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ÖZET 

Bu çalışmada doğrusal elastik ve izotropik malzemeden imal 
edilmiş, çevresel bir kenar çatlağı içeren rijit uçlu sonlu uzunlukta 
eksenel simetrik bir silindir incelenmiştir. Sonlu silindir 
problemine ulaşmak için, halka şeklinde iç çatlak ve iki dairesel 
şekilli enklüzyon içeren sonsuz bir silindirden yola çıkılmıştır. 
Navier denklemleri Fourier ve Hankel dönüşümleri kullanılarak 
çözülmüştür. Formülasyon tekil integral denklemlerine 
indirgenmiş ve Gauss-Lobatto ve Gauss-Jakobi integrasyon 
formülleri ile doğrusal cebrik denklem takımlarına 
dönüştürülmüştür. Çatlağın kenarlarındaki ve silindirin çevresi 
etrafındaki gerilme yığılma faktörleri hesaplanmıştır. 

Anahtar Kelimeler: Kenar Çatlak,  Sonlu Silindir,  Gerilme 
Yığılma Faktörü, Rijit Enklüzyon 
 

ABSTRACT 

An axisymmetric linearly elastic and isotropic finite cylinder with 
rigid ends and a circumferential edge crack subjected to axial 
tension is considered. Finite cylinder problem is obtained from an 
infinite cylinder containing an internal ring-shaped crack and two 
penny-shaped rigid inclusions. Navier equations are solved by 
using Fourier and Hankel transforms. Formulation is reduced to 
three singular integral equations which are converted to a system 
of linear algebraic equations with the aid of Gauss-Lobatto and 
Gauss-Jacobi integration formulas. Stress intensity factors at the 
edges of crack and around the corner of the cylinder are 
calculated. 

Keywords: Edge Crack, Finite Cylinder, Stress Intensity Factor, 
Rigid Inclusion.

 
1. INTRODUCTION 

Discontinuities may create excessive stress concentrations in structural elements and machine parts. Machine elements 
with discontinuities are commonly used in many areas. These discontinuities may occur in the regions of sharp edges, 
openings, cracks or inclusions as well as at the regions where the geometric properties of the cross section changes. Presence 
of discontinuities may severely affect the load resisting capacity of the element and hence the system. Distribution of stresses 
around these discontinuities may be very complicated. In such regions, stress distributions may be calculated in terms of the 
stress intensity factors.  

Machine elements with large probability of containing singularities are very important in fracture mechanics. Finite 
cylinders are among these elements. Stresses in the vicinity of the crack and inclusion tips alternate with singularity, regardless 
of the configuration of the cracked element. In general, these sorts of problems may be studied by numerical and analytical 
methods based on the solution of corresponding partial differential equations. The assumption of linear elastic material allows 
to the superposition of the stress and displacements. This superposition principle provides the solution for complex finite 
cylinder arrangements analytically by using the combination of simple cases. Solutions for finite cylinder problems containing 
edge cracks and penny-shaped inclusions can be found in the literature.  

