
KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Kahramanmaras Sutcu Imam University
Journal of Engineering Sciences

Geliş Tarihi : 21.01.2025 Received Date : 21.01.2025

Kabul Tarihi :18.03.2025 Accepted Date : 18.03.2025

ToCite: ÇİÇEK, Ö., & CANDEMİR, S., (2025). MACHINE LEARNING-BASED MODEL

DEVELOPMENT IN MOBILE HEALTH APPLICATIONS AND DEVICE-CLOUD INTEGRATION.

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 28(2), 872-882.

MACHINE LEARNING-BASED MODEL DEVELOPMENT IN MOBILE

HEALTH APPLICATIONS AND DEVICE-CLOUD INTEGRATION

MOBİL SAĞLIK UYGULAMALARINDA MAKİNE ÖĞRENMESİ TEMELLİ

MODEL GELİŞTİRME VE MODELİN CİHAZ-BULUT ENTEGRASYONU

Özge ÇİÇEK1 (ORCID: 0009-0004-8982-3341)

Sema CANDEMİR1* (ORCID: 0000-0001-8619-5619)

1 Eskisehir Technical University, Artificial Intelligence in Healthcare Laboratory, Computer Engineering Department, Eskisehir, Türkiye

*Sorumlu Yazar / Corresponding Author: Sema CANDEMIR, semacandemir@eskisehir.edu.tr

ABSTRACT

Mobile Health (mHealth) uses mobile devices and wireless technology to support healthcare practices, enabling

widespread access to health services. Recent advancements in machine learning (ML) have enhanced healthcare by

improving disease diagnosis and monitoring. However, integrating and executing machine learning models,

especially those based on image processing and deep learning, on mobile devices can be challenging due to limited

processing power and storage capacity. This study describes the steps of developing an ML-based model and its

integration into mobile devices and cloud environments. A skin disease predictor using the MobileNet architecture

was developed as a use-case mHealth application. Techniques such as transfer learning, data augmentation, and focal

loss were employed to enhance model performance. The mHealth model was then integrated into a mobile device

and the cloud environment. The on-device model exhibited faster prediction times (average 108.3 ms) compared to

the cloud-based model (average 1281.2 ms). While on-device deployment ensured data privacy and offline

functionality, the cloud approach provided scalability and easier updates, but at the expense of latency and data

security. By providing a comparative analysis, this work demonstrates the feasibility of integrating ML models into

mHealth applications, emphasizing the importance of balancing performance, cost, and usability.

Keywords: Mobile health, machine learning, MobileNet, device-cloud integration

ÖZET

Mobil Sağlık (mHealth), mobil cihazlar ve kablosuz teknolojiyi kullanarak sağlık hizmetlerini destekleyen

uygulamaları içerir ve sağlık hizmetlerine yaygın erişim sağlar. Makine öğrenimi (ML) alanındaki son gelişmeler,

hastalık teşhisi ve takibini iyileştirerek sağlık hizmetlerini geliştirmiştir. Ancak, özellikle görüntü işleme ve derin

öğrenmeye dayalı makine öğrenimi modellerini mobil cihazlara entegre etmek ve çalıştırmak, sınırlı işlem gücü ve

depolama kapasitesi nedeniyle zor olabilir. Bu çalışma, bir ML tabanlı modelin geliştirilmesi ve mobil cihazlar ile

bulut ortamlarına entegrasyonu adımlarını açıklamaktadır. Örnek mHealth uygulaması olarak MobileNet mimarisi

kullanılarak bir cilt hastalığı tahmin modeli geliştirilmiştir. Model performansını artırmak için transfer öğrenimi, veri

artırma ve focal loss gibi teknikler kullanılmıştır. Eğitilmiş mHealth modeli daha sonra bir mobil cihaza ve bulut

ortamına entegre edilmiştir. Cihaz üzerindeki model, bulut tabanlı modele kıyasla daha hızlı tahmin süreleri (cihaz

üzerindeki model ortalama 108,3 ms) sergilemiştir (bulut tabanlı model ortalama 1281,2 ms). Cihaz üzerindeki

dağıtım, veri gizliliği ve çevrimdışı işlevsellik sağlarken, bulut yaklaşımı ölçeklenebilirlik ve daha kolay

güncellemeler sunmuş, ancak gecikme süresi ve veri güvenliği açısından dezavantajlar yaratmıştır. Bu çalışma ML

modellerinin mHealth uygulamalarına entegrasyonunun uygulanabilirliğini göstermekte, karşılaştırmalı bir analiz

sunmakta ve performans, maliyet ve kullanılabilirlik arasında bir denge kurmanın önemini vurgulamaktadır.

