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Abstract 

Breast cancer is considered as a leading cancer type with the secondary highest possibility of brain metastasis. Most research in 

breast cancer is currently directed into the mortality of brain metastatic breast cancer. However, there is no effective trea tment 

or anticancer therapeutics specifically for this cancer type. Hence, development of effective and novel anticancer therapeutic 
drugs/APIs to inhibit HDAC and mTOR, playing very important role on modulating breast cancer progression is an increasing 

demand. In this study, the structure-activity relationship and in silico modeling of a series of prodigiosin and 1,10-phenanthroline 

derivatives as highly potent anticancer therapeutic drugs/APIs against mTOR and HDAC enzymes have been investigated. 
Compared to the natural product Ps, 20 of the highly potent ligands, especially 2a, 6b, 13 and 13a, have exhibited very promising 

binding energies ranging from –9.4 to –7.1 kcal/mol and inhibition constants ranging from 225 to 569 nM against HDAC1 

and/or mTOR enzymes. Ligands 2a, 5, 6b, 7b and 13 in particular show effective dual action against both enzymes. The findings 
from the in silico modeling studies have also been supported with MD simulations and ADMET study with Lipinski’s rule of 

five, providing outstanding therapeutic potential for the breast cancer brain metastasis.  

Keywords: Anticancer therapeutic drugs/APIs, breast cancer brain metastases, mTOR, HDAC, 1,10-phenanthroline, 

prodigiosin. 

 

 

Bir Dizi Prodigiosin ve 1,10-Fenantrolin Türevlerinin Yeni Nesil Etkin  

Antikanser Tedavi Edici İlaçlar ya da Aktif Farmasötik Maddeler Olarak 

Tasarımı ve Yapısal İncelenmesi 

 
Öz 

Meme kanseri, beyin metastazı olasılığı en yüksek olan ikinci kanser türü olarak kabul edilmektedir. Bu yüzden meme kanseriyle 

ilgili araştırmaların çoğu beyin metastatik meme kanserinin mortalitesine yöneliktir. Ancak bu kanser türüne özgü etkili bir 

tedavi veya antikanser tedavi yöntemi mevcut değildir. Bu nedenle, meme kanseri ilerlemesinin modüle edilmesinde çok önemli 
rol oynayan HDAC ve mTOR enzimlerini inhibe edecek etkili ve yeni nesil antikanser terapötik ilaçların ve/veya aktif 

farmasötik maddelerin geliştirilmesi artan bir taleptir. Bu çalışmada, mTOR ve HDAC enzimlerine karşı oldukça güçlü 

antikanser terapötik ilaçlar ve/veya aktif farmasötik maddeler olarak bir dizi prodigiosin ve 1,10-fenantrolin türevinin yapı-
aktivite ilişkisi ve in silico modellemesi incelenmiştir. Doğal ürün Ps ile karşılaştırıldığında, bu ligandlardan 20 tanesi, özellikle 

2a, 6b, 13 ve 13a, HDAC1 ve/veya mTOR enzimlerine karşı –9.4 ile –7.1 kcal/mol arasında değişen çok umut verici bağlanma 

enerjileri ve 225 ile 569 nM arasında değişen inhibisyon sabitleri sergilemiştir. Özellikle 2a, 5, 6b, 7b ve 13 her iki enzime karşı 

iki taraflı etkinlik (dual action) göstermiştir. İn silico modelleme çalışmalarından elde edilen bulgular, MD simülasyonları ve 
Lipinski'nin beş kuralına göre ADMET çalışmasıyla da desteklenmiş olup, meme kanseri beyin metastazına sahip hastalar için 

olağanüstü bir terapötik potansiyel sağlamaktadır.     

Anahtar Kelimeler: Antikanser tedavi edici ilaçlar/aktif farmasötik maddeler, meme kanseri beyin metastazları, mTOR, 

HDAC, 1,10-fenantrolin, prodigiosin.  
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1. Introduction 

 

The attributed deaths of approximately 17% is due to the second leading cause cancer for the 

world population [WHO, 2020], where breast cancer counts for 25% of all cases [IARC, 2014]. 

Among these cases, breast cancer is considered to be the most common type of cancer in females, 

with the second-highest probability of brain metastasis [Forman and Ferlay, 2014; Siegel et al., 2020; 

Al Shamsi and Alrawi, 2018; Leone and Leone, 2015]. In approximately 10-20% of patients 

diagnosed with breast cancer, malignant brain metastasis was also found [Pangeni et al., 2015; Engel 

et al., 2003]. In recent years, this percentage is continuously increasing with the development of 

diagnostic and prognostic methods [Rostami et al., 2016] in the healthcare system and technology. 

Most research in breast cancer is currently directed into the mortality of breast cancer brain metastasis 

with the development of therapeutics and prognostic tools [Kölbl et al., 2015; Lin et al., 2002]. 

Alternative tools and treatments are investigated due to the development of resistance causing brain 

metastasis, epigenetic changes and several mutations, and individual differences in response to 

treatments [Godone et al., 2018]. In particular patients with high brain metastasis risk, there is, 

however, no effective treatment or this cancer-specific therapeutics. Hence, developing highly 

effective breast cancer drugs to inhibit the enzymes playing essential roles on the modulation of breast 

cancer is an ever increasing demand in the field.   

In the last decades, many studies focusing on modulation of cancer progression have involved 

in three highly important enzyme families: (i) The phosphatidylinositol-3-kinases (PI3Ks)/AKT 

[Knight et al., 2006; Porta et al., 2014], (ii) the mammalian target of rapamycin (mTOR) [Porta et al., 

2014; Maiese, 2016], and (iii) histone deacetylases (HDACs) [Seto and Yoshida, 2014]. Inhibition of 

such enzymes are among the current treatment approaches for the effective treatment of breast cancer 

and the related brain metastases. The principles in such approaches are based on the direct targeting 

tumors and proteins with various expression levels by inhibiting the signaling pathways of such 

enzymes that play a highly important role on the progress of the breast cancer modulation [Godone 

et al., 2018]. In particular, inhibition of HDAC and mTOR enzymes has appeared to be a high 

potential strategy [Yao et al., 2021]. Numerous HDAC and mTOR inhibitors have been viewed as 

highly potent agents that have shown very significant anticancer activities in preclinical studies [Yao 

et al., 2021; Min et al., 2012; Guo et al., 2020; Bian et al., 2018; Tang et al., 2017; Kawai et al., 2003; 

