values. All three
algorithms showed very successful performances except for
capB and capC problems. While SimLogicTSA algorithm
achieved 0 hits in capB and capC problems, binEMFO-DB
achieved 12-2 hits and binAAA achieved 15-1 hits respectively.
Looking at the gap metric values, binAAA took the first place
with the lowest gap value in the CapB problem, while
SimLogicTSA took the second place. In the CapC problem, on the
other hand, the proposed approach took the first place with the
lowest gap value.

In Table 12, the best, worst, average and gap values obtained by
the proposed algorithm and LS approach [97] for each problem
are given. When the results are examined, it is seen that the
proposed approach and the LS algorithm perform similarly in
small-size problems, and that the proposed approach is more
successful in medium and large-size problems. Finally, while
the proposed approach in the capA problem is more successful,
the LS algorithm achieved better results in capB and capC.

Table 8. A Comparison of binEMFO-DB with SS-EC.

 SS-EC binEMFO-DB

 Best Worst Avg. Gap Best Worst Avg. Gap

Cap71 932,615.75 932,615.75 932,615.75 0 932,615.75 932,615.75 932,615.75 0

Cap72 977,799.40 977,799.40 977,799.40 0 977,799.40 977,799.40 977,799.40 0

Cap73 1,010,641.45 1,010,641.45 1,010,641.45 0 1,010,641.45 1,010,641.45 1,010,641.45 0

Cap74 1,034,976.98 1,034,976.98 1,034,976.98 0 1,034,976.97 1,034,976.97 1,034,976.97 0

Cap101 796,648.44 799,593.49 796,746.61 0.012 796,648.43 796,648.43 796,648.43 0

Cap102 854,704.20 855,971.75 854,788.70 0.009 854,704.20 854,704.20 854,704.20 0

Cap103 893,782.11 894,801.16 893,985.92 0.022 893,782.11 893,782.11 893,782.11 0

Cap104 928,941.75 928,941.75 928,941.75 0 928,941.75 928,941.75 928,941.75 0

Cap131 793,439.56 795,883.24 793,787.70 0.043 793,439.56 793,439.56 793,439.56 0

Cap132 851,495.33 851,670.13 851,524.46 0.003 851,495.32 851,495.32 851,495.32 0

Cap133 893,076.71 899,172.51 893,434.25 0.04 893,076.71 894,095.76 893,134.19 0.0064

Cap134 928,941.75 928,941.75 928,941.75 0 928,941.75 928,941.75 928,941.75 0

CapA 17,156,454.48 18,041,168.85 17,215,435.44 0.343 17,156,454.47 17,156,454.47 17,156,454.47 0

CapB 12,979,071.58 13,511,709.68 13,110,151.33 1.01 12,979,071.58 13,081,049.25 13,024,905.67 0.3531

CapC 11,505,594.33 11,867,848.70 11,596,027.44 0.786 11,505,594.33 11,613,592.92 11,536,635.10 0.2698

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

747

Table 9. A Comparison of binEMFO-DB with PSO and ABC variants.

Problems
 Algorithms

 BPSO IBPSO DisABC binABC ABCbin binEMFO-DB

 Std. Dev. 0 587.49 0 0 0 0

Cap71 GAP(%) 0 0.037 0 0 0 0

 Rank 1 2 1 1 1 1

 Std. Dev. 0 1,844.64 0 0 0 0

Cap72 GAP(%) 0 0.275 0 0 0 0

 Rank 1 2 1 1 1 1

 Std.Dev. 634.62 1,513.78 0 0 0 0
Cap73 GAP(%) 0.024 0.198 0 0 0 0

 Rank 2 3 1 1 1 1

 Std.Dev. 500.27 4,426.67 0 0 0 0

Cap74 GAP(%) 0.009 0.403 0 0 0 0

 Rank 2 3 1 1 1 1

 Std.Dev. 566.44 3,799.52 0 0 0 0

Cap101 GAP(%) 0.046 0.597 0 0 0 0

 Rank 2 3 1 1 1 1

 Std.Dev. 386.76 3,249.38 0 0 0 0
Cap102 GAP(%) 0.015 0.732 0 0 0 0

 Rank 2 3 1 1 1 1
 Std.Dev. 485.26 4,978.98 0 0 85.67 0

Cap103 GAP(%) 0.042 0.641 0 0 0.005 0
 Rank 3 4 1 1 2 1
 Std.Dev. 1,951.81 10,845.26 0 0 0 0