Anahtar Kelimeler: Mobil sağlık, makine öğrenmesi, MobileNet, cihaz-bulut entegrasyonu

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 873 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

INTRODUCTION

With rapid technological advancements and increasing mobile phone usage, the number of health sector mobile

applications has grown. These applications enable effective participation of patients and healthcare providers,

ultimately improving patient outcomes (Sama et al.,2014). Mobile Health (mHealth) refers to using mobile devices

and wireless technology to support medical and public health practices, enabling instant access to health solutions

and services, regardless of location. mHealth allows patients and their families to track their own care and customize

healthcare services according to their needs, making healthcare applications portable, easily accessible, and

personalized (Silva et al.,2015). The widespread usage of mobile devices, low cost of developing mobile applications,

and their flexibility have driven rapid growth in healthcare mobile applications. According to the World Health

Organization (https://www.who.int/), ~90% of the world’s population can benefit from mobile technologies at a

relatively low cost. A study by the Health Services Informatics Institute (Molina-Recio et al.,2015) found over 40,000

health and medical applications in Apple stores, increasing to 97,000 when including applications from the Play Store

and other platforms. mHealth applications have become the third fastest-growing sector after games and utility

programs.

Machine Learning (ML) models analyze medical data, learn distinctive disease patterns, and make predictions for

new data. Recently, these models, especially deep learning approaches, have shown great potential in improving

healthcare. However, running ML-based models, particularly deep learning models for health applications, on mobile

devices is challenging due to limited processing power and storage capacity. Therefore, developing efficient ML

models tailored for mobile environments and exploring cloud integration to mitigate device limitations is necessary.

This study outlines the development stages of an ML-based model for mHealth solutions, its integration into both

mobile devices and the cloud, and provides a comparison of these environments. The study’s contributions are as

follows: (i) Given its potential as an mHealth application, the focus is on creating an ML based model to predict skin

diseases. The entire process is detailed. The model is trained with a comprehensive dataset to learn distinctive features

specific to various skin conditions. (ii) Critical factors in developing a mobile application include the model’s high

performance, fast feedback, and efficient use of storage. Considering these factors, we chose the MobileNet

architecture (Howard et al.,2014) as the base of our model due to its space efficiency, fewer parameters, and sufficient

layers for positive classification performance. (iii) Data sensitivity is a key concern in healthcare applications. For

this reason, deploying the model directly on a device may be a better option. This study explains how to integrate a

trained model into a device. (iv) Deep learning models often require many layers and large datasets for good

performance. However, these models can take up a lot of space and may not run efficiently on mobile devices with

limited hardware. To address this, integrating the model into the cloud for processing can be a practical alternative.

This study also details the process of cloud integration. (v) Finally, the study compares the advantages and

disadvantages of on-device versus cloud integration, including a comparison of their response times using the same

test data.

The rest of the study is structured as follows: Related Work section provides a brief overview of related studies and

highlights the differences between our work and existing literature. Materials and Methods section describes the

model development and its integration into both device and cloud environments. Experimental Results and Analysis

section presents the experimental results. Conclusion section concludes the study by summarizing our findings and

provides comparative insights into the integration approaches of on-device and cloud environments.

RELATED WORK

Many studies have examined mHealth applications. For example, Jung et al. developed an Android-based app to help

diabetes patients track their condition (Jung et al.,2014). Similarly, Susanto et al. (Susanto et al.,2022) reviewed

smartphone-integrated image recognition systems used in medical areas like dermatology, ophthalmology, nutrition,

neurology, respiratory medicine, blood disorders, gynecology, and dentistry. Khan et al. (Khan and Alotaibi, 2020)

conducted another review focusing on AI-based big data analysis tools in mHealth applications. They highlighted

the use of mobile sensors like cameras, wearable devices, GPS, microphones, and accelerometers to monitor physical

activities, track locations, and assess sleep patterns. These technologies significantly improve the effectiveness of

mHealth applications.

