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ABSTRACT 

Mobile Health (mHealth) uses mobile devices and wireless technology to support healthcare practices, enabling 

widespread access to health services. Recent advancements in machine learning (ML) have enhanced healthcare by 

improving disease diagnosis and monitoring. However, integrating and executing machine learning models, 

especially those based on image processing and deep learning, on mobile devices can be challenging due to limited 

processing power and storage capacity. This study describes the steps of developing an ML-based model and its 

integration into mobile devices and cloud environments. A skin disease predictor using the MobileNet architecture 

was developed as a use-case mHealth application. Techniques such as transfer learning, data augmentation, and focal 

loss were employed to enhance model performance. The mHealth model was then integrated into a mobile device 

and the cloud environment. The on-device model exhibited faster prediction times (average 108.3 ms) compared to 

the cloud-based model (average 1281.2 ms). While on-device deployment ensured data privacy and offline 

functionality, the cloud approach provided scalability and easier updates, but at the expense of latency and data 

security. By providing a comparative analysis, this work demonstrates the feasibility of integrating ML models into 

mHealth applications, emphasizing the importance of balancing performance, cost, and usability. 

Keywords: Mobile health, machine learning, MobileNet, device-cloud integration 

ÖZET 

Mobil Sağlık (mHealth), mobil cihazlar ve kablosuz teknolojiyi kullanarak sağlık hizmetlerini destekleyen 

uygulamaları içerir ve sağlık hizmetlerine yaygın erişim sağlar. Makine öğrenimi (ML) alanındaki son gelişmeler, 

hastalık teşhisi ve takibini iyileştirerek sağlık hizmetlerini geliştirmiştir. Ancak, özellikle görüntü işleme ve derin 

öğrenmeye dayalı makine öğrenimi modellerini mobil cihazlara entegre etmek ve çalıştırmak, sınırlı işlem gücü ve 

depolama kapasitesi nedeniyle zor olabilir. Bu çalışma, bir ML tabanlı modelin geliştirilmesi ve mobil cihazlar ile 

bulut ortamlarına entegrasyonu adımlarını açıklamaktadır. Örnek mHealth uygulaması olarak MobileNet mimarisi 

kullanılarak bir cilt hastalığı tahmin modeli geliştirilmiştir. Model performansını artırmak için transfer öğrenimi, veri 

artırma ve focal loss gibi teknikler kullanılmıştır. Eğitilmiş mHealth modeli daha sonra bir mobil cihaza ve bulut 

ortamına entegre edilmiştir. Cihaz üzerindeki model, bulut tabanlı modele kıyasla daha hızlı tahmin süreleri (cihaz 

üzerindeki model ortalama 108,3 ms) sergilemiştir (bulut tabanlı model ortalama 1281,2 ms). Cihaz üzerindeki 

dağıtım, veri gizliliği ve çevrimdışı işlevsellik sağlarken, bulut yaklaşımı ölçeklenebilirlik ve daha kolay 

güncellemeler sunmuş, ancak gecikme süresi ve veri güvenliği açısından dezavantajlar yaratmıştır. Bu çalışma ML 

modellerinin mHealth uygulamalarına entegrasyonunun uygulanabilirliğini göstermekte, karşılaştırmalı bir analiz 

sunmakta ve performans, maliyet ve kullanılabilirlik arasında bir denge kurmanın önemini vurgulamaktadır. 