Cap104 GAP(%) 0.081 0.996 0 0 0 0
 Rank 2 3 1 1 1 1
 Std.Dev. 1,207.63 4,244.29 233,764.00 0 1,065.73 0

Cap131 GAP(%) 0.132 2.424 0.62 0 0.197 0
 Rank 2 5 4 1 3 1

 Std.Dev. 1,196.19 11,569.02 813.37 0 213.28 0
Cap132 GAP(%) 0.091 3.601 0.095 0 0.02 0

 Rank 3 5 4 1 2 1
 Std.Dev. 821.28 14,905.27 359.03 200.24 561.34 222.59

Cap133 GAP(%) 0.112 5.263 0.031 0.122 0.075 0.0064
 Rank 4 6 2 5 3 1

 Std.Dev. 2,285.42 15,788.86 0 0 0 0
Cap134 GAP(%) 0.135 7.634 0 0 0 0

 Rank 2 3 1 1 1 1
 Std.Dev. 374,302.81 3,357,138.19 74,782.61 236,833.50 268,685.20 0

CapA GAP(%) 2.179 137.886 0.152 2.509 3.172 0
 Rank 3 6 2 4 5 1

 Std.Dev. 176,206.07 1,406,575.70 109,738.50 91,430.13 88,452.80 41,926.41
CapB GAP(%) 1.949 55.27 3.303 2.508 2.815 0.3531

 Rank 2 6 5 3 4 1
 Std.Dev. 92,977.85 1,245,252.20 95,778.78 82,312.70 78,162.20 32,729.70

CapC GAP(%) 1.487 45.556 4.697 2.58 2.037 0.2698
 Rank 2 6 5 4 3 1

Mean-Rank 2.2 4 2.06 1.8 2 1
Final-Rank 5 6 4 2 3 1

W/D/L 13/2/0 15/0/0 6/9/0 4/11/0 7/8/0

Table 10. A Comparison of binEMFO-DB with DE and GA variants.

Problem DisDE/rand binDE GA-SP GA-TP GA-UP GA-EC binEMFO-DB

 Gap Hit Gap Hit Gap Hit Gap Hit Gap Hit Gap Hit Gap Hit

Cap71 0 30 0 30 0 30 0 30 0 30 0 30 0 30

Cap72 0 30 0 30 0 30 0 30 0 30 0 30 0 30
Cap73 0 30 0 30 0.0666 19 0.0484 22 0.0424 23 0 30 0 30
Cap74 0 30 0 30 0 30 0 30 0 30 0 30 0 30

Cap101 0.0036 29 0 30 0.0684 11 0.0648 12 0.0576 14 0.0072 28 0 30
Cap102 0.0049 29 0 30 0 30 0 30 0 30 0 30 0 30
Cap103 0.0055 27 0 30 0.0637 6 0.0612 10 0.0722 9 0.0067 22 0 30
Cap104 0 30 0 30 0 30 0 30 0 30 0 30 0 30
Cap131 0.0036 29 0.0036 29 0.0681 16 0.0723 14 0.0536 15 0.0608 15 0 30
Cap132 0 30 0.005 29 0 30 0 30 0.0026 29 0.0006 29 0 30
Cap133 0.0138 25 0.0138 24 0.0913 10 0.0744 12 0.082 9 0.0406 15 0.0064 28
Cap134 0 30 0 30 0 30 0 30 0 30 0 30 0 30

CapA 0.037 29 1.3 8 0.0461 24 0.2835 24 0.0604 24 0 30 0 30
CapB 0.189 18 1.52 0 0.5839 9 0.6507 11 0.9905 3 0.4092 11 0.3531 12
CapC 0.0909 8 1.55 0 0.7049 2 0.6276 0 0.6345 0 0.1563 5 0.2698 2

Total Hit 404 360 307 315 306 365 402

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

748

Table 11. A comparison of binEMFO-DB with SimLogicTSA and binAAA.