Fasolo and Sessa, 2012]. Due to the central roles of mTOR, PI3K/AKT and HDAC as a novel potent 

anticancer therapy approach [Guo et al., 2020; Bian et al., 2018; Tang et al., 2017], the targeted 

inhibition of these enzymes and controlling their signaling pathways are very essential to combat with 

the cancer cells. In particular, HDAC and mTOR inhibitions are very important potent and promising 

approaches as anticancer therapy. Due by the importance of these two enzymes, most researchers 
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have, therefore, focused their research [Yao et al., 2021; Min et al., 2012; Guo et al., 2020; Bian et 

al., 2018; Tang et al., 2017; Kawai et al., 2003; Fasolo and Sessa, 2012; Lu and Liu, 2020] on 

developing novel inhibitors targeting mTOR and HDAC in order to elucidate a precise mechanism 

of action for inhibition of the enzymes. In addition, there have been many other novel potent 

anticancer agent studies [Fricker, 1994; Heffeter et al., 2006; Zhang and Lippard, 2003; Marzano et 

al., 2002; Ranford et al., 1993; Saha et al., 2004; Zoroddu et al., 1996; Erkkila et al., 1999; Butler et 

al., 1969; Macleod, 1952; Dwyer et al., 1969; Walsh et al., 2006; Danevčič et al., 2016; Espona-

Fiedler et al., 2012; Wang et al., 2016; Müller et al., 2013; de Ruijter et al., 2003; Weichert, 2009; 

Shouksmith et al., 2019; Senese et al., 2007; Choi et al., 2001; Halkidou et al., 2004; Krusche et al., 

2005; Uba and Yelekçi, 2018; Gümüş et al., 2021; Dege et al., 2022] in the field for better 

understanding of cellular and molecular mechanisms of both HDAC and mTOR inhibition.  

The current abovementioned literature clearly states that there have been several designed, 

synthesized and examined inhibitors for their anticancer and antitumor activities on breast cancer 

cells, and there is still an urgent demand for more of such novel artificial inhibitors for HDAC and 

mTOR enzymes and their signaling pathways in particular. A reliable and significant number of such 

literature reports have highlighted use of 1,10-phenanthroline (PHEN) and its derivatives, and their 

transition metal complexes (e.g., with copper(Cu)) as anticancer agents with their possible anticancer 

chemotherapeutic potential [Fricker, 1994; Heffeter et al., 2006; Zhang and Lippard, 2003; Marzano 

et al., 2002; Ranford et al., 1993; Saha et al., 2004; Zoroddu et al., 1996; Erkkila et al., 1999; Butler 

et al., 1969; Macleod, 1952; Dwyer et al., 1969; Walsh et al., 2006; Danevčič et al., 2016; Espona-

Fiedler et al., 2012; Wang et al., 2016; Müller et al., 2013; de Ruijter et al., 2003; Weichert, 2009; 

Shouksmith et al., 2019; Senese et al., 2007; Choi et al., 2001; Halkidou et al., 2004; Krusche et al., 

2005; Uba and Yelekçi, 2018; Denoyer et al., 2015; Ge et al., 2022; Chang, 2015; Brady et al., 2014; 

Que  et al., 2008; Solomon et al., 1996; Lippard et al., 1994; Hanahan and Weinberg, 2011; Li. 2020; 

Huang et al., 2021; Hussain et al., 2019; Marzano et al., 2009; Lumme et al., 1984; Molinaro et al., 

2020]. Many metal complexes containing PHEN and Schiff bases with a functional group of  C=N play 

very important roles and posses anticancer activity [Zhang et al., 2015; Hindo et al., 2009; Zhang et al., 

2012; Zhang et al., 2008; Zuo et al., 2013]. Such ligands and their copper complexes are highly intriguing 

due to their diverse biological activities, antimycobacterial [Saha et al., 2004], antimicrobial [Zoroddu et 

al., 1996], antitumor [Ranford et al., 1993], and intercalating agents of DNA [Erkkila et al., 1999]. In 

addition to the PHEN and its derivatives with metal complexes, a known natural medicine Prodigiosin (Ps) 

[Walsh et al., 2006] is another structure as a secondary and natural metabolite, which has multiple 

biological functions, including but not limited to anti-inflammatory, antibacteria, immnosupression and 

anticancer activity [Danevčič et al., 2016]. Ps has also attracted immense interests with its anticancer 

function because it is a dual mTOR inhibitor, which has two essential components, mTORC1 and 
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mTORC2 [Espona-Fiedler et al., 2012]. Therefore, Ps may be another potent candidate as the novel 

generation anticancer drug due to its unique inhibition mechanisms, and its derivatives have also become 

one of the most promising anticancer drug classes leading with anticancer and proapoptotic effects in 

a various cancer cell lines including breast cancer cells in recent years [Montaner et al., 2000; 

Montaner and Pérez-Tomás, 2001; Díaz-Ruiz et al., 2001; Montaner and Pérez-Tomás, 2003; Soto-

Cerrato et al., 2004] even though the structure was first ascertained from a total synthesis in 1960 

[Rapoport and Holden, 1960]. Current research efforts are focusing more on synthetic protocols of Ps 

derivatives due by their expected lower cytotoxicity and anticancer activity. Studying inhibition of HDAC 

will also be as esssential as mTORs because deregulation of Class I HDAC (HDAC1, 2, 3 and 8) activity 

has been associated with many cancer types [Müller et al., 2013; de Ruijter et al., 2003; Weichert, 2009; 

Shouksmith et al., 2019] and its involvement has been [Senese et al., 2007] highly vital in control of 

mammalian cell proliferation. HDAC1 and its overexpression, in particular, have been related to various 

types of cancer [Choi et al., 2001; Halkidou et al., 2004; Krusche et al., 2005]. Thus, inhibition of the 

HDAC1 appears to be a promising therapeutic target for cancer therapy, and this may be regulating the 

progression of breast cancer and its associated metastasis [Krusche et al., 2005; Uba and Yelekçi, 2018]. 

Although the current literature has produced many inhibitors against mTOR and HDAC 

enzymes, there is a very limited number of commercially available common anticancer drugs (e.g., 

fluorouracil, doxorubicin, carboplatin, and paclitaxel) on the market for the treatment of breast cancer. 

A major downside to such anticancer drugs is the buildup of resistance toward these drugs by cancer 

cells. Novel drugs with alternative modes of action are vital to ensure both the effectiveness and 

worldwide affordability of cancer treatments. As it currently stands, neither PHEN nor Ps or their any 

derivatives has made any commercial progress to the current anticancer drug market. Even though 

one of the candidate drugs, obatoclax, passed the phase II clinical trials, its development was 

unfortunately halted. Thus, alternative PHEN and Ps derivatives have yet to be tested as therapeutic 

agents for combatting breast cancer. In one of our earlier preliminary studies [Cetin et al., 2022], we 

found that some Ps and PHEN derivatives with their copper(I) complexes exhibited promising 

anticancer activities (one of the ligands showed an overwhelming anticancer activity than Ps, the 

natural drug). When compared ligands with their relevant copper(I) complexes, the complexes were 

even performed more significant anticancer activities on the selected cell lines. The in silico 

computational modeling studies conducted with the mTOR and HDAC1 enzymes also validated the 

obtained experimental data. However, the cytotoxicity of some of these ligands and/or their relevant 

complexes were a little higher than the acceptable cytotoxicity ranges.    