Chang (1985) obtained the general solution of the stress intensity factor of a finite cylinder containing a concentric penny-
shaped crack under torsion. The general solution has been obtained by using Hankel transform and Fourier series. It has been 
proved that the solutions of a penny-shaped crack in an infinite long cylinder and in a circular plate of infinite radius may be 
derived from the general solution presented in this work. Zhang (1988) considered the problem of concentric penny-shaped 
crack in a finite orthotropic cylinder under torsion. The general solution in terms of stress intensity factors were obtained by 
using the Hankel transform and Fourier series. Results of the study for mixed boundary value problem have been represented 
with the aid of a Fredholm integral equation of the second kind. Also it was concluded that the solutions of a concentric penny-
shaped crack in an infinite long orthotropic cylinder and circular plate of infinite radius may be derived from the general 
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solution obtained in this study. Liang and Zang (1992) considered the problem of a concentric penny-shaped crack of Mode III 
in a finite cylinder. Solution of the problem was obtained by using the Hankel transform and the Fourier series. Results were 
obtained in terms of stress intensity factors. Furthermore, it was proven that the concentric penny-shaped cracks in an infinite 
cylinder and infinite circular plate are special cases of the problem of a concentric penny-shaped crack in a finite cylinder. 
Meshii and Watanabe (2001) studied the development of a practical method to calculate the Mode I stress intensity factor for 
an inner surface circumferential crack in a finite length cylinder. Thin shell theory formed the bases underlying the developed 
method in this study. The proposed method has been valid for relatively short cracks and for a wide range of mean radius to 
wall thickness ratio. Wu and Dzenis (2002) obtained a closed-form solution for the problem of a Mode III edge crack between 
two bonded elastic strips. The stress intensity factors for the edge crack have been calculated. It was observed that, for the 
limiting particular cases, the obtained results coincide with the results available in the literature.  Lee (2002) considered the 
problem of stress distribution in a circular cylinder with a circumferential edge crack subjected to uniform shearing stresses. 
The crack was located on a plane perpendicular to the axis of cylinder and the lateral surface of the cylinder is free of stress. 
The problem was reduced to the solution of a couple of singular integral equations by using a suitable stress function. These 
singular integral equations were solved numerically and the stress intensity factors were obtained. Freese and Baratta (2006) 
obtained solutions for some linear elastic single edge-crack configurations in terms of stress intensity factors. Solutions for 
various loading conditions have been extracted from the solution of uniformly loaded single edge cracked finite strip 
configurations. Results for the asymptotic behavior and a common expression for the full range of crack length to strip width 
ratio has been presented. Yan (2007) considered the problem of a rectangular tensile plate containing an edge crack. A 
boundary element method proposed by the author has been used to present the stress intensity factors for the considered 
problem. Furthermore, stress intensity factors of a crack emanating from an edge half-circular hole were calculated. Results 
obtained in terms of stress intensity factors for two cases have been discussed and it was found that the boundary element 
method used for the solution was accurate for obtaining the stress intensity factors of crack problems in finite plates. Kaman 
and Geçit (2008) considered the problem of an axisymmetric finite cylinder of linearly elastic and isotropic material containing 
a penny-shaped transverse crack. Solution of the complex problem was obtained by the superposition of simpler problems. 
Moreover, the problem has been reduced to a system of singular integral equations. Then, Gauss–Lobatto and Gauss–Jacobi 
integration formulas have been used to convert these integral equations to a system of linear algebraic equations. The system of 
linear algebraic equations has been solved numerically and the results were presented in terms of stress intensity factors at the 
edges of the rigid support and the crack. 

From the literature review, it is observed that the problem of the finite cylinder containing an edge crack has not been 
solved by the method used in this research study. In this study, an axisymmetric finite cylinder of length 2L with clamped ends 
containing an edge crack subjected to tensile axial loads of uniform intensity p0  through the clamping rigid plates at both ends 
is considered (Figure. 1). The material of the cylinder is assumed to be linearly elastic and isotropic. The lateral surface of the 
cylinder is free of stresses. The finite cylinder problem is obtained by considering an infinite cylinder containing a ring-shaped 
crack at z = 0 and two rigid penny-shaped inclusions at z = ± L, subjected to tensile axial loads of uniform intensity p0  at 
infinity, and then allowing the radius of the inclusions to approach the radius of the cylinder. The portion of the infinite 
cylinder between the rigid inclusions then becomes a finite cylinder with clamped ends. 

 

Figure 1. Finite cylinder containing a circumferential edge crack. 

2. SOLUTION METHODOLOGY AND DEVELOPMENT OF THE GENERAL EXPRESSIONS  

Formulation of the finite cylinder problem is obtained by a procedure starting with considering an infinite cylinder, 
containing a ring-shaped crack located at z = 0 plane and two rigid penny-shaped inclusions located at z = ± L planes, subjected 
to tensile axial loads of uniform intensity at infinity, and then letting the radius of the inclusions approach the radius of the 
cylinder. Solution for the infinite cylinder loaded at infinity having a ring-shaped crack and two penny-shaped rigid inclusions 
is obtained by superposition of the two simpler problems. Details of the solution procedure may be found in the relevant 
studies (Durucan, 2010). The linear algebraic equations for an infinite cylinder