 SimLogicTSA binAAA binEMFO-DB

 Gap Hit Gap Hit Gap Hit
Cap71 0 30 0 30 0 30

Cap72 0 30 0 30 0 30
Cap73 0 30 0 30 0 30
Cap74 0 30 0 30 0 30

Cap101 0 30 0 30 0 30
Cap102 0 30 0 30 0 30
Cap103 0 30 0 30 0 30
Cap104 0 30 0 30 0 30
Cap131 0 30 0 30 0 30
Cap132 0 30 0 30 0 30
Cap133 0 30 0 30 0.0064 28
Cap134 0 30 0 30 0 30

CapA 0 30 0 30 0 30
CapB 0.3176 0 0.2478 15 0.3531 12
CapC 0.412 0 0.2946 1 0.2698 2

Total Hit 390 406 402

Table 12. A comparison of binEMFO-DB and LS algorithm.

 binEMFO-DB LS

 Best Worst Avg. Gap Best Worst Avg. Gap

Cap71 932,615.75 932,615.75 932,615.75 0 932,615.75 932,615.75 932,615.75 0

Cap72 977,799.40 977,799.40 977,799.40 0 977,799.40 977,799.40 977,799.40 0
Cap73 1,010,641.45 1,010,641.45 1,010,641.45 0 1,010,641.45 1,010,641.45 1,010,641.45 0
Cap74 1,034,976.97 1,034,976.97 1,034,976.97 0 1,034,976.97 1,034,976.98 1,034,976.98 0

Cap101 796,648.43 796,648.43 796,648.43 0 796,648.43 799,144.69 796,733.62 0.01
Cap102 854,704.20 854,704.20 854,704.20 0 854,704.20 855,971.75 854,716.88 0.001
Cap103 893,782.11 893,782.11 893,782.11 0 893,782.11 894,801.16 893,831.92 0.005
Cap104 928,941.75 928,941.75 928,941.75 0 928,941.75 934,586.98 929,111.11 0.018
Cap131 793,439.56 793,439.56 793,439.56 0 793,439.56 795,883.24 793,567.23 0.016
Cap132 851,495.32 851,495.32 851,495.32 0 851,495.32 851,495.33 851,495.33 0
Cap133 893,076.71 893,076.71 893,076.71 0.0064 893,076.71 893,782.11 893,182.03 0.011
Cap134 928,941.75 928,941.75 928,941.75 0 928,941.75 934,586.98 929,506.27 0.06

CapA 17,156,454.47 17,156,454.47 17,156,454.47 0 17,156,454.47 17,665,889.11 17,163,692.65 0.042
CapB 12,979,071.58 13,081,049.25 13,024,905.67 0.3531 12,979,071.58 13,215,550.80 13,014,256.16 0.271
CapC 11,505,594.32 11,613,592.92 11,536,635.10 0.2698 11,505,594.32 11,615,301.64 11,525,439.63 0.172

W/D/L 8/5/2

6 Conclusions

It is possible to apply the proposed algorithms to solve
continuous problems to binary problems with two different
options. If the structure of the algorithm is suitable, the
algorithm can be directly adapted to the problem in binary.
However, algorithms that cannot be used directly in binary,
such as the MFO algorithm we used in this study, can be
binarized by applying transfer functions. In this case, choosing
the right transfer function is an important point to consider.
However, one of the weak points of this approach is that the
solutions of the members in the population are kept as
continuous values and position updates are made over
continuous values. In this study, when the MFO algorithm is
converted into binary with only the transfer function and used
(Table 3), the best result achieved was to catch the 300 best out
of 450 cases. However, with the modifications we have applied,
the performance of the algorithm has increased significantly,
and it has moved to the position of catching the 402 best out of
450. This shows that the applied modifications were quite
successful. In this study, the MFO algorithm which is modelled
based on the nocturnal flight strategy of moths was binarized
and applied on UFLP. Since, the basic MFO is a continuous
algorithm, transfer function was used for binarize process. In
order to increase the performance of the binary MFO; some
modifications were used, such as generating the initial
population with a chaotic map, ensuring the diversity of flame
selection in the position update phase, and by using the desert
bush strategy providing the resurrection of the population that
could not progress. The proposed algorithm (binEMFO-DB)

applied on a problem set that consists of 15 problems with
different size types was used. The performance of the proposed
algorithm was compared with a set of algorithms which are
frequently used in literature by using gap, hit and mean values.
The experimental results show that the proposed algorithm is
generally successful on UFLP and has better scores when
compared with the performance of the other algorithms. On the
other hand, when the results of the proposed algorithm are
evaluated within itself, it is seen that it is quite successful in
small, medium and large sized problems, but it can be improved
in huge sized problems such as CapB and CapC.