Anahtar Kelimeler: Mobil sağlık, makine öğrenmesi, MobileNet, cihaz-bulut entegrasyonu 
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INTRODUCTION 

With rapid technological advancements and increasing mobile phone usage, the number of health sector mobile 

applications has grown. These applications enable effective participation of patients and healthcare providers, 

ultimately improving patient outcomes (Sama et al.,2014). Mobile Health (mHealth) refers to using mobile devices 

and wireless technology to support medical and public health practices, enabling instant access to health solutions 

and services, regardless of location. mHealth allows patients and their families to track their own care and customize 

healthcare services according to their needs, making healthcare applications portable, easily accessible, and 

personalized (Silva et al.,2015). The widespread usage of mobile devices, low cost of developing mobile applications, 

and their flexibility have driven rapid growth in healthcare mobile applications. According to the World Health 

Organization (https://www.who.int/), ~90% of the world’s population can benefit from mobile technologies at a 

relatively low cost. A study by the Health Services Informatics Institute (Molina-Recio et al.,2015) found over 40,000 

health and medical applications in Apple stores, increasing to 97,000 when including applications from the Play Store 

and other platforms. mHealth applications have become the third fastest-growing sector after games and utility 

programs.  

 
Machine Learning (ML) models analyze medical data, learn distinctive disease patterns, and make predictions for 

new data. Recently, these models, especially deep learning approaches, have shown great potential in improving 

healthcare. However, running ML-based models, particularly deep learning models for health applications, on mobile 

devices is challenging due to limited processing power and storage capacity. Therefore, developing efficient ML 

models tailored for mobile environments and exploring cloud integration to mitigate device limitations is necessary. 

 
This study outlines the development stages of an ML-based model for mHealth solutions, its integration into both 

mobile devices and the cloud, and provides a comparison of these environments. The study’s contributions are as 

follows: (i) Given its potential as an mHealth application, the focus is on creating an ML based model to predict skin 

diseases. The entire process is detailed. The model is trained with a comprehensive dataset to learn distinctive features 

specific to various skin conditions. (ii) Critical factors in developing a mobile application include the model’s high 

performance, fast feedback, and efficient use of storage. Considering these factors, we chose the MobileNet 

architecture (Howard et al.,2014) as the base of our model due to its space efficiency, fewer parameters, and sufficient 

layers for positive classification performance. (iii) Data sensitivity is a key concern in healthcare applications. For 

this reason, deploying the model directly on a device may be a better option. This study explains how to integrate a 

trained model into a device. (iv) Deep learning models often require many layers and large datasets for good 

performance. However, these models can take up a lot of space and may not run efficiently on mobile devices with 

limited hardware. To address this, integrating the model into the cloud for processing can be a practical alternative. 

This study also details the process of cloud integration. (v) Finally, the study compares the advantages and 

disadvantages of on-device versus cloud integration, including a comparison of their response times using the same 

test data.  

 
The rest of the study is structured as follows: Related Work section provides a brief overview of related studies and 

highlights the differences between our work and existing literature. Materials and Methods section describes the 

model development and its integration into both device and cloud environments. Experimental Results and Analysis 

section presents the experimental results. Conclusion section concludes the study by summarizing our findings and 

provides comparative insights into the integration approaches of on-device and cloud environments.  

RELATED WORK 

Many studies have examined mHealth applications. For example, Jung et al. developed an Android-based app to help 

diabetes patients track their condition (Jung et al.,2014). Similarly, Susanto et al. (Susanto et al.,2022) reviewed 

smartphone-integrated image recognition systems used in medical areas like dermatology, ophthalmology, nutrition, 

neurology, respiratory medicine, blood disorders, gynecology, and dentistry. Khan et al. (Khan and Alotaibi, 2020) 

conducted another review focusing on AI-based big data analysis tools in mHealth applications. They highlighted 

the use of mobile sensors like cameras, wearable devices, GPS, microphones, and accelerometers to monitor physical 

activities, track locations, and assess sleep patterns. These technologies significantly improve the effectiveness of 

mHealth applications.  