Several studies have used machine learning to predict skin diseases. Esteva et al. applied Convolutional Neural

Networks (CNN) to identify skin cancer from clinical images, achieving over 90% sensitivity and specificity in

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 874 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

distinguishing between malignant and benign lesions (Esteiva et al., 2017). Goceri conducted a comprehensive

review (Goceri, 2021) and trained a MobileNet model with a hybrid loss function to classify skin diseases, achieving

94% accuracy. The study also designed a user interface for the model, but did not address how the model could be

integrated into devices or the cloud. In a related study, Dai et al. (Dai et al., 2019) integrated a skin disease

classification model into a mobile application, testing the model directly on the device. This study emphasized the

benefits of running predictions on the device, such as keeping sensitive patient images secure and providing faster

feedback. However, they did not optimize the model for storage space, which is crucial for mobile applications. They

chose AlexNet model with 8 convolution layers, 61 million parameters, and 250 MB of storage (Han et al.,2015),

making it inefficient for mHealth applications.

This study outlines the development of an ML model for mHealth solutions, focusing on its integration into mobile

devices and the cloud, and comparing these two environments. Our study differs from similar research in the

following ways: (i) We focused on developing a model capable of predicting skin diseases, providing an in-depth

development outline. While Dai et al. (Dai et al.,2019) briefly touch on model development and device integration

for predicting skin disease, our study explores these aspects more thoroughly. (ii) Critical factors for a mobile

application include the model’s high performance, fast feedback, and efficient use of storage space. Our study

addresses these factors by training a MobileNet model, known for its compact size, fewer parameters, and adequate

depth for robust performance. In contrast, Dai et al. (Dai et al.,2019) used an AlexNet model, which is less efficient

in terms of storage space. Therefore, our study offers a better-planned solution for mobile implementation compared

to Dai et al.’s work. (iii) Our study outlines the integration of the model into both device and cloud environments and

compares the performance of integrated models using the same test data. In this regard, the study differs from both

Goceri`s (Goceri, 2021) and Dai et al.’s (Dai et al., 2019) works.

MATERIALS AND METHODS

Dataset

This study uses the HAM10000 dataset (Tschandl et al.,2018) compiled by a dermatology professor from the Medical

University of Vienna and Queensland University. The dataset contains 10,000 dermatoscopic images collected from

patients over 20 years, along with metadata including age, gender, and cell type. It includes seven types of skin

diseases: Melanocytic Nevi (nv), Benign Keratosis-like Lesions (bkl), Dermatofibroma (df), Vascular Lesions (vasc),

Actinic Keratoses and Intraepithelial Carcinoma (akiec), Basal Cell Carcinoma (bcc), and Melanoma (mel). Table 1

lists the class labels and the number of samples in each class. Figure 1 shows example images from the dataset.

Table 1. Summary of Skin Disease Classes In The HAM10000 Dataset (Tschandl et al.,2018)

Class Label Abbreviation # of Samples
of Training Samples

after Augmentation

Actinic Keratoses and Intraepithelial Carcinoma akiec 327 5684

Basal Cell Carcinoma bcc 514 5668

Benign Keratosis-like Lesions bkl 1,099 5896

Dermatofibroma df 115 4747

Melanoma mel 1,113 5886

Melanocytic Nevi nv 6705 5979

Vascular Lesions vasc 142 5570

Figure 1. Sample Images From The HAM10000 Dataset (Tschandl et al.,2018)

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 875 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

Model Architecture

The MobileNet architecture (Howard et al.,2014) was selected for model development due to its design for devices

with limited computational power and storage capacity. MobileNet uses small kernel layers to minimize the number

of parameters and computational costs. Table 2 compares MobileNet with other well-known models, showing its

smaller size and fewer parameters, which make it a suitable choice for resource-constrained devices.

Table 2. Comparison Of Well-known Machine Learning Models By Size, Number Of Parameters, And Layers,

Emphasizing MobileNet’s Suitability For Resource-constrained Devices
Model Size (MB) # of Parameters # of Layers

AlexNet 250 61 M 8

MobileNet 16 4.3 M 55

Vgg-16 528 138.4 M 16

ResNet50 98 25 M 107

Inception V3 92 23.9 M 189

DenseNet201 80 20.2 M 402

Model Training

Developing machine learning algorithms requires comprehensive training data. However, curating datasets for

medical problems is particularly challenging due to the difficulty in obtaining expert annotations (Candemir et

al.,2021). One way to overcome this challenge is to use pre-trained models on larger datasets from other domains

(Weiss et al.,2016). In this study, we used a pre-trained MobileNet model with weights trained on ImageNet

(Krizhevsky et al.,2017). Our development dataset includes samples from seven types of skin diseases, with varying

numbers of instances for each class, as shown in Table 1. To address this class imbalance, we applied data

augmentation to increase the training samples in underrepresented classes. The augmentation methods and their

parameter settings are listed in Table 3. The number of training samples for each class after augmentation is listed in

Table 1.