For the future works, the proposed algorithm can be applied on
different binary optimization problems such as knapsack,
future selection, job scheduling, resource allocation in cloud
computing etc. On the other hand, different search strategies
can be applied to improve the performance of the proposed
algorithm for binary problems.

7 Author contribution statement

In this study, both Ahmet ÖZKIŞ and Murat KARAKOYUN
focused on forming the idea, conducting experimental studies,
evaluating the results, contributing to the literature review,
spelling, and checking the article's content.

8 Ethics committee approval and conflict of
interest statement

There is no need for an ethics committee approval in the
prepared article. There is no conflict of interest with any
person/institution in the prepared article.

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

749

9 References

[1] Babalik A, Cinar AC, Kiran MS. "A modification of tree-seed
algorithm using Deb’s rules for constrained optimization".
Applied Soft Computing, 63, 289-305, 2018.

[2] Yuan X, Nie H, Su A, Wang L, Yuan Y. "An improved binary
particle swarm optimization for unit commitment
problem". Expert Systems with Applications,
36(4), 8049-8055, 2009.

[3] Van Beers F, Lindström A, Okafor E,Wiering MA. "Deep
Neural Networks with Intersection over Union Loss for
Binary Image Segmentation". ICPRAM. Proceedings of the
8th International Conference on Pattern Recognition
Applications and Methods, Prague, Czech Republic,
19-21 February 2019.

[4] Banitalebi A, Aziz MIA, Aziz ZA. "A self-adaptive binary
differential evolution algorithm for large scale binary
optimization problems". Information Sciences,
367, 487-511, 2016.

[5] Ayaz HI, Ozturk ZK. "A mathematical model and a heuristic
approach for train seat scheduling to minimize dwell
time". Computers & Industrial Engineering, 160, 1-7, 2021.

[6] Aslan M, Gunduz M, Kiran MS. "JayaX: Jaya algorithm with
xor operator for binary optimization". Applied Soft
Computing, 82, 1-17, 2019.

[7] Baş E, Ülker E. "A binary social spider algorithm for
uncapacitated facility location problem". Expert Systems
with Applications, 161, 1-27, 2020.

[8] Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran
M. "A new binary salp swarm algorithm: development and
application for optimization tasks". Neural Computing and
Applications, 31(5), 1641-1663, 2019.

[9] Eberhart R, Kennedy J. "A new optimizer using particle
swarm theory". MHS'95. Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science, Nagoya, Japan, 04-06 October 1995.

[10] Mirjalili S, Mirjalili SM,Lewis A. "Grey Wolf Optimizer".
Advances in Engineering Software, 69, 46-61, 2014.

[11] Karaboga D, Akay B. "A comparative study of artificial bee
colony algorithm". Applied mathematics and computation,
214(1), 108-132, 2009.

[12] Uymaz SA, Tezel G, Yel E. "Artificial algae algorithm (AAA)
for nonlinear global optimization", Applied Soft
Computing, 31, 153-171, 2015.

[13] Kennedy J, Eberhart RC. "A discrete binary version of the
particle swarm algorithm". 1997 IEEE International
Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, Orlando, USA,
12-15 October 1997.

[14] Beheshti Z, Shamsuddin SM, Hasan S. "Memetic binary
particle swarm optimization for discrete optimization
problems". Information Sciences, 299, 58-84, 2015.

[15] Mirjalili S, Lewis A. "S-shaped versus V-shaped transfer
functions for binary Particle Swarm Optimization". Swarm
and Evolutionary Computation, 9, 1-14, 2013.

[16] Pampara G, Engelbrecht AP, Franken N. "Binary
Differential Evolution". 2006 IEEE International
Conference on Evolutionary Computation, Vancouver,
Canada, 16-21 July 2006.

[17] Lim SM, Sultan ABM, Sulaiman MN, Mustapha A, Leong KY.
"Crossover and mutation operators of genetic algorithms".
International Journal of Machine Learning and Computing,
7(1), 9-12, 2017.

[18] Braun H. "On solving travelling salesman problems by
genetic algorithms". International Conference on Parallel
Problem Solving from Nature, Dortmund, Germany,
 01-03 October 1990.

[19] Ozturk C, Hancer E, Karaboga D. "A novel binary artificial
bee colony algorithm based on genetic operators".
Information Sciences, 297, 154-170, 2015.

[20] Iwasaki Y, Kusne AG, Takeuchi I. "Comparison of
dissimilarity measures for cluster analysis of X-ray
diffraction data from combinatorial libraries".
NPJ Computational Materials, 3(1), 1-9, 2017.