 
Several studies have used machine learning to predict skin diseases. Esteva et al. applied Convolutional Neural 

Networks (CNN) to identify skin cancer from clinical images, achieving over 90% sensitivity and specificity in 
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distinguishing between malignant and benign lesions (Esteiva et al., 2017). Goceri conducted a comprehensive 

review (Goceri, 2021) and trained a MobileNet model with a hybrid loss function to classify skin diseases, achieving 

94% accuracy. The study also designed a user interface for the model, but did not address how the model could be 

integrated into devices or the cloud. In a related study, Dai et al. (Dai et al., 2019) integrated a skin disease 

classification model into a mobile application, testing the model directly on the device. This study emphasized the 

benefits of running predictions on the device, such as keeping sensitive patient images secure and providing faster 

feedback. However, they did not optimize the model for storage space, which is crucial for mobile applications. They 

chose AlexNet model with 8 convolution layers, 61 million parameters, and 250 MB of storage (Han et al.,2015), 

making it inefficient for mHealth applications.  
 

This study outlines the development of an ML model for mHealth solutions, focusing on its integration into mobile 

devices and the cloud, and comparing these two environments. Our study differs from similar research in the 

following ways: (i) We focused on developing a model capable of predicting skin diseases, providing an in-depth 

development outline. While Dai et al. (Dai et al.,2019) briefly touch on model development and device integration 

for predicting skin disease, our study explores these aspects more thoroughly. (ii) Critical factors for a mobile 

application include the model’s high performance, fast feedback, and efficient use of storage space. Our study 

addresses these factors by training a MobileNet model, known for its compact size, fewer parameters, and adequate 

depth for robust performance. In contrast, Dai et al. (Dai et al.,2019) used an AlexNet model, which is less efficient 

in terms of storage space. Therefore, our study offers a better-planned solution for mobile implementation compared 

to Dai et al.’s work. (iii) Our study outlines the integration of the model into both device and cloud environments and 

compares the performance of integrated models using the same test data. In this regard, the study differs from both 

Goceri`s (Goceri, 2021) and Dai et al.’s (Dai et al., 2019) works. 

MATERIALS AND METHODS 

Dataset  

This study uses the HAM10000 dataset (Tschandl et al.,2018) compiled by a dermatology professor from the Medical 

University of Vienna and Queensland University. The dataset contains 10,000 dermatoscopic images collected from 

patients over 20 years, along with metadata including age, gender, and cell type. It includes seven types of skin 

diseases: Melanocytic Nevi (nv), Benign Keratosis-like Lesions (bkl), Dermatofibroma (df), Vascular Lesions (vasc), 

Actinic Keratoses and Intraepithelial Carcinoma (akiec), Basal Cell Carcinoma (bcc), and Melanoma (mel). Table 1 

lists the class labels and the number of samples in each class. Figure 1 shows example images from the dataset. 

 

Table 1. Summary of Skin Disease Classes In The HAM10000 Dataset (Tschandl et al.,2018) 

Class Label Abbreviation # of Samples 
# of Training Samples 

after Augmentation 

Actinic Keratoses and Intraepithelial Carcinoma akiec 327 5684 

Basal Cell Carcinoma bcc 514 5668 

Benign Keratosis-like Lesions bkl 1,099 5896 

Dermatofibroma df 115 4747 

Melanoma mel 1,113 5886 

Melanocytic Nevi nv 6705 5979 

Vascular Lesions vasc 142 5570 

 

   
 

   
Figure 1.  Sample Images From The HAM10000 Dataset (Tschandl et al.,2018)  
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Model Architecture   

The MobileNet architecture (Howard et al.,2014)  was selected for model development due to its design for devices 

with limited computational power and storage capacity. MobileNet uses small kernel layers to minimize the number 

of parameters and computational costs. Table 2 compares MobileNet with other well-known models, showing its 

smaller size and fewer parameters, which make it a suitable choice for resource-constrained devices. 