Table 3. Data Augmentation Techniques And Their Parameters Used To Address Class Imbalance During Training
Data Augmentation Method Ratio

Rotation 180 degrees

Zoom 0.1

Height Shift Range 0.1

Width Shift Range 0.1

During model training, we used two types of loss functions: cross-entropy loss and focal loss. Cross entropy loss is

commonly used metric for multi-class classification tasks, evaluating the model’s predicted probabilities for each

class. This loss function increases as the predicted probability deviates from the true label and treats each data point

equally within each class. The formula for cross-entropy loss is:

𝐿𝐶𝐸(𝑦𝑖, �̂�𝑖) = − ∑ 𝑦𝑖 𝑙𝑜𝑔 (�̂�𝑖)𝑁
𝑖=1 (1)

where N denotes the number of classes to be predicted, 𝑦𝑖 is the true value for class i, and �̂�𝑖 is the predicted value

for class i.

The cross-entropy loss function does not account for the varying difficulty of classifying different classes or

individual cases within each class. To address the inter-class and intra-class variability in the dataset, we used Focal

Loss (Lin et al.,2017), which is designed to handle challenging cases by giving more weight to samples where the

model struggles. This loss function adjusts the model’s focus toward harder-to-classify samples, helping it learn from

these cases, leading to improved performance across all classes. The formula for focal-loss is:

𝐿𝐹𝑜𝑐𝑎𝑙(𝑦𝑖, �̂�𝑖) = − ∑ 𝛼𝑖𝑦𝑖(1 − �̂�𝑖)𝛾 𝑙𝑜𝑔 (�̂�𝑖)𝑁
𝑖=0 (2)

Where N represents the number of classes to be predicted, 𝑦𝑖 represents the true value for class i, . d �̂�𝑖 represents the

predicted value for class i. The parameters α and γ help balance the importance of classes and control the focus on

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 876 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

hard-to-classify examples, respectively. The implementation details of model development are summarized in

Section 4.1.

Integrating Machine Learning Model to Mobile Device

Integrating ML-based mHealth models into mobile devices presents several challenges: (i) The limited computational

resources of mobile devices make it difficult to run complex ML models, especially deep learning architectures with

many parameters. (ii) The limited storage capacity of mobile devices complicates the deployment of these models,

as deep learning models require large storage capacity to store the model’s architecture and weights. (iii) Processing

and transmitting health data requires data protection to comply with personal data protection laws. Given the

sensitivity of health data, ensuring patient privacy is crucial. There are two main approaches to integrating ML models

into mobile devices: On-Device Deployment and Cloud Deployment.

On-Device Deployment

In on-device deployment, the model is trained on a high-performance computer. Once trained, the model’s

architecture and weights are stored on a mobile device, allowing predictions to be performed directly on the device.

The approach is illustrated in Figure 2. On-device deployment has several advantages. It ensures the privacy and

security of patient data since the data remains on the device, reducing the risk of data breaches. It provides faster

prediction feedback as the model runs locally. It also eliminates the need for an internet connection with offline

functionality. This approach is also cost-effective compared to cloud deployment, as it avoids recurring cloud service

fees. On-device deployment has limitations as well. There is a risk of data loss if the mobile device malfunctions

without a backup. Furthermore, if the model requires retraining due to data changes (e.g., data shift) or performance

improvements, the application needs to be reloaded on the device, which can be inconvenient for users.

Figure 2. Illustration Of On-device Deployment Where The Model Is Trained On A High-performance Computer

And Integrated Into A Mobile Device For Predictions

Cloud Deployment

Cloud deployment operates on a client-server model, where the trained model’s architecture and weights are stored

on a remote server. The mobile device communicates with the server to perform predictions. The mobile device sends

query data to the cloud, the trained model generates predictions for the query data, and then sends the results back to

the mobile device. Figure 3 illustrates the cloud deployment.