[21] Chen Y, Xie W,Zou X. "A binary differential evolution
algorithm learning from explored solutions".
Neurocomputing, 149, 1038-1047, 2015.

[22] Nezamabadi-pour H. "A quantum-inspired gravitational
search algorithm for binary encoded optimization
problems". Engineering Applications of Artificial
Intelligence, 40, 62-75, 2015.

[23] Mojtaba Ahmadieh K, Mohammad T, Mahdi Aliyari S. "A
novel binary particle swarm optimization". 2007
Mediterranean Conference on Control & Automation,
Athens, Greece, 27-29 June 2007.

[24] Lin JC-W, Yang L, Fournier-Viger P, Hong T-P,Voznak M. "A
binary PSO approach to mine high-utility itemsets".
Soft Computing, 21(17), 5103-5121, 2017.

[25] Nezamabadi-pour H, Rostami-Shahrbabaki M, Maghfoori-
Farsangi M. "Binary particle swarm optimization:
challenges and new solutions". CSI Journal on Computer
Science and Engineering, 6(1), 21-32, 2008.

[26] Guner AR, Sevkli M. "A discrete particle swarm
optimization algorithm for uncapacitated facility location
problem". Journal of Artificial Evolution and Applications,
1, 1-9, 2008.

[27] Saha S, Kole A, Dey K. "A modified continuous particle
swarm optimization algorithm for uncapacitated facility
location problem". International Conference on Advances
in Information Technology and Mobile Communication,
Nagpur, India, 21-22 April 2011.

[28] Karaboga D. "An İdea Based on Honey Bee Swarm for
Numerical Optimization". Department of
Computer Engineering, Erciyes University, Kayseri,
Turkey, Technical Report-TR06, 2005.

[29] Kashan MH, Nahavandi N, Kashan AH. "DisABC: a new
artificial bee colony algorithm for binary optimization".
Applied Soft Computing, 12(1), 342-352, 2012.

[30] Kiran MS, Gündüz M. "XOR-based artificial bee colony
algorithm for binary optimization". Turkish Journal of
Electrical Engineering and Computer Sciences ,
21(8), 2307-2328, 2013.

[31] Kiran MS. "A binary artificial bee colony algorithm and its
performance assessment". Expert Systems with
Applications, 175, 1-15, 2021.

[32] Jia D, Duan X, Khan MK. "Binary Artificial Bee Colony
optimization using bitwise operation". Computers &
Industrial Engineering, 76, 360-365, 2014.

[33] Storn R, Price K. "differential evolution-a simple and
efficient heuristic for global optimization over continuous
spaces". Journal of Global Optimization,
11(4), 341-359, 1997.

[34] Engelbrecht AP, Pampara G. "Binary differential evolution
strategies". 2007 IEEE Congress on Evolutionary
Computation, Singapore, 25-28 September 2007.

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

750

[35] Su H, Yang Y. "Quantum-Inspired Differential Evolution for
Binary Optimization". 2008 Fourth International
Conference on Natural Computation, Jinan, China,
18-20 October 2008.

[36] He X, Zhang Q, Sun N, Dong Y. "Feature Selection with
Discrete Binary Differential Evolution". 2009
International Conference on Artificial Intelligence and
Computational Intelligence, Shanghai, China,
7-8 November 2009.

[37] Deng C, Zhao B, Yang Y, Deng A. "Novel Binary Differential
Evolution Algorithm for Discrete Optimization". 2009
Fifth International Conference on Natural Computation,
Tianjian, China, 14-16 August 2009.

[38] Qingyun Y. "A comparative study of discrete differential
evolution on binary constraint satisfaction problems".
2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence),
Hong Kong, 01-06 June 2008.

[39] Wang L, Fu X, Menhas MI, Fei M. "A Modified Binary
Differential Evolution Algorithm". International
Conference on Life System Modeling and Simulation,
Wuxi, China, 17-20 September 2010.

[40] Kashan MH, Kashan AH, Nahavandi N. "A novel differential
evolution algorithm for binary optimization".
Computational Optimization and Applications,
55(2), 481-513, 2013.

[41] Rashedi E, Nezamabadi-pour H, Saryazdi S. "GSA: A
Gravitational Search Algorithm". Information Sciences,
179(13), 2232-2248, 2009.