In this context, by utilizing the aforementioned state-of-art and employing in silico 

computational modeling studies that are conducted with the mTOR and HDAC1 enzymes considering 

the in silico structure-activity relationship (in silico SAR), we, in this work, have focused on 
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designing, developing and optimizing novel PHEN and Ps derivatives as active pharmaceutical 

ingredients (APIs), which are expected to inhibit HDAC (especially HDAC1) and/or mTOR enzymes 

against brain metastatic breast cancer. Such structural and modeling studies will also facilitate to 

predict the most promising functions/functional groups with the PHEN and Ps core structures (Figure 

1), binding affinities and binding modes of such desired ligands. With the preliminary results from 

our earlier work [Cetin et al., 2022], we predict that either PHEN and/or Ps derivatives, including 

their copper(I) complexes upon complexation, or the combined use of such compounds in different 

variations, given their numerous modes of cellular actions, could improve the efficacy of anticancer 

treatments and may also provide great therapeutic potential for the breast cancer patients with brain 

metastasis risk.  

 

 

 

Figure 1. The general structures of Ps- (A, B, C and D) and PHEN (E and F)-based derivatives and 

their functionalization with different –R, –R' and/or –phenyl-R' groups. 

 

 

2. Materials and Methods 

 

By aiming to structurally design and develop novel PHEN and Ps derivatives, some in silico 

computational modeling studies that have been carried out with mTOR and HDAC1 enzymes 

considering the in silico SAR details are presented below. 
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2.1. Molecular Modeling Studies 

 

2.1.1. Enzyme Preparation 

 

The mTOR and HDAC1 crystal structures (selected due by being homosapians enyzmes and 

having no mutation) were retrieved from protein data bank and used for the protein setup. 

[(http://www.rcsb.org, (for mTOR pdb code: 4jsv; resolution 3.5 Å) and (for HDAC1, pdb code: 

4BKX; resolution 3.0 Å)] [Morris  et al., 1998]. Each structure was cleaned of all water molecules 

and inhibitors as well as all non-interacting ions before being used in the docking studies. One of the 

two subunits for mTOR and HDAC1 was chosen as the target structure. Geometry of each protein 

was first optimized using a fast Dreiding-like force field, and subsequently submitted to Discovery 

Studio's “Clean Geometry” toolset [BIOVIA, 2015] for a more thorough examination. Missing 

hydrogen atoms were added considering the protonation state of the titratable residues at a pH of 7.4. 

The dielectric constant was adjusted to 10 and the ionic strength was set to 0.145. The AutoDock 

Tools (vv. 1.5.7) (ADT) [Morris et al., 2009] graphical user interface program was employed to setup 

the enzymes for docking. 

 

2.1.2. Ligand Setup 

 

The three-dimensional (3D) structures of ligand molecules were built and minimized using 

BIOVIA Discovery Studio [BIOVIA, 2015],  and optimized at (PM3) level and saved in pdb format. 

Here, the docking input files of the ligands were also generated using the ADT package. Autodock 

Vina [Eberhardt et al., 2021] docking program was used for all docking processes. In an earlier 

literature work [Akdoğan  et al.], the comprehensive procedure used for docking methods was 

reported in details. 

 

2.1.3. Molecular Docking 

 

The data built by using the BIOVIA Discovery Studio [BIOVIA, 2015] was saved in pdb 

format, and in the meantime missing hydrogen atoms were added considering the protonation state 

of the titratable residues at a pH of 7.4, and optimization of geometry and minimization processes 

were employed. Upon preparation of the ligands, molecular docking was performed using the 

Autodock Vina [Eberhardt et al., 2021] with the parameters (grid center and box dimensions) in Table 

1. For each ligand, there were 10 runs with the selected enzyme to find out the best binding case.  

 

http://www.rcsb.org/
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Table 1. The molecular docking grid center and box dimensions used for Autodock Vina. 

 

Center (Å) HDAC1 mTOR  Box Dimensions (Å) HDAC1 mTOR 

X -46.7 -20.7  X 25 25 

Y 16.3 -29.9  Y 25 25 

Z -7.8 -58.3  Z 25 25 

 

 

2.1.4. Molecular Dynamic Simulations 

 

Of the designed and optimized 75 ligands (Figures 2–4), six enzyme-ligand complexes (2a, 6b 

and 13 against the HDAC1 and 6b, 13 and 13a against the mTOR) have produced the best results for 

each virtual screening technique chosen based on their binding energies in order to investigate the 

structural dynamics and stability of these complexes (Tables 2–4). Using the BIOVIA Discovery 

Studio [BIOVIA, 2015], the six selected enzyme-ligand complexes and the free HDAC1 and mTOR 

enzymes were prepared [Phillips  et al., 2005] for NAMD input file processing. The input files for 

NAMD were prepared using Charmm-GUI [Jo et al., 2008] that was employed for each enzyme-

ligand complex and free HDAC1 and mTOR enzymes. NAMD was used to run unconstrained 50 

nanosecond (ns) Molecular Dynamics (MD) simulations on both free enzymes and enzyme-ligand 

complexes. The validation of the complexes with the free enzymes was examined by comparing the 

average values of root-mean-square deviations (RMSD), root-mean-square fluctuation (RMSF), 

radius of gyration (Rg) profiles along the trajectories on the generated graphs. 

 

2.2. Chemistry 

2.2.1. Design of Ps-based, Ps and PHEN Derivatives as Novel Ligands 

One of the most important studies that needs to be accomplished is to create and design 

chemical structures that will first exhibit highly promising in silico computational modeling results, 

and then the synthetic possibility with potential anticancer activities. Because not every drug 

candidate performing anticancer activity can synthetically be obtained, or vice versa. Therefore, 

considering our previous experiences and results from the highly promising preliminary study [Cetin 

et al., 2022] regarding validation of the computational data for the designed chemical structures and 

their biological activities with some Ps and PHEN ligands as well as their relevant complexes with 

HDAC1 and mTOR enzymes, it has been aimed to carry out further studies to create, design and 

develop novel improved and optimized Ps-based and Ps (Figures 2 and 3), and PHEN (Figure 4) 

derivatives by even further enabling the synthesis, isolation, characterization, and in vitro biological 

activity testing of such novel compounds that have never been studied beforehand. In this regard, first 
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a series of Ps-based derivatives have been designed in order to evaluate the absence of the methoxy 

group (–OCH3) and effect of the –phenyl group (–Ph) on one of the pyrrole rings (1–13 (presence of 

–Ph, but absence of –OCH3) and 14–26 (absence of both –Ph and –OCH3) in the Figure 2).  