Figure 3. Illustration Of Cloud Deployment. The Prediction Is Carried Out On The Cloud Side, Displaying The

Results On The Mobile Device

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 877 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

In cloud deployment, the prediction process is carried out on the cloud side. This eliminates the need for mobile

devices to have high-end hardware. This approach also makes data more accessible and easier to manage. With

patient consent, mHealth solution providers can access larger datasets, potentially developing advanced AI

algorithms for more efficient patient care. Cloud deployment has drawbacks as well. It requires a high-speed network

connection for smooth data transfer. Poor connectivity or interruptions can lead to delays, negatively impacting user

experience. Additionally, storing data in the cloud incurs ongoing costs, increasing expenses for mHealth solution

providers. Privacy and security of patient data are also concerns, as sharing data on the cloud raises the risk of

sensitive information leaks. Developers must ensure that data is always encrypted and protected to prevent hacking

and unauthorized access.

The advantages and disadvantages of integrating the model into both the device and cloud environments are

summarized in Table 4.

Table 4. Comparative Advantages And Disadvantages Of On-device And Cloud-based

Machine Learning Model Integration
Method Advantages Disadvantages

Device Integration Ensures privacy and security of sensitive data Difficulty in model updates

 Offline access Data loss in case of device failure

 Low cost of system requirements Limited data storage and data processing

 Fast access to prediction results hardware

Cloud Integration Data accessibility and manageability Network connection requirement

 To be independent of the device’s data Possible delays due to network connection

 processing and data storage capacity Possibility of privacy breach for sensitive data

 Cloud system cost

 Relatively slow access to prediction results

EXPERIMENTAL RESULTS AND ANALYSIS

Implementation Details of the Prediction Model Development

The skin disease prediction model was developed using Python, TensorFlow version 2.0 with the Keras framework,

and the scikit-learn library. The dataset was randomly divided into training (60%), validation (20%), and test subsets

(20%). To maintain proportional representation of each lesion type due to dataset imbalance (see Table 1),

stratification technique was applied during the splitting process. Data augmentation was used on the training data to

further address class imbalance (see Table 3). The MobileNet architecture was chosen for its high performance and

compact size, making it well-suited for mobile applications. A pre-trained MobileNet was fine-tuned using the

training dataset, with optimal hyperparameters determined empirically through the validation data. The training

parameters are listed in Table 5. For an efficient training process, we used early stopping and model checkpoints,

which regularly save the model weights to capture the best performance at the end of the training process.

Table 5. Training Parameters Used To Develop The MobileNet-based Skin Disease Prediction Model
Parameter Value

Model Network MobileNet

Learning Rate 0.001

Batch Size 32

Epochs 15

Loss Functions Cross Entropy and Focal Loss

Optimizer Adam [17] β1 =0.9 and β2 =0.999

Processing Size 224 x 224

During training process, loss and accuracy were monitored to ensure effective learning and to avoid overfitting. The

learning curves for both the training and validation datasets are shown in Figures 4 and 5. Figure 4 presents the

learning curves using the cross-entropy loss function, and Figure 5 presents the learning curves using the focal loss

function. These graphs show similar trends for both the training and validation subsets, indicating a successful

optimization process. During the training process, loss and accuracy were monitored to ensure effective learning and

to avoid overfitting. These graphs show similar trends for both datasets, indicating a successful optimization process.

However, during the final stage of training, validation accuracy decreases while validation loss increases, which is

indicative of onset of overfitting stage. If the training were continued beyond this stage, the model might start

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 878 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

memorizing patterns specific to the training dataset rather than learning generalizable features. To prevent this, we

used early stopping technique, which stops the training process when an increase in validation loss is detected. As

seen in the graphs, the training process does not continue beyond this point.

Figure 4. Learning Curves During The Training Process using Cross Entropy Loss Function. The Left Plot Shows

The Accuracy Over Epochs For Both The Training And Validation Dataset. The Right Plot Illustrates The

Corresponding Loss Curves

Figure 5. Learning Curves During The Training Process using Focal Loss Function. The Left Plot Shows The

Accuracy Over Epochs For Both The Training And Validation Dataset. The Right Plot Illustrates The

Corresponding Loss Curves

The performance of the skin disease prediction model was evaluated on the test data. The results are reported for

each class with accuracy, F1 score, recall, and precision in Table 6 for the cross-entropy loss function and in Table 7

for the focal loss function.