[42] Rashedi E, Nezamabadi-pour H,Saryazdi S. "BGSA: binary
gravitational search algorithm". Natural Computing,
9(3), 727-745, 2010.

[43] Khanesar MA, Branson D. "XOR Binary Gravitational
Search Algorithm". 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), Bari, Italy,
06-09 October 2019.

[44] Rao R. "Jaya: A simple and new optimization algorithm for
solving constrained and unconstrained optimization
problems". International Journal of Industrial Engineering
Computations, 7(1), 19-34, 2016.

[45] Cinar AC, Kiran MS. "Similarity and logic gate-based tree-
seed algorithms for binary optimization". Computers &
Industrial Engineering, 115, 631-646, 2018.

[46] Kiran MS. "TSA: Tree-seed algorithm for continuous
optimization". Expert Systems with Applications,
42(19), 6686-6698, 2015.

[47] Hakli H, Ortacay Z. "An improved scatter search algorithm
for the uncapacitated facility location problem".
Computers & Industrial Engineering, 135, 855-867, 2019.

[48] Yu JJQ, Li VOK. "A social spider algorithm for global
optimization". Applied Soft Computing, 30, 614-627, 2015.

[49] Baş E, ÜLker E. "An efficient binary social spider algorithm
for feature selection problem". Expert Systems with
Applications, 146, 1-25, 2020.

[50] Baş E, Ülker E. "A binary social spider algorithm for
continuous optimization task". Soft Computing,
24(17), 12953-12979, 2020.

[51] Korkmaz S, Babalik A, Kiran MS. "An artificial algae
algorithm for solving binary optimization problems".
International Journal of Machine Learning and Cybernetics,
9(7), 1233-1247, 2018.

[52] Çınar AC. "A Comprehensive Comparison of Binary
Archimedes Optimization Algorithms on Uncapacitated
Facility Location Problems". Düzce University Journal of
Science and Technology, 10(1), 27-38, 2022.

[53] Karakoyun M, Ozkis A. "A binary tree seed algorithm with
selection-based local search mechanism for huge-sized
optimization problems". Applied Soft Computing,
129, 1-16, 2022.

[54] Sörensen K. "Metaheuristics—the metaphor exposed".
International Transactions in Operational Research,
22(1), 3-18, 2015.

[55] Wolpert DH, Macready WG. "No free lunch theorems for
optimization". IEEE Transactions on Evolutionary
Computation, 1(1), 67-82, 1997.

[56] Mirjalili S. "Moth-flame optimization algorithm: A novel
nature-inspired heuristic paradigm". Knowledge-Based
Systems, 89, 228-249, 2015.

[57] Shehab M, Abualigah L, Al Hamad H, Alabool H, Alshinwan
M, Khasawneh AM. "Moth–flame optimization algorithm:
variants and applications". Neural Computing and
Applications, 32(14), 9859-9884, 2020.

[58] Zawbaa HM, Emary E, Parv B, Sharawi M. "Feature
selection approach based on moth-flame optimization
algorithm". 2016 IEEE Congress on Evolutionary
Computation (CEC), Vancouver, Canada, 24-29 July 2016.

[59] Aziz MAE, Ewees AA, Hassanien AE. "Whale Optimization
Algorithm and Moth-Flame Optimization for multilevel
thresholding image segmentation". Expert Systems with
Applications, 83, 242-256, 2017.

[60] Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong
C. "Toward an optimal kernel extreme learning machine
using a chaotic moth-flame optimization strategy with
applications in medical diagnoses". Neurocomputing,
267, 69-84, 2017.

[61] Yousri DA, AbdelAty AM, Said LA, AboBakr A, Radwan AG.
"Biological inspired optimization algorithms for cole-
impedance parameters identification". AEU - International
Journal of Electronics and Communications, 78, 79-89,
2017.

[62] Allam D, Yousri DA, Eteiba MB. "Parameters extraction of
the three diode model for the multi-crystalline solar
cell/module using Moth-Flame Optimization Algorithm".
Energy Conversion and Management, 123, 535-548, 2016.

[63] Hazir E, Erdinler ES, Koc KH. "Optimization of CNC cutting
parameters using design of experiment (DOE) and
desirability function". Journal of Forestry Research,
29(5), 1423-1434, 2018.

[64] Elsakaan AA, El-Sehiemy RA, Kaddah SS, Elsaid MI. "An
enhanced moth-flame optimizer for solving non-smooth
economic dispatch problems with emissions".
Energy, 157, 1063-1078, 2018.