 

Figure 2. The Ps-based derivatives with various functions introduced into the structure for 

determining relationships between chemical structures and in silico biological activity. 

 

Based on the outcomes of the Ps-based derivatives (Table 2), a series of Ps derivatives have 

further been designed and evaluated in the presence and absence of the –Ph group on the same pyrrole 

ring that has the –OCH3 group (Figure 3). The obtained results (Tables 2 and 3) and discussion of 

both sets of derivatives are presented in the Findings and Discussion Section.   

 

 

Figure 3. The Ps derivatives with various functions introduced into the structure for determining 

relationships between chemical structures and in silico biological activity. 

 

Upon completion of both Ps-based (1–26) and Ps derivatives (1a–26a), the PHEN structure has 

been used to replace the Ps-core structure, conducted similar in silico computational modeling studies 
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for a series of PHEN derivatives (Figure 4) and obtained results for both binding energies and 

inhibition constants of such compounds (Table 4).   

 

 

Figure 4. The PHEN-based derivatives with various functions introduced into the structure for 

determining relationships between chemical structures and in silico biological activity. 

 

 

3. Findings and Discussion 

 

Since not every novel and computationally highly potent and effective therapeutic drug or API 

candidate showing anticancer activity can be obtained synthetically or most synthetically accessible 

candidates may not have any anticancer activity, reviewing the literature for the possibility of both 

synthetic accessibility and anticancer activity is one of the most crucial studies. In the light of this 

information, a series of Ps-based, Ps and PHEN derivatives (75 derivatives in total, Figures 2–4) as 

therapeutic drug or API candidates have been designed and optimized using in silico computational 

modeling studies. More importantly, some of these derivatives/ligands have exhibited very promising 

binding energies and inhibition constants (Tables 2–4) against HDAC1 and/or mTOR enzymes 

(Figure 5) after forming enzyme-ligand complexes. 

 

          

Figure 5. The structural representation of free HDAC1 (left) and mTOR (right) enzymes. 
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As in general practice for being highly effective, a time-efficient tool of in silico computational 

modeling has initially been utilized to collect initial results for the designed 75 ligands from the 

docking studies into the active sites of HDAC1 and mTOR enzymes to predict their binding affinities 

and binding modes by employing the AutoDock Vina docking software [Eberhardt et al., 2021]. Since 

acquiring the Molecular Dynamics (MD) simulations for each ligand would relatively require longer 

time intervals, selecting some of the ligands with the best binding energies and inhibition constants 

have been targeted for the MD simulations after collecting the initial results. Of these 75 ligands, 20 

of them (1, 1a, 1b, 2, 2a, 2b, 3, 3b, 5, 5a, 6b, 7, 7a, 7b, 8b, 12b, 13, 13a, 14b and 23b), which are 

highly potent to inhibit HDAC (especially HDAC1) and/or mTOR enzymes against brain metastatic 

breast cancer, have exhibited very promising binding energies and inhibition constants (Tables 2–4) 

against at least one or both enzymes, but preferentially both. 

 

Table 2. Calculated binding energies and inhibition constants for Ps [Cetin et al., 2022] and Ps-based 

derivatives (Figure 2) against the mTOR and HDAC1 enzymes. 

Compound  

ID 

mTOR HDAC1 

Binding Energies 

(kcal/mol) 

Inhibition 

Constants (nM) 

Binding Energies 

(kcal/mol) 

Inhibition 

Constants (nM) 

Ps* -4.89 258.68 μM -6.99 7.53 μM 

1 -7.1 547 -8.4 336  

2 -7.2 547  -8.6 310  

3 -6.6 697 -8.1 380  

4 -6.9 617 -8.1 380  

5 -8.1 380 -8.5 323   

6 -7.4 505  -8.0 396   

7 -8.0 396  -8.1 380  

8 -7.3 525  -7.7 447  

9 -7.4 505  -7.7 447  

10 -7.4 505  -7.3 525  

11 -7.4 505  -7.7 447  

12 -7.6 465  -7.7 447  

13 -8.2 365 -8.5 324  

14 -6.3 786  -7.1 569  

15 -6.5 726  -7.1 569  

16 -6.1 853  -7.1 569  

17 -6.3 786  -7.0 593  

18 -6.4 755  -7.3 525  

19 -6.6 697  -7.5 485  

20 -6.2 819  -7.4 505  

21 -6.7 669  -7.4 505 

22 -7.1 547  -6.9 617  

23 -7.0 593  -7.4 505  

24 -7.1 547  -7.4 505  

25 -6.8 643  -7.1 569  

26 -7.4 505  -7.5 485  

*This data was taken from the previous study [Cetin et al., 2022] for the comparison purpose only. 
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Table 3. Calculated binding energies and inhibition constants for Ps [Cetin et al., 2022] and Ps 

derivatives (Figure 3) against the mTOR and HDAC1 enzymes. 

Compound  

ID 

mTOR HDAC1 

Binding Energies 

(kcal/mol) 

Inhibition 

Constants (nM) 

Binding Energies 

(kcal/mol) 

Inhibition 

Constants 

(nM) 

Ps* -4.89 258.68 μM -6.99 7.53 μM 

1a -7.2 547  -8.4 337  

2a -7.1 569  -8.5 324  

3a -6.8 643  -8.0 396  

4a -6.7 669  -8.1 380  

5a -7.9 412  -8.2 365  

6a -7.4 505  -7.5 485  

7a -7.7 447  -7.9 412  

8a -7.0 593  -7.5 485  

9a -7.1 569  -7.9 412  

10a -7.2 547  -7.3 525  

11a -7.3 525  -7.6 465  

12a -7.6 465  -7.7 447  

13a -8.3 351  -8.3 351  

14a -6.4 755  -6.8 643  

15a -6.7 669  -6.8 643  

16a -6.1 853  -6.6 697  

17a -6.4 755  -6.7 669  

18a -6.4 755  -6.7 669  

19a -6.2 819  -6.6 697  

20a -6.2 819  -6.2 819  

21a -6.5 726  -6.7 669  

22a -6.9 617  -6.7 669  

23a -6.6 697  -7.3 525  

24a -6.7 669  -7.3 525  

25a -6.7 669  -7.0 593  

26a -7.1 570  -7.3 525  

*This data was taken from the previous study [Cetin et al., 2022] for the comparison purpose only. 
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Table 4. Calculated binding energies and inhibition constants for Ps [Cetin et al., 2022] and PHEN 

derivatives (Figure 4) against the mTOR and HDAC1 enzymes. 