 

Table 2. Comparison Of Well-known Machine Learning Models By Size, Number Of Parameters, And Layers, 

Emphasizing MobileNet’s Suitability For Resource-constrained Devices 
Model Size (MB) # of Parameters # of Layers 

AlexNet 250 61 M 8 

MobileNet 16 4.3 M 55 

Vgg-16 528 138.4 M 16 

ResNet50 98 25 M 107 

Inception V3 92 23.9 M 189 

DenseNet201 80 20.2 M 402 

Model Training   

Developing machine learning algorithms requires comprehensive training data. However, curating datasets for 

medical problems is particularly challenging due to the difficulty in obtaining expert annotations (Candemir et 

al.,2021). One way to overcome this challenge is to use pre-trained models on larger datasets from other domains 

(Weiss et al.,2016). In this study, we used a pre-trained MobileNet model with weights trained on ImageNet 

(Krizhevsky et al.,2017). Our development dataset includes samples from seven types of skin diseases, with varying 

numbers of instances for each class, as shown in Table 1. To address this class imbalance, we applied data 

augmentation to increase the training samples in underrepresented classes. The augmentation methods and their 

parameter settings are listed in Table 3. The number of training samples for each class after augmentation is listed in 

Table 1.     

 

Table 3. Data Augmentation Techniques And Their Parameters Used To Address Class Imbalance During Training 
Data Augmentation Method Ratio 

Rotation 180 degrees 

Zoom 0.1 

Height Shift Range 0.1 

Width Shift Range 0.1 

 

During model training, we used two types of loss functions: cross-entropy loss and focal loss. Cross entropy loss is 

commonly used metric for multi-class classification tasks, evaluating the model’s predicted probabilities for each 

class. This loss function increases as the predicted probability deviates from the true label and treats each data point 

equally within each class. The formula for cross-entropy loss is: 

 

𝐿𝐶𝐸(𝑦𝑖, �̂�𝑖  ) =  − ∑ 𝑦𝑖 𝑙𝑜𝑔  (�̂�𝑖)𝑁
𝑖=1                                                                                                                                                  (1) 

 

where N denotes the number of classes to be predicted, 𝑦𝑖 is the true value for class i, and �̂�𝑖 is the predicted value 

for class i.  
 
The cross-entropy loss function does not account for the varying difficulty of classifying different classes or 

individual cases within each class. To address the inter-class and intra-class variability in the dataset, we used Focal 

Loss (Lin et al.,2017), which is designed to handle challenging cases by giving more weight to samples where the 

model struggles. This loss function adjusts the model’s focus toward harder-to-classify samples, helping it learn from 

these cases, leading to improved performance across all classes. The formula for focal-loss is: 

 

𝐿𝐹𝑜𝑐𝑎𝑙(𝑦𝑖, �̂�𝑖) =  − ∑ 𝛼𝑖𝑦𝑖(1 − �̂�𝑖)𝛾 𝑙𝑜𝑔  (�̂�𝑖)𝑁
𝑖=0                                                                                                                                          (2) 

 

 

Where N represents the number of classes to be predicted, 𝑦𝑖 represents the true value for class i, . d �̂�𝑖 represents the 

predicted value for class i. The parameters α and γ help balance the importance of classes and control the focus on 
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hard-to-classify examples, respectively. The implementation details of model development are summarized in 

Section 4.1. 

Integrating Machine Learning Model to Mobile Device 

Integrating ML-based mHealth models into mobile devices presents several challenges: (i) The limited computational 

resources of mobile devices make it difficult to run complex ML models, especially deep learning architectures with 

many parameters. (ii) The limited storage capacity of mobile devices complicates the deployment of these models, 

as deep learning models require large storage capacity to store the model’s architecture and weights. (iii) Processing 

and transmitting health data requires data protection to comply with personal data protection laws. Given the 

sensitivity of health data, ensuring patient privacy is crucial. There are two main approaches to integrating ML models 

into mobile devices: On-Device Deployment and Cloud Deployment. 

On-Device Deployment 

In on-device deployment, the model is trained on a high-performance computer. Once trained, the model’s 

architecture and weights are stored on a mobile device, allowing predictions to be performed directly on the device. 