Table 6. Evaluation Results Of The Skin Disease Prediction Model Trained With Cross-entropy Loss Function,

Evaluated On The Test Dataset
Class Accuracy F1 Score Recall Precision

akiec 0.5926 0.5926 0.5926 0.5926

bcc 0.6562 0.7241 0.6562 0.8077

bkl 0.6076 0.6038 0.6076 0.6000

df 0.4286 0.5000 0.4286 0.6000

mel 0.2439 0.3509 0.2439 0.625

vasc 0.5833 0.7368 0.5833 1.000

Average 0.5847 0.6381 0.5847 0.7375

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 879 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

Table 7. Evaluation Results Of The Skin Disease Prediction Model Trained With Focal Loss Function,

Evaluated On The Test Dataset
Class Accuracy F1 Score Recall Precision

akiec 0.6296 0.3846 0.3704 0.4000

bcc 0.625 0.6102 0.5806 0.6429

bkl 0.5570 0.6713 0.6000 0.7619

df 0.5714 0.6667 0.5714 0.8000

mel 0.4146 0.4675 0.4286 0.5143

vasc 0.5833 0.8421 0.7273 1.000

Average 0.6222 0.6570 0.6082 0.7223

When analyzing the overall performance, we observe that the choice of loss function impacts the model`s ability to

classify different skin disease types. Compared to the performance of cross-entropy, the focal loss function enhances

the prediction of less frequent and harder-to-classify classes, leading to an increase in overall accuracy from 0.5847

to 0.6222 (+3.75%) and an improvement in the overall F1-score from 0.6381 to 0.6570. Recall also improved from

0.5847 to 0.6082 (+2.35%), while precision decreased slightly from 0.7375 to 0.7223 (-1.53%). The overall results

suggest that focal loss prioritizes harder-to-classify cases and less frequent classes.

There is a noticeable difference in performance for underrepresented disease classes. For instance, Dermatofibroma,

one of the least frequent classes in the dataset, had 14.29% increase in accuracy (0.4286 to 0.5714). The F1- score

increased from 0.5000 to 0.6667, indicating a better balance between precision and recall. Recall improved from

0.4286 to 0.5714, suggesting that the model identified more true positives. Melanoma, a critical yet challenging class

due to high intra-class variability and its visual similarity to benign lesions, had a notable performance increase with

focal loss. Accuracy improved by 17.08% (0.2439 to 0.4146), the F1-score increased from 0.3509 to 0.4675, and

recall increased from 0.2439 to 0.4286, indicating that focal loss helped the model identify more melanoma cases.

The improved performance suggests that focal loss effectively addresses class imbalance by giving additional weight

to harder examples, helping the model recognize subtle distinctions in melanoma lesions. Vascular lesions also

benefited from focal loss, with F1-score increasing from 0.7368 to 0.8421 and recall improving from 0.5833 to 0.7273

(+14.39%). These improvements suggest that focal loss was beneficial for handling less frequent and harder-to-

classify skin diseases. While focal loss generally improves classification for less frequent classes, some performance

trade-offs were observed. Performance losses were observed for Basal Cell Carcinoma and Actinic Keratoses.

Melanoma also had very low accuracy with both loss functions. This could be due to melanoma’s high intra-class

variation and visual similarity to other skin lesions, making it difficult for the model to learn distinguishing features.

Overall, focal loss demonstrates a better ability to handle imbalanced classes by improving recall and F1-score,

particularly for underrepresented skin disease types.

Implementation Details of the On-Device Deployment

In this part of the study, the developed model is integrated into a mobile device. The device used in this study is

Samsung Galaxy S23, containing Qualcomm Snapdragon 8 Gen 2 processor with 8GB of RAM and 128 GB of

internal storage. The operating system in the mobile device is Android 13, which is compatible with machine learning

libraries. The mobile device also includes high-resolution Dynamic AMOLED 2X display and supports 5G

connectivity for an optimal environment for both processing and user interaction. The integration of this model into

such a powerful smartphone enables real-time, on-device inference, contributing to both speed and privacy.

The weights and architecture of the trained model were saved in a .h5 file format specific to Tensorflow-Keras, which

is approximately 40 MB in size. For app development, two cross-platform frameworks were used: Flutter and React

Native.

Flutter, supported by Google, is an open-source platform that offers a versatile interface for rapid development using

the Dart language. Dart, also developed by Google, is designed for mobile app development and operates on both

iOS and Android devices. The trained model was converted to a TensorFlow Lite model using TFLiteConverter.

TensorFlow Lite is a framework within TensorFlow designed for developing lightweight and high-performance ML

models for mobile and embedded devices. This conversion reduced the model size from 40 MB to 12 MB. To

integrate the model into a Flutter application, the TensorFlow Lite Flutter plugin was utilized. The TensorFlow Lite

model, along with the labels corresponding to skin disease classes, was added to the mobile application project. Once

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 880 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

the model integration was completed, it allows users to upload images and generate predictions using the trained

model’s architecture and weights stored on the device (See Figure 6).