Compound  

ID 

mTOR HDAC1 

Binding 

Energies 

(kcal/mol) 

Inhibition 

Constants (nM) 

Binding 

Energies 

(kcal/mol) 

Inhibition 

Constants 

(nM) 

Ps* -4.89 258.68 μM -6.99 7.53 μM 

1b -7.2 547  -9.1 254  

2b -7.9 412  -8.7 299  

3b -8.1 380  -9.1 254  

4b -7.2 547  -7.8 429  

5b -7.3 525  -8.6 311  

6b -9.4 225  -9.4 225  

7b -9.0 264  -9.4 225  

8b -8.9 275  -8.5 324  

9b -8.0 396  -8.4 337  

10b -8.3 351  -7.3 525  

11b -8.3 351  -8.6 311  

12b -8.9 275  -8.7 299  

13b -8.7 299  -6.9 617  

14b -9.2 244  -8.7 299  

15b -6.6 697  -6.8 643  

16b -7.1 569  -7.3 525  

17b -7.7 447  -8.5 324  

18b -7.3 525  -8.5 324  

19b -6.9 617  -7.5 485  

20b -7.1 569  -6.7 669  

21b -7.2 547  -6.7 669  

22b -7.6 465  -7.1 569  

23b -8.9 275  -7.8 429  

*This data was taken from the previous study [Cetin et al., 2022] for the comparison purpose only. 

 

As shown in the Tables 2–4, the data taken from our previous study [Cetin et al., 2022] presents 

that the natural product Ps exhibits –4.89 kcal/mol binding affinity and 258.68 μM inhibition constant 

against mTOR while having –6.99 kcal/mol and 7.53 μM against HDAC1, respectively. Compared 

to the novel ligands, Ps definitely has lower binding affinity and inhibition constant for the most cases 

against either one or both enzymes. Among these 75 ligands, 1, 1a, 1b, 2, 2a, 2b, 3, 3b, 5, 5a, 6b, 7, 

7a, 7b, 8b, 12b, 13, 13a, 14b, and 23b have exhibited highly promising binding energies and 

inhibition constants (Tables 2–4) against at least one or both enzymes. While Ps-based ligands 5, 7 

and 13 on mTOR (average of –8.1 kcal/mol and 380 nM) and 1, 2, 5, and 13 (average of –8.5 kcal/mol 

and 323 nM) on HDAC1 have exhibited very promising results on at least one of the enzymes, ligands 

5 (–8.1 kcal/mol and 380 nM against mTOR and –8.5 kcal/mol and 323 nM against HDAC1) and 13 

(–8.2 kcal/mol and 365 nM against mTOR and –8.5 kcal/mol and 324 nM against HDAC1) in 

particular have showed very effective results (Table 2) with dual action against both enzymes. In the 

case of Ps derivatives, ligands 1a, 2a, 5a, 7a and 13a have exhibited higher binding affinities and 
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inhibition constants (average of –7.6 kcal/mol and 465 nM against mTOR, and average of –8.2 

kcal/mol and 371 nM against HDAC1, respectively) against at least one or both enzymes, where 

ligands 5a and 13a have been highly effective on mTOR and 1a, 2a and 5a on HDAC1. However, 

the ligand 5a (–7.9 kcal/mol and 412 nM against mTOR and –8.2 kcal/mol and 365 nM against 

HDAC1) has particularly showed promising binding energy and inhibition constant values (Table 3) 

with dual action against both enzymes. In these two sets of data (Tables 2 and 3), the results have 

showed that presence and absence of the –Ph group on the pyrrole ring without –OCH3 group (Figure 

2) have affected the binding affinity and binding mode of the ligands within the same set of structures. 

Furthermore, simultaneous effectiveness of the ligands, existing of the –OCH3 group on the same 

pyrrole ring (Figure 3) in the second set of structures (derivatives of the natural product Ps), against 

both enzymes have changed regarding the binding energy and inhibition constant values (Table 3).   

Upon completion of the in silico computational modeling (Tables 2 and 3) for the two sets of 

ligands in the Figures 2 and 3, the core structure of the Ps (Figures 1C and 1D with –OCH3 group) 

has been replaced with the PHEN core structure (Figures 1E and 1F) in order to evaluate and compare 

the effect of the Ps-core and PHEN-core against both mTOR and HDAC1 enzymes. In the case of 

PHEN derivatives (Figure 4), ligands 1b, 2b, 3b, 6b, 7b, 8b, 12b, 14b and 23b have exhibited higher 

binding affinities and inhibition constants against at least one or both enzymes (average of –8.6 

kcal/mol and 322 nM against mTOR, and average of –8.8 kcal/mol and 390 nM against HDAC1, 

respectively), of which ligands 6b, 7b, 8b, 12b, 14b and 23b have been highly effective on mTOR 

and 1b, 2b, 3b, 6b, 7b, 12b and 14b on HDAC1, respectively. The ligands 6b, 7b, 12b and 14b have 

showed highly promising binding affinities and inhibition constant values (Table 4) with dual action 

against both enzymes. Comparing with the Ps-based and Ps derivatives, more PHEN derivatives have 

been exhibiting dual action against both enzymes (4 ligands) than the other two sets of structures (2 

ligands in Ps-based and 1 ligand in Ps derivatives).  

Our elaborated data from the in silico computational modeling studies has directed us to select 

the top dual-acting candidates with the best binding energy and inhibition constant from the Tables 

2–4 for further MD simulations that relatively require longer time intervals. Thus, ligands 5, 5a, 6b, 

7, 13 and 13a against mTOR and 1, 1b, 2a, 6b, 7b and 13  against HDAC1 have been selected for the 

MD simulations. Among these ligands, 5, 5a, 6b, 7b and 13, are highly important because they are 

the ones exhibiting dual action (the other dual-acting ligands 12b, 13a and 14b were not utilized for 

MD simulations due to their lower binding energies and/or inhibition constants relative to the other 

five dual-acting ligands) against both mTOR and HDAC1 enzymes. From the Tables 2–4, the ligands 

2a, 6b and 13 against HDAC1 and 6b, 13 and 13a against mTOR have found to be exhibiting the best 

results regarding the binding energies and inhibition constants compared to the other ligands. Ligand 

6b in particular shows relatively great binding affinity (ΔG = –9.4 kcal/mol and Ki = 225 nM) against 
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both HDAC1 and mTOR enzymes. On the other hand, ligands 2a and 13 have exhibited relatively 

higher values for binding energies and inhibition constants (ΔG = –8.5 kcal/mol and Ki = 324 nM) 

against HDAC1 while ligands 13 and 13a have showed very similar results (ΔG = –8.2 kcal/mol and 

Ki = 365 nM and ΔG = –8.3 kcal/mol and Ki = 351 nM, respectively) against mTOR. Among these 

four ligands, 6b and 13 are highly important due to their dual-acting capacity against both enzymes.      