The approach is illustrated in Figure 2. On-device deployment has several advantages. It ensures the privacy and 

security of patient data since the data remains on the device, reducing the risk of data breaches. It provides faster 

prediction feedback as the model runs locally. It also eliminates the need for an internet connection with offline 

functionality. This approach is also cost-effective compared to cloud deployment, as it avoids recurring cloud service 

fees. On-device deployment has limitations as well. There is a risk of data loss if the mobile device malfunctions 

without a backup. Furthermore, if the model requires retraining due to data changes (e.g., data shift) or performance 

improvements, the application needs to be reloaded on the device, which can be inconvenient for users. 

 

  
Figure 2.  Illustration Of On-device Deployment Where The Model Is Trained On A High-performance Computer 

And Integrated Into A Mobile Device For Predictions 

Cloud Deployment 

Cloud deployment operates on a client-server model, where the trained model’s architecture and weights are stored 

on a remote server. The mobile device communicates with the server to perform predictions. The mobile device sends 

query data to the cloud, the trained model generates predictions for the query data, and then sends the results back to 

the mobile device. Figure 3 illustrates the cloud deployment. 

 

 
Figure 3.  Illustration Of Cloud Deployment. The Prediction Is Carried Out On The Cloud Side, Displaying The 

Results On The Mobile Device 
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In cloud deployment, the prediction process is carried out on the cloud side. This eliminates the need for mobile 

devices to have high-end hardware. This approach also makes data more accessible and easier to manage. With 

patient consent, mHealth solution providers can access larger datasets, potentially developing advanced AI 

algorithms for more efficient patient care. Cloud deployment has drawbacks as well. It requires a high-speed network 

connection for smooth data transfer. Poor connectivity or interruptions can lead to delays, negatively impacting user 

experience. Additionally, storing data in the cloud incurs ongoing costs, increasing expenses for mHealth solution 

providers. Privacy and security of patient data are also concerns, as sharing data on the cloud raises the risk of 

sensitive information leaks. Developers must ensure that data is always encrypted and protected to prevent hacking 

and unauthorized access.  
 
The advantages and disadvantages of integrating the model into both the device and cloud environments are 

summarized in Table 4. 

 
Table 4. Comparative Advantages And Disadvantages Of On-device And Cloud-based  

Machine Learning Model Integration 
Method Advantages Disadvantages 

Device Integration Ensures privacy and security of sensitive data Difficulty in model updates 

 Offline access Data loss in case of device failure 

 Low cost of system requirements Limited data storage and data processing 

 Fast access to prediction results hardware 

Cloud Integration Data accessibility and manageability Network connection requirement 

 To be independent of the device’s data Possible delays due to network connection 

 processing and data storage capacity Possibility of privacy breach for sensitive data 

  Cloud system cost 

  Relatively slow access to prediction results 

EXPERIMENTAL RESULTS AND ANALYSIS  

Implementation Details of the Prediction Model Development  

The skin disease prediction model was developed using Python, TensorFlow version 2.0 with the Keras framework, 

and the scikit-learn library. The dataset was randomly divided into training (60%), validation (20%), and test subsets 

(20%). To maintain proportional representation of each lesion type due to dataset imbalance (see Table 1), 

stratification technique was applied during the splitting process. Data augmentation was used on the training data to 

further address class imbalance (see Table 3). The MobileNet architecture was chosen for its high performance and 

compact size, making it well-suited for mobile applications. A pre-trained MobileNet was fine-tuned using the 

training dataset, with optimal hyperparameters determined empirically through the validation data. The training 

parameters are listed in Table 5. For an efficient training process, we used early stopping and model checkpoints, 

which regularly save the model weights to capture the best performance at the end of the training process. 

 

Table 5. Training Parameters Used To Develop The MobileNet-based Skin Disease Prediction Model 
Parameter Value 

Model Network MobileNet 

Learning Rate 0.001 

Batch Size 32 

Epochs 15 

Loss Functions Cross Entropy and Focal Loss 

Optimizer Adam [17] β1 =0.9 and β2 =0.999 

Processing Size 224 x 224 

 

During training process, loss and accuracy were monitored to ensure effective learning and to avoid overfitting. The 

learning curves for both the training and validation datasets are shown in Figures 4 and 5. Figure 4 presents the 

learning curves using the cross-entropy loss function, and Figure 5 presents the learning curves using the focal loss 

function. These graphs show similar trends for both the training and validation subsets, indicating a successful 

optimization process. During the training process, loss and accuracy were monitored to ensure effective learning and 

to avoid overfitting. These graphs show similar trends for both datasets, indicating a successful optimization process. 