We also used React Native with the TensorFlow.js React Native adapter. These platforms enable the model to run

on both iOS and Android devices. The .h file, which contains the model architecture and weights, was converted to

the TensorFlow.js format. This conversion divided the large weight file into smaller 5 MB parts. To further reduce

the model size, quantization techniques were applied by decreasing the precision from 32-bit to 16-bit. The reduced

model was then divided into two files: the model.json file, which contains the model’s architecture, and the *.bin file,

which stores the model’s weights as binary format. These files were then added to the mobile application project

using TensorFlow’s React Native adapter. Once the model is uploaded, the users can upload a query image, and the

model predicts the skin disease.

Figure 6. User Interface Of The Mobile Application Showing The Prediction Results For Different Skin Disease

Images. The Integrated Model Runs Directly On The Device Using TensorFlow Lite For The Flutter Application

Implementation Details of the Cloud Deployment

In this part of the study, the developed model is integrated into a cloud environment. The cloud infrastructure used

in the study is based on Google Cloud Platform, which contains GPU-enabled virtual machines equipped with

NVIDIA A100 Tensor Core GPUs. Deployment is managed through a Docker container which simplifies packaging,

deployment, and execution of the model in a consistent and efficient manner.

To integrate the model into the cloud, it was saved in the SavedModel format, which is compatible with TensorFlow

Serving. TensorFlow Serving is an open-source tool designed for deploying TensorFlow models in production

environments. It supports RESTful APIs to allow mobile apps to interact with the model. With a RESTAPI, users

can upload photos through the app interface. They can either select photos from the gallery or take new ones using

the camera. These photos are then converted into JSON data and sent to the model’s REST API, which processes the

query and returns predictions as an API response. The SavedModel format stores the model’s architecture, weights,

variables, and training parameters. The model is then placed in a directory accessible to TensorFlow Serving to start

the deployment process. The deployment uses Docker, a containerization platform that simplifies application

development and deployment. TensorFlow Serving is pulled from the Docker cloud environment using the command

docker pull tensorflow/serving, making it ready for use. TensorFlow Serving is then initialized with the code shown

in Figure 7. To confirm the model is running, a request is sent to port 8501. If the model responds with the status

‘AVAILABLE’ it is ready for deployment. The model accepts input in JSON format and processes lesion photos as

image matrices. The pre-trained model classifies and predicts skin lesions using these image matrices.

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 881 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

Figure 7. TensorFlow Serving Initialization Command Used For Deploying The Model In A Cloud Environment

Comparison of On-device and Cloud Integration

The trained model has been integrated into both the device and the cloud environments. The feedback speeds were

compared using the same test data. Prediction results were obtained from 100 test images. The average prediction

times are as shown in Table 8.

Table 8. Comparison of Prediction Feedback Speeds

Method Prediction Feedback Time

Device-Integrated Model 108.3 ms

Cloud-Integrated Model 1281.2 ms

The results show that the prediction response speed of the device-integrated model is approximately ten times faster

than that of the cloud-integrated model. This indicates that for mHealth applications requiring frequent prediction

queries, cloud services may be less efficient. Factors such as network speed and server traffic load could further slow

cloud-based predictions, potentially leading to data loss and reduced application efficiency. Although the fast

feedback of the device-integrated model is advantageous, certain steps are needed before integration, such as reducing

the model size to fit on the device. In this study, a relatively compact architecture like MobileNet was used. However,

some applications may require larger and more complex models. As model depth increases, resulting in more

parameters and larger sizes, integration into the device could burden its hardware and processing capacity.

CONCLUSIONS

This study presents the development of a deep learning-based model for mHealth applications, focusing on its

integration into both mobile devices and the cloud environment, and comparing these deployment methods. The

focus was on predicting skin diseases, given the model’s practical application and usability. The MobileNet

architecture was selected for model development due to its compatibility with devices that have limited computational

power and storage capacity. The model was trained on a large, publicly available dataset. To improve performance

during training, transfer learning, data augmentation, and focal loss techniques were applied.