[65] Jangir N, Pandya MH, Trivedi IN, Bhesdadiya RH, Jangir P,
Kumar A. "Moth-Flame optimization Algorithm for solving
real challenging constrained engineering optimization
problems". 2016 IEEE Students' Conference on Electrical,
Electronics and Computer Science (SCEECS), Bhopal, India,
05-06 March 2016.

[66] Trivedi IN, Kumar A, Ranpariya AH, Jangir P. "Economic
Load Dispatch problem with ramp rate limits and
prohibited operating zones solve using Levy flight Moth-
Flame optimizer". 2016 International Conference on
Energy Efficient Technologies for Sustainability (ICEETS),
Nagercoil, India, 07-08 April 2016.

Pamukkale Univ Muh Bilim Derg, 29(7), 737-751, 2023
A. Özkış, M. Karakoyun

751

[67] Li WK, Wang WL, Li L. "Optimization of water resources
utilization by multi-objective moth-flame algorithm".
Water Resources Management, 32(10), 3303-3316, 2018.

[68] Savsani V, Tawhid MA. "Non-dominated sorting moth
flame optimization (NS-MFO) for multi-objective
problems". Engineering Applications of Artificial
Intelligence, 63, 20-32, 2017.

[69] Nanda SJ. "Multi-objective moth flame optimization".
2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI),
Jaipur, India, 21-24 September 2016.

[70] K SR, Panwar LK, Panigrahi BK, Kumar R. "Solution to unit
commitment in power system operation planning using
binary coded modified moth flame optimization algorithm
(BMMFOA): A flame selection based computational
technique". Journal of Computational Science, 25, 298-317,
2018.

[71] Abdel-mawgoud H, Kamel S, Ebeed M, Youssef A. "Optimal
allocation of renewable dg sources in distribution
networks considering load growth". 2017 Nineteenth
International Middle East Power Systems Conference
(MEPCON), Cairo, Egypt, 19-21 December 2017.

[72] Anfal M, Abdelhafid H. "Optimal placement of PMUs in
Algerian network using a hybrid particle swarm–moth
flame optimizer (PSO-MFO)". Electrotehnica, Electronica,
Automatica (EEA), 65(3), 191-196, 2017.

[73] Bhesdadiya R, Trivedi IN, Jangir P, Kumar A, Jangir N,
Totlani R. “A novel hybrid approach particle swarm
optimizer with moth-flame optimizer algorithm”.
Advances in Computer and Computational Sciences,
Ajmer, India, 12-13 August 2016.

[74] Jangir P. "Optimal power flow using a hybrid particle
swarm optimizer with moth flame optimizer".
Global J Res Eng, 17, 524-542, 2017.

[75] Kamalapathi K, Priyadarshi N, Padmanaban S, Holm-
Nielsen JB, Azam F, Umayal C, Ramachandaramurthy VK.
"A hybrid moth-flame fuzzy logic controller based
ıntegrated cuk converter fed brushless dc motor for power
factor correction". Electronics, 7(11), 1-19, 2018.

[76] Khalilpourazari S, Khalilpourazary S. "An efficient hybrid
algorithm based on Water Cycle and Moth-Flame
Optimization algorithms for solving numerical and
constrained engineering optimization problems".
Soft Computing, 23(5), 1699-1722, 2019.

[77] Sarma A, Bhutani A, Goel L. "Hybridization of moth flame
optimization and gravitational search algorithm and its
application to detection of food quality". 2017 Intelligent
Systems Conference (IntelliSys), London, UK, 07-08
September 2017.

[78] Sayed GI, Hassanien AE. "A hybrid SA-MFO algorithm for
function optimization and engineering design problems".
Complex & Intelligent Systems, 4(3), 195-212, 2018.

[79] Yang W, Wang J, Wang R. "Research and application of a
novel hybrid model based on data selection and artificial
ıntelligence algorithm for short term load forecasting".
Entropy, 19(2), 1-27, 2017.

[80] Beasley JE. "OR-Library: Distributing test problems by
electronic mail". Journal of the Operational Research
Society, 41(11), 1069-1072, 1990.

[81] Cornuéjols G, Nemhauser G, Wolsey L. “The uncapicitated
facility location problem”. Cornell University Operations
Research and Industrial Engineering, Technical Report,
605, 1983.