The poses of ligand 6b in the binding pockets of HDAC1 and mTOR enzymes are presented in 

the Figure 6 (B and E for two-dimensional (2D) and 3D images, respectively) and Figure 7 (A and 

B for 2D and 3D images, respectively) , where two strong hydrogen bonds occur between ligand 6b 

and the relevant amino acids (TYR303 and HIS28 amino acids against HDAC1 and the ARG2251 

and VAL2240 against mTOR), in which both cases suggest the best inhibition of the enzymes (dual 

action) with ligand 6b (potent dual inhibition candidate) among all other ligands. Relative to the 

ligand 6b, ligands 2a and 13 are the other two exhibiting great affinity against HDAC1 (Figures 6A 

and 6C for 2D and Figures 6D and 6F for 3D images, respectively). In the HDAC1–ligand 13 

complex, there are three -  stacked interactions with the PHE205, HIS178 and PHE150 amino acids 

(Figure 6C) while the HDAC1–ligand 2a complex exhibits two strong hydrogen bonds occurring 

between the ligand and the ASP176, TYR303 amino acids (Figure 6A). Such strong interactions 

support that these two ligands 2a and 13 (second potent dual inhibition candidate) after ligand 6b can 

act as highly promising other inhibitors against HDAC1 enzyme.  
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Figure 6. The 2D (A, B and C) and 3D (D, E and F) images generated via molecular docking of the 

ligands 2a (A with H-bonding lengths of 3.28 and 3.01 & 3.15 Å to ASP176 and TYR303, 

respectively, and -  interaction lengths of 5.39, 4.04 and 4.36 Å to HIS178, PHE150 and PHE205, 

respectively, and D), 6b (B with H-bonding lengths of 3.13 and 2.68 Å to HIS28 and TYR303, 

respectively, and -  interaction lengths of 4.43 and 3.98 Å to PHE150 and PHE205, respectively, 

and E), and 13 (C with -  interaction lengths of 4.49, 4.46 & 4.90 and 5.92 & 4.45 Å to HIS178, 

PHE150 and PHE205, respectively, and F) with the HDAC1 enzyme. Amino acid side chains are 

shown as sticks and the ligands as ball and sticks in 3D images. 

   

The ligand 13 is also effective against the mTOR enzyme. In the mTOR–ligand 13 complex 

(Figures 7B and 7E), there is a strong hydrogen bonding as well as -  stacking between the ligand 

and the amino acids the THR2245 and TRP2239, respectively. The ligand 13a also exhibits great 

binding affinity against the mTOR enzyme (Figures 7C and 7F), and there is a -  T-shaped 

interaction between the ligand and TRP2239 amino acid upon formation of the complex. Although 

noncovalent interactions like -  T-shaped are not as strong as hydrogen bonding, such interactions 

also play an important role in stabilizing molecular structures [Sinnokrot et al., 2004]. 

(A)

(B)

(C)

(D)

(E)

(F)
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Figure 7. The 2D (A, B and C) and 3D (D, E and F) images generated via molecular docking of the 

ligands 6b (A with H-bonding lengths of 2.72 & 2.41 and 2.52 Å to VAL2240 and ARG2251, 

respectively, and -  interaction length of 5.00 Å to TRP2239 and D), 13 (B with H-bonding length 

of 2.85 Å to THR2245, and -  interaction lengths of 5.25 & 5.07 Å to TRP2239 and E), and 13a 

(C with -  interaction length of 5.13 Å to TRP2239 and F) with the mTOR enzyme. Amino acid 

side chains are shown as sticks and the ligands as ball and sticks in 3D images. 

 

Further investigation for various parameters such as, root-mean-square deviations (RMSD) for 

structural conformations and stability of enzymes upon complex formation, root-mean-square 

fluctuation (RMSF) for the flexibility/fluctuation of the complex, and radius of gyration (Rg) for the 

changes in the complex structures and information about overall dimensions (i.e., consistent stability 

throughout the simulation), MD simulations for both free enzymes and enzyme-ligand complexes 

with the selected ligands have been conducted, and the parameters have been calculated from the 

trajectory of MD simulations. The MD simulations of the ligands 2a, 6b and 13 against the HDAC1 

and 6b, 13 and 13a against the mTOR enzymes have also provided highly supporting evidence for 

the abovefindings.   

The combined RMSDs of both the complexes formed by binding of the ligands to free enzymes 

obtained through MD simulations are presented in Figures 8 and 9 that provide average RMSD values 

(A)

(B)

(C)

(D)

(E)

(F)
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of 1.74 and 3.47 Å (average RMSD for only globular proteins is less than 3 Å [Kufareva and Abagyan, 

2012]) for free HDAC1 and mTOR enzymes, respectively. The average RMSDs of the HDAC1–

ligand 6b and mTOR–ligand 6b complexes are of 2.14 and 3.92 Å (in green, Figures 8 and 9), 

respectively, and such higher values compared to the free enzymes suggest the presence of high 

degree of rotatable bonds or structural flexibilities that cause the ligand 6b to be unable to attain 

stability inside the binding pocket of the enzymes in each case, which is assumed to be shallow. The 

average RMSD values of the the HDAC1–ligand 2a and HDAC1–ligand 13 complexes are of of 2.09 

and 2.20 Å (in blue and red, Figure 8), respectively, which are also higher than the RMSD value of 

the free HDAC1 enzyme. For such large complexes, the obtained values may be more acceptable 

compared to some simple structures. On the other hand, the average RMSD values of the the mTOR–

ligand 13 and mTOR–ligand 13a complexes are of of 4.13 and 3.42 Å (in blue and red, Figure 9), 

respectively. While the RMSD value for the mTOR–ligand 13 complex is higher than the free mTOR 

enzyme, this valus is found to be smaller in the case of mTOR–ligand 13a complex. 

 

 

 

Figure 8. The combined RMSD profiles from the 50ns-MD simulations of both free HDAC1 

enzyme (in black) and the complexes formed by binding of the ligands 2a (in blue), 6b (in green) 

and 13 (in red) to HDAC1. 
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Figure 9. The combined RMSD profiles from the 50ns-MD simulations of both free mTOR enzyme 

(in black) and the complexes formed by binding of the ligands 6b (in green), 13 (in blue) and 13a 

(in red) to mTOR. 