We integrated the trained model into both a mobile device and a cloud environment. Our comparison showed that

on-device integration for mHealth applications provides offline functionality, faster prediction feedback, and lower

costs. However, it has challenges such as limited processing power and storage capacity, which make it difficult to

run and maintain complex machine learning models. Additionally, issues such as potential data loss due to device

failure and the difficulty of updating the model can reduce the application’s usability. The cloud integration mitigates

hardware limitations and allows for easier model updates. However, it requires a constant internet connection,

potentially cause delays in prediction feedback. Additionally, sending sensitive patient data to the cloud increases

the risk of data leakage. Regular payments for storing data in the cloud also add extra costs, especially for widely

used mHealth applications.

In conclusion, developing ML-based mHealth solutions requires careful consideration of the benefits and drawbacks

of on-device and cloud deployment. Balancing these factors is crucial for designing an effective mHealth application.

ACKNOWLEDGEMENTS

This research is partially supported by the TUBITAK-BIDEB 2232 International Fellowship program under the grant

number 121C085.

This research is largely based on the work conducted by Özge Çiçek in her master’s thesis titled "Mobil Sağlık

Uygulamalarında Makine Öğrenmesi Temelli Model Geliştirme ve Modelin Cihaz-Bulut Dağıtımı" (Cicek, 2024)

KSÜ Mühendislik Bilimleri Dergisi, 28(2), 2025 882 KSU J Eng Sci, 28(2), 2025

Araştırma Makalesi Research Article

Ö. Çiçek, S. Candemir

REFERENCES

Candemir, S., Nguyen, X. V., Folio, L. R., & Prevedello, L. M. (2021). Training strategies for radiology deep learning

models in data-limited scenarios. Radiology: Artificial Intelligence, 3(6), e210014.

Çiçek, Ö. (2024). Mobil sağlık uygulamalarında makine öğrenmesi temelli model geliştirme ve modelin cihaz-bulut

Dağıtımı, Master’s Thesis, Eskisehir Technical University, Türkiye.

Dai, X., Spasić, I., Meyer, B., Chapman, S., & Andres, F. (2019). Machine learning on mobile: An on-device

inference app for skin cancer detection. In IEEE 4th Int. Conf. on Fog and Mobile Edge Computing, pp. 301 305.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level

classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

Goceri, E. (2021). Diagnosis of skin diseases in the era of deep learning and mobile technology., 134, 104458.

Computers in Biology and Medicine,134, 104458.

Han, S., Mao, H., Dally, W.J. (2015). Deep compression: Compressing Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding . arXiv preprint arXiv:1510.00149.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Jung EY, Kim J, Chung KY, Park DK. (2014). Mobile healthcare application with EMR interoperability for diabetes

patients. Cluster Comput 17(3):871–880.

Khan, Z., Alotaibi, S. (2020). Applications of artificial intelligence and big data analytics in m-health: A healthcare

system perspective. Journal Of Healthcare Engineering, 8894694. https://doi.org/10.1155/2020/8894694.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural

networks. Communications of the ACM, 60(6), 84-90.

Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollar, P. (2017). Focal Loss for Dense Object Detection. In Proceedings

of the IEEE International Conference on Computer Vision (pp. 2980-2988)

Molina-Recio, G., García-Hernández, L., Castilla-Melero, A., Palomo-Romero, J. M., Molina-Luque, R., Sánchez-

Muñoz, A. A., & Salas-Morera, L. (2015). Impact of health apps in health and computer science publications. A

systematic review from 2010 to 2014. In Bioinformatics and Biomedical Engineering, Granada, Spain, April 15-17,

2015. Proceedings, Part II 3 (pp. 24-34).

Sama, P. R., Eapen, Z. J., Weinfurt, K. P., Shah, B. R., & Schulman, K. A. (2014). An evaluation of mobile health

application tools. JMIR mHealth and uHealth, 2(2), e3088.

Silva, B. M., Rodrigues, J. J., de la Torre Díez, I., López-Coronado, M., & Saleem, K. (2015). Mobile-health: A

review of current state in 2015. Journal of biomedical informatics, 56, 265-272.

Susanto, A., Winarto, H., Fahira, A., Abdurrohman, H., Muharram, A., Widitha, U., Efirianti, G., George, Y. Tjoa,

K. (2022). Building an artificial intelligence-powered medical image recognition smartphone application: What

medical practitioners need to know. Informatics In Medicine Unlocked, 32:101017.

Tschandl, P., Rosendahl, C. & Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source

dermatoscopic images of common pigmented skin lesions. Sci. Data, 5, 180161 doi:10.1038/sdata.2018.161.

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3, 1-40.

https://doi.org/10.1155/2020/8894694