However, during the final stage of training, validation accuracy decreases while validation loss increases, which is 

indicative of onset of overfitting stage. If the training were continued beyond this stage, the model might start 
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memorizing patterns specific to the training dataset rather than learning generalizable features. To prevent this, we 

used early stopping technique, which stops the training process when an increase in validation loss is detected. As 

seen in the graphs, the training process does not continue beyond this point. 

 

 
Figure 4.  Learning Curves During The Training Process using Cross Entropy Loss Function. The Left Plot Shows 

The Accuracy Over Epochs For Both The Training And Validation Dataset. The Right Plot Illustrates The 

Corresponding Loss Curves   

 

    
Figure 5.  Learning Curves During The Training Process using Focal Loss Function. The Left Plot Shows The 

Accuracy Over Epochs For Both The Training And Validation Dataset. The Right Plot Illustrates The 

Corresponding Loss Curves  

 

The performance of the skin disease prediction model was evaluated on the test data. The results are reported for 

each class with accuracy, F1 score, recall, and precision in Table 6 for the cross-entropy loss function and in Table 7 

for the focal loss function. 
 

Table 6. Evaluation Results Of The Skin Disease Prediction Model Trained With Cross-entropy Loss Function,  

Evaluated On The Test Dataset 
Class Accuracy F1 Score Recall Precision 

akiec 0.5926 0.5926 0.5926 0.5926 

bcc 0.6562 0.7241 0.6562 0.8077 

bkl 0.6076 0.6038 0.6076 0.6000 

df 0.4286 0.5000 0.4286 0.6000 

mel 0.2439 0.3509 0.2439 0.625 

vasc 0.5833 0.7368 0.5833 1.000 

Average 0.5847 0.6381 0.5847 0.7375 
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Table 7. Evaluation Results Of The Skin Disease Prediction Model Trained With Focal Loss Function,  

Evaluated On The Test Dataset 
Class Accuracy F1 Score Recall Precision 

akiec 0.6296 0.3846 0.3704 0.4000 

bcc 0.625 0.6102 0.5806 0.6429 

bkl 0.5570 0.6713 0.6000 0.7619 

df 0.5714 0.6667 0.5714 0.8000 

mel 0.4146 0.4675 0.4286 0.5143 

vasc 0.5833 0.8421 0.7273 1.000 

Average 0.6222 0.6570 0.6082 0.7223 

 

When analyzing the overall performance, we observe that the choice of loss function impacts the model`s ability to 

classify different skin disease types. Compared to the performance of cross-entropy, the focal loss function enhances 

the prediction of less frequent and harder-to-classify classes, leading to an increase in overall accuracy from 0.5847 

to 0.6222 (+3.75%) and an improvement in the overall F1-score from 0.6381 to 0.6570. Recall also improved from 

0.5847 to 0.6082 (+2.35%), while precision decreased slightly from 0.7375 to 0.7223 (-1.53%). The overall results 

suggest that focal loss prioritizes harder-to-classify cases and less frequent classes.  

 

There is a noticeable difference in performance for underrepresented disease classes. For instance, Dermatofibroma, 

one of the least frequent classes in the dataset, had 14.29% increase in accuracy (0.4286 to 0.5714). The F1- score 

increased from 0.5000 to 0.6667, indicating a better balance between precision and recall. Recall improved from 

0.4286 to 0.5714, suggesting that the model identified more true positives. Melanoma, a critical yet challenging class 

due to high intra-class variability and its visual similarity to benign lesions, had a notable performance increase with 

focal loss. Accuracy improved by 17.08% (0.2439 to 0.4146), the F1-score increased from 0.3509 to 0.4675, and 

recall increased from 0.2439 to 0.4286, indicating that focal loss helped the model identify more melanoma cases.  