 

To better understand the deviation of amino acid residues of each complex relative to the 

reference position, the RMSFs, to which binding energies, ligand binding poses, and interactions 

entirely depend on [Bhowmick et al., 2020], have been generated through the MD simulations 

(Figures 10 and 11), and collected and evaluated the information regarding the flexibility and 

dynamics of the complexes and individual fraction of each complex fluctuating from its mean 

structure (the ratio of fluctuation in the residual level). From the data, the average RMSF value (in 

black, Figure 10) for the free HDAC1 enzyme is of 0.76 Å. In the case of the HDAC1–ligand 6b 

complex, the average RMSF value has been found to be 0.78 Å (in green, Figures 10). The result for 

the HDAC1–ligand 6b complex can be interpretated in the manner of higher level of fluctuation, at 

which the residues 19, 78 and 91 in the complex produces higher RMSF values than the free enzyme 

whereas the case is opposite in the residues 201 and 368 of the free enzyme compared to the complex. 

Therefore, the complex has shown higher fluctuation pattern than the free ligand supported by the 

greater RMSF values, which indicate that the residues are located in the loop regions with more 

conformational flexibility. The RMSF values  for the other complexes (0.75 Å and 1.00 Å for 

HDAC1–ligand 2a and HDAC1–ligand 13, respectively) have been obtained (in blue and red, Figure 

10), and it is clearly evident that the residues 0, 19, 77, 198, and 261 from the HDAC1–ligand 13 

complex have very sharp peaks while the free enzyme only has residue 368 exhibiting greater 

intensity. Thus, this is confirming the higher fluctuation pattern for the complex as well. For the 

HDAC1–ligand 2a complex, however, only residue 201 gives sharp peak for the complex while 

residue 368 does for the free enzyme. In the case of the RMSF values for the complexes of the ligands 

with the mTOR enzyme, the mTOR–ligand 6b complex has an average RMSF value of 1.73 Å (in 

green, Figure 11) while the free mTOR enzyme exhibits 1.61 Å (in black, Figure 11). Similar results 
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and predictions can be speculated for the mTOR–ligand 13 (1.82 Å) and mTOR–ligand 13a 

complexes (1.84 Å) as well. The results also support that the free mTOR enzyme has shown lower 

fluctuation pattern than the complexes demonstrating that the restricted movements during the 

simulation. Thus, the residues located in the loop regions in the complexes have greater RMSF values 

that are corresponding to higher level fluctuations and more conformational flexibility rather than 

more constrained dynamics [Pereira et al., 2021].  

 

 

 

Figure 10. The combined RMSF profiles of both free HDAC1 enzyme (in black) and the 

complexes formed by binding of the ligands 2a (in blue), 6b (in green) and 13 (in red) to HDAC1. 

 

The difference between the values (~0.01–0.02 Å for HDAC1-ligand complexes and ~0.1–0.2 

Å for mTOR-ligand complexes) may be neglected because this much differences (a little more stable 

association in the case of mTOR complexes) may not cause any significant changes on the enzyme 

structures. However, the results provide clear evidence of small changes in the conformational state 

of the enzymes, and more importantly, our study is focusing more on the functions of ligands on the 

enzyme inhibitions rather than the small structural changes.  
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Figure 11. The combined RMSF profiles of both free mTOR enzyme (in black) and the complexes 

formed by binding of the ligands 6b (in green), 13 (in blue) and 13a (in red) to mTOR. 

 

In order to collect more information about overall dimensions, investigate the changes of the 

complex structures, and further analyze the compactness and rigidity of the enzyme-ligand 

complexes, the mass-weighted root-mean-square distance of a group of atoms from their typical 

center of mass (also known as radius of gyration (Rg) parameter [Lobanov et al., 2008]) has been 

calculated (Figures 12 and 13). From such values, consistency of the complex and consistent stability 

throughout the MD simulations can be predicted (the larger variations from the Rg indicates the 

inconsistency of the complexes [Bhowmick et al., 2020]). The free enzymes HDAC1 and mTOR have 

exhibited average Rg values of 1.376 and 1.383 nm (in black, Figures 12 and 13), respectively. In 

the case of HDAC1–ligand 6b and mTOR–ligand 6b complexes, the average Rg values are of 1.378 

and 1.381 nm, respectively, and such values are slighly lower than the values exhibited by the free 

enzymes. This means the complexes have very smaller differences (almost negligible) than the free 

enzymes, referring to a little or almost no conformational changes throughout the MD simulations. A 

slight decrease in the average Rg values in each case elucidates higher compactnesses of the 

complexes, thereby suggesting higher stability and lower flexibility.  
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Figure 12. The combined Rg profiles of both free HDAC1 enzyme (in black) and the complexes 

formed by binding of the ligands 2a (in green), 6b (in blue) and 13 (in red) to HDAC1. 

 

For the average Rg values of the HDAC1–ligand 13 (1.389 nm, in red, Figure 12) and mTOR–

ligand 13 (1.381 nm, in blue, Figure 13) complexes, the free HDAC1 enzyme exhibits lower Rg 

value than its pertinent complex with the ligand 13, while mTOR–ligand 13 complex has lower 

average Rg value compared to its free enzyme mTOR. Although the smaller average Rg values 

denotes the higher compactness and stability with lower flexibility, the differences between the 

average Rg values of the free enzymes and complexes are still negligible. The HDAC1–ligand 2a 

(1.293 nm, in blue, Figure 12) and mTOR–ligand 13a (1.381 nm, in red, Figure 13) complexes also 

have lower average Rg values than their pertinent free enzymes, which suggest the higher 

compactness and stability with lower flexibility in these complexes as well.     
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Figure 13. The combined Rg profiles of both free mTOR enzyme (in black) and the complexes 

formed by binding of the ligands 6b (in green), 13 (in blue) and 13a (in red) to mTOR. 

 

Since the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET, one 

of the most essential parts of computational drug design for the assessment of pharmacokinetics of a 

drug and/or an API) play key roles in drug discovery and development, an ADMET study by using a 

free web tool, SwissADME (with Lipinski’s rule of five during the preclinical phase of drug 

discovery: Molecular Weight (MW) ˂ 500, Number of Hydrogen Bond Donors ≤ 5, Number of 

Hydrogen Bond Acceptors ≤ 10, Calculated Log p ≤ 5, and Polar Surface Area (PSA) ˂ 140 Å2) 

[Daina et al., 2017], has been investigated (Table 5) for the most effective 20 ligands (1, 1a, 1b, 2, 

2a, 2b, 3, 3b, 5, 5a, 6b, 7, 7a, 7b, 8b, 12b, 13, 13a, 14b and 23b). The Lipinski’s rule of five states 

that if a drug and/or an API violates more than two of the abovementioned criteria, it is considered 

impermeable or badly absorbed [Daina et al., 2017].         
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Table 5. The ADMET study for the selected 20 ligands using a free web tool, SwissADME (with 

Lipinski’s rule of five) [Daina et al., 2017]. 