[82] Jakob K, Pruzan PM. "The simple plant location problem:
Survey and synthesis". European journal of operational
research, 12, 36-81, 1983.

[83] Monabbati E, Kakhki HT. "On a class of subadditive duals
for the uncapacitated facility location problem". Applied
Mathematics and Computation, 251, 118-131, 2015.

[84] Glover F, Hanafi S, Guemri O, Crevits I. "A simple multi-
wave algorithm for the uncapacitated facility location
problem". Frontiers of engineering management,
5(4), 451-465, 2018.

[85] Kole A, Chakrabarti P, Bhattacharyya S. "An ant colony
optimization algorithm for uncapacitated facility location
problem". Proceedings of the 38th International Conference
on Computers and Industrial Engineering, Beijing,
China, Oct.-Nov. 2013.

[86] Tuncbilek N, Tasgetiren F, Esnaf S. "Artificial Bee Colony
Optimization Algorithm for Uncapacitated Facility
Location Problems". Journal of Economic & Social
Research, 14(1), 1-24, 2012.

[87] Li Y, Zhu X, Liu J. "An improved moth-flame optimization
algorithm for engineering problems". Symmetry,
12(8), 1-30, 2020.

[88] Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y. "An
Improved Moth-Flame Optimization algorithm with
hybrid search phase". Knowledge-Based Systems,
191, 1-14, 2020.

[89] Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P,
Li X, Mirjalili S. "Binary dragonfly optimization for feature
selection using time-varying transfer functions".
Knowledge-Based Systems, 161, 185-204, 2018.

[90] Omidvar R, Parvin H, Eskandari A. "A clustering approach
by SSPCO optimization algorithm based on chaotic initial
population". Journal of Electrical and Computer
Engineering Innovations (JECEI), 4(1), 31-38, 2016.

[91] Ebrahimzadeh R, Jampour M. "Chaotic genetic algorithm
based on lorenz chaotic system for optimization
problems". International Journal of Intelligent Systems and
Applications, 5(5), 19-24, 2013.

[92] Gao W-f, Liu S-y, Huang L-l. "Particle swarm optimization
with chaotic opposition-based population initialization
and stochastic search technique". Communications in
Nonlinear Science and Numerical Simulation,
17(11), 4316-4327, 2012.

[93] Rafsanjani A, Brulé V, Western TL, Pasini D. "Hydro-
responsive curling of the resurrection plant Selaginella
lepidophylla". Scientific Reports, 5(1), 1-7, 2015.

[94] Mickel JT, Smith AR. The Pteridophytes of Mexico (Memoirs
of the New York Botanical Garden). New York, USA,
New York Botanical Garden Press, 2004.

[95] Rosa JL, Robin A, Silva M, Baldan CA, Peres MP.
"Electrodeposition of copper on titanium wires: Taguchi
experimental design approach". Journal of materials
processing technology, 209(3), 1181-1188, 2009.

[96] Ansari NA, Sharma A, Singh Y. "Performance and emission
analysis of a diesel engine implementing polanga biodiesel
and optimization using Taguchi method". Process Safety
and Environmental Protection, 120, 146-154, 2018.

[97] Cura T. "A parallel local search approach to solving the
uncapacitated warehouse location problem". Computers &
Industrial Engineering, 59(4), 1000-1009, 2010.

	1 Introduction
	2 Literature review
	2.1 Binary PSO variants
	2.2 Binary ABC variants
	2.3 Binary DE variants
	2.4 Binary GSA variants
	2.5 Other variants
	2.6 Main motivation and contribution of the study

	3 Problem definition: uncapacitated facility location problem (UFLP)
	4 Moth flame optimization (MFO) algorithms
	4.1 Basic MFO algorithm
	4.2 Binary MFO algorithm
	4.3 Proposed algorithm
	4.3.1 Modifications
	4.3.1.1 Chaotic map-based initialization
	4.3.1.2 Flame selection strategy
	4.3.1.3 Desert bush

	4.3.2 The proposed binEMFO-DB algorithm

	5 Experimental study
	5.1 Parameter analyses
	5.1.1 Transfer function analyses for binary MFO
	5.1.2 Parameter analyses of the proposed method
	5.1.3 The effect of modifications on the success of the proposed algorithm

	5.2 Experimental environment and results
	5.2.1 Comparison with other algorithms

	6 Conclusions
	7 Author contribution statement
	8 Ethics committee approval and conflict of interest statement
	9 References