The improved performance suggests that focal loss effectively addresses class imbalance by giving additional weight 

to harder examples, helping the model recognize subtle distinctions in melanoma lesions. Vascular lesions also 

benefited from focal loss, with F1-score increasing from 0.7368 to 0.8421 and recall improving from 0.5833 to 0.7273 

(+14.39%). These improvements suggest that focal loss was beneficial for handling less frequent and harder-to-

classify skin diseases. While focal loss generally improves classification for less frequent classes, some performance 

trade-offs were observed. Performance losses were observed for Basal Cell Carcinoma and Actinic Keratoses. 

Melanoma also had very low accuracy with both loss functions. This could be due to melanoma’s high intra-class 

variation and visual similarity to other skin lesions, making it difficult for the model to learn distinguishing features.  

 

Overall, focal loss demonstrates a better ability to handle imbalanced classes by improving recall and F1-score, 

particularly for underrepresented skin disease types. 

Implementation Details of the On-Device Deployment  

In this part of the study, the developed model is integrated into a mobile device. The device used in this study is 

Samsung Galaxy S23, containing Qualcomm Snapdragon 8 Gen 2 processor with 8GB of RAM and 128 GB of 

internal storage. The operating system in the mobile device is Android 13, which is compatible with machine learning 

libraries. The mobile device also includes high-resolution Dynamic AMOLED 2X display and supports 5G 

connectivity for an optimal environment for both processing and user interaction. The integration of this model into 

such a powerful smartphone enables real-time, on-device inference, contributing to both speed and privacy.  

 

The weights and architecture of the trained model were saved in a .h5 file format specific to Tensorflow-Keras, which 

is approximately 40 MB in size. For app development, two cross-platform frameworks were used: Flutter and React 

Native.  
 
Flutter, supported by Google, is an open-source platform that offers a versatile interface for rapid development using 

the Dart language. Dart, also developed by Google, is designed for mobile app development and operates on both 

iOS and Android devices. The trained model was converted to a TensorFlow Lite model using TFLiteConverter. 

TensorFlow Lite is a framework within TensorFlow designed for developing lightweight and high-performance ML 

models for mobile and embedded devices. This conversion reduced the model size from 40 MB to 12 MB. To 

integrate the model into a Flutter application, the TensorFlow Lite Flutter plugin was utilized. The TensorFlow Lite 

model, along with the labels corresponding to skin disease classes, was added to the mobile application project. Once 
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the model integration was completed, it allows users to upload images and generate predictions using the trained 

model’s architecture and weights stored on the device (See Figure 6).  

 
We also used React Native with the TensorFlow.js React Native adapter. These platforms enable the model to run 

on both iOS and Android devices. The .h file, which contains the model architecture and weights, was converted to 

the TensorFlow.js format. This conversion divided the large weight file into smaller 5 MB parts. To further reduce 

the model size, quantization techniques were applied by decreasing the precision from 32-bit to 16-bit. The reduced 

model was then divided into two files: the model.json file, which contains the model’s architecture, and the *.bin file, 

which stores the model’s weights as binary format. These files were then added to the mobile application project 

using TensorFlow’s React Native adapter. Once the model is uploaded, the users can upload a query image, and the 

model predicts the skin disease. 

 

 
Figure 6.  User Interface Of The Mobile Application Showing The Prediction Results For Different Skin Disease 

Images. The Integrated Model Runs Directly On The Device Using TensorFlow Lite For The Flutter Application 

Implementation Details of the Cloud Deployment  

In this part of the study, the developed model is integrated into a cloud environment. The cloud infrastructure used 

in the study is based on Google Cloud Platform, which contains GPU-enabled virtual machines equipped with 

NVIDIA A100 Tensor Core GPUs. Deployment is managed through a Docker container which simplifies packaging, 

deployment, and execution of the model in a consistent and efficient manner.  