ADMET ANALYSIS 

Ligand 

Name 

Molecular 

Weight (g/mol) 
Log P 

H Bond 

Donor 

H Bond 

Acceptor 

Total Polar Surface 

Area (Å2) 

1 353.41 1.93 3 5 77.92 

1a 383.44 1.87 3 6 87.15 

1b 538.55  3.29 4 8 142.90 

2 336.38 3.23 2 4 74.68 

2a 366.41 3.23 2 5 83.91 

2b 508.52 4.37 2 8 118.84 

3 364.44 3.98 1 4 63.68 

3b 508.52 4.37 2 8 118.84 

5 316.32 4.65 1 4 28.15 

5a 346.35 4.59 1 5 37.38 

6b 468.39 7.17 0 8 25.78 

7 293.3.2 3.00 1 3 73.97 

7a 323.35 3.01 1 4 83.20 

7b 500.39 6.79 0 10 44.27 

8b 422.39 4.10 0 6 117.42 

12b 584.71 4.11 0 4 72.88 

13 437.58 4.51 3 2 55.45 

13a 467.61 4.52 3 3 64.68 

14b 710.91 6.74 4 4 80.38 

23b 558.72 4.28 4 4 80.38 

 

None of our abovelisted ligands violate more than two of the Lipinski’s rule of five criteria, 

which provides a very promising and higher tendency for all ligands to pharmacologically be active 

(great API potents). Of the ligands, 12 of them (1, 1a, 2, 2a, 3, 5, 5a, 7, 7a, 8b, 13 and 13a) completely 

meet all the criteria of Lipinski’s rule of five. As stated above, the ligands 2a, 6b and 13 against the 

HDAC1 and 6b, 13 and 13a against the mTOR enzymes have exhibited very promising binding 

energies and inhibition constants from the docking processes with supporting MD simulations for the 
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respective complexes. Except for the ligand 6b (Log P = 7.17), ligands 2a, 13 and 13a also meet all 

the Lipinski’s rule of five criteria. 

Considering all the above findings with the supported literature details, synthetic possibility of 

the ligands have also been investigated and some general synthetic protocols utilizing and/or 

modifying the literature [Cetin et al., 2022; Dietrich-Buchecker and Sauvage, 1990; Zhong et al., 

2010; Kang et al., 2014; Cetin, 2017; Cetin et al., 2017; Cetin et al., 2020; Schmittel et al., 1997; 

Kohler et al., 2017; Kohler et al., 2016; Hayes et al., 2018; Hayes et al., 2018] have been proposed 

(Scheme 1: (A) for the Ps-based derivatives from the Figures 1A and 1B, and Table 2; (B) for the 

Ps derivatives from the Figures 1C and 1D, and Table 3; and (C) for the PHEN-based derivatives 

from the Figures 1E and 1F, and Table 4) in order to further obtain such ligands. Upon synthesis of 

the each promising ligand, their copper(I) complexes may also be obtained by mixing 2:1 ratio of the 

relevant ligand and [Cu(CH3CN)4]PF6 salt in the 1:1 mixture of dichloromethane and acetonitrile 

solvents. Such copper(I) complexes will also be further investigated. 

 

 

 

Scheme 1. The proposed general synthetic routes for the syntheses of (A) Ps-based, (B) Ps, and (C) 

PHEN derivatives from either literature or adapted procedures [Cetin et al., 2022; Dietrich-

Buchecker and Sauvage, 1990; Zhong et al., 2010; Kang et al., 2014; Cetin, 2017; Cetin et al., 

2017; Cetin et al., 2020; Schmittel et al., 1997; Kohler et al., 2017; Kohler et al., 2016; Hayes et al., 

2018; Hayes et al., 2018]. 

 

 

 

 

A) Ps-based derivatives B) Ps derivatives

C) PHEN derivatives
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4. Conclusions and Recommendations 

 

In conclusion, the SAR and in silico modeling of a series of Ps and PHEN derivatives (75 in 

total) as highly potent new anticancer therapeutic drug/API candidates against mTOR and HDAC 

enzymes have been investigated. Some of the designed and optimized ligands via in silico 

computational modeling (1, 1a, 1b, 2, 2a, 2b, 3, 3b, 5, 5a, 6b, 7, 7a, 7b, 8b, 12b, 13, 13a, 14b and 

23b) have exhibited very promising binding energies and inhibition constants against HDAC1 and/or 

mTOR enzymes after formation of the relative enzyme-ligand complexes. Such ligands have been 

found to be highly potent to inhibit either one or both enzymes against brain metastatic breast cancer, 

preferentially against both for the dual action purposes. Compared to the natural product Ps, such 

proposed structures have exhibited effectiveness on inhibition of enzymes at nM level with very 

promising binding energies. While the ligands 6b and 7b have been showing very promising dual 

action against both of the enzymes from the PHEN derivatives, 2a, 5 and 13 are the effective ones 

exhibiting dual action from the Ps-based and Ps derivatives. The further MD simulations for the 

selected ligands (2a, 6b and 13 against HDAC1 and 6b, 13 and 13a against mTOR), exhibiting the 

best results considering the binding energies and inhibition constants, have also been conducted, and 

the parameters have been calculated from the trajectory of the 50ns-MD simulations, which have 

provided highly supporting evidence regarding structural conformations, stability of the enzyme 

backbone upon complex formation, consistent stability throughout the simulation, 

flexibility/fluctuation of the complexes, changes in complex structure and information about overall 

dimensions of complexes. All the complexes against both enzymes have exhibited higher RMSD 

values, referring to the presence of high degree of rotatable bonds or structural flexibilities that cause 

the ligands to be unable to attain stability inside the binding pocket of the enzymes, which are assumed 

to be shallow. When RMSF values are compared, the free enzymes have exhibited lower RMSFs than 

their relevant ligand-enzyme complexes with the selected ligands. Thus, the results have shown that 

the complexes have higher level of fluctuation patterns than the free enzymes, indicating that the 

residues are located in the loop regions with more conformational flexibility in the complexes rather 

than more constrained dynamics. The outcomes from the RMSFs support that the free enzymes 

demonstrate restricted movements during the simulations as well. According to the calculated average 

Rg values, very small differences in the compared values for the free enzymes and complexes refer 

to a little or almost no conformational changes throughout the MD simulations in all cases. Slight 

decreases in the values have elucidated higher compactnesses of the structures, thereby suggesting 

higher stability and lower flexibility. The ADMET study using SwissADME (with Lipinski’s rule of 

five) have provided that none of the selected ligands have violated more than two of the Lipinski’s 

rule of five criteria, proving a highly promising tendency for the ligands to be pharmacologically 
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active. Thus, we have acquired some compounds through in silico computational modeling that may 

provide great therapeutic potential for the breast cancer patients who are at a large brain metastasis 

risk. Considering highly promising outcomes of this work, further syntheses of some of the selected 

compounds are still under study in our laboratories. 
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