 

To integrate the model into the cloud, it was saved in the SavedModel format, which is compatible with TensorFlow 

Serving. TensorFlow Serving is an open-source tool designed for deploying TensorFlow models in production 

environments. It supports RESTful APIs to allow mobile apps to interact with the model. With a RESTAPI, users 

can upload photos through the app interface. They can either select photos from the gallery or take new ones using 

the camera. These photos are then converted into JSON data and sent to the model’s REST API, which processes the 

query and returns predictions as an API response. The SavedModel format stores the model’s architecture, weights, 

variables, and training parameters. The model is then placed in a directory accessible to TensorFlow Serving to start 

the deployment process. The deployment uses Docker, a containerization platform that simplifies application 

development and deployment. TensorFlow Serving is pulled from the Docker cloud environment using the command 

docker pull tensorflow/serving, making it ready for use. TensorFlow Serving is then initialized with the code shown 

in Figure 7. To confirm the model is running, a request is sent to port 8501. If the model responds with the status 

‘AVAILABLE’ it is ready for deployment. The model accepts input in JSON format and processes lesion photos as 

image matrices. The pre-trained model classifies and predicts skin lesions using these image matrices. 
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Figure 7.  TensorFlow Serving Initialization Command Used For Deploying The Model In A Cloud Environment 

Comparison of On-device and Cloud Integration 

The trained model has been integrated into both the device and the cloud environments. The feedback speeds were 

compared using the same test data. Prediction results were obtained from 100 test images. The average prediction 

times are as shown in Table 8. 
  

Table 8. Comparison of Prediction Feedback Speeds 

Method Prediction Feedback Time 

Device-Integrated Model 108.3 ms 

Cloud-Integrated Model 1281.2 ms 

 

The results show that the prediction response speed of the device-integrated model is approximately ten times faster 

than that of the cloud-integrated model. This indicates that for mHealth applications requiring frequent prediction 

queries, cloud services may be less efficient. Factors such as network speed and server traffic load could further slow 

cloud-based predictions, potentially leading to data loss and reduced application efficiency. Although the fast 

feedback of the device-integrated model is advantageous, certain steps are needed before integration, such as reducing 

the model size to fit on the device. In this study, a relatively compact architecture like MobileNet was used. However, 

some applications may require larger and more complex models. As model depth increases, resulting in more 

parameters and larger sizes, integration into the device could burden its hardware and processing capacity. 

CONCLUSIONS 

This study presents the development of a deep learning-based model for mHealth applications, focusing on its 

integration into both mobile devices and the cloud environment, and comparing these deployment methods. The 

focus was on predicting skin diseases, given the model’s practical application and usability. The MobileNet 

architecture was selected for model development due to its compatibility with devices that have limited computational 

power and storage capacity. The model was trained on a large, publicly available dataset. To improve performance 

during training, transfer learning, data augmentation, and focal loss techniques were applied.  

 

We integrated the trained model into both a mobile device and a cloud environment. Our comparison showed that 

on-device integration for mHealth applications provides offline functionality, faster prediction feedback, and lower 

costs. However, it has challenges such as limited processing power and storage capacity, which make it difficult to 

run and maintain complex machine learning models. Additionally, issues such as potential data loss due to device 

failure and the difficulty of updating the model can reduce the application’s usability. The cloud integration mitigates 

hardware limitations and allows for easier model updates. However, it requires a constant internet connection, 

potentially cause delays in prediction feedback. Additionally, sending sensitive patient data to the cloud increases 

the risk of data leakage. Regular payments for storing data in the cloud also add extra costs, especially for widely 

used mHealth applications.  

 

In conclusion, developing ML-based mHealth solutions requires careful consideration of the benefits and drawbacks 

of on-device and cloud deployment. Balancing these factors is crucial for designing an effective mHealth application. 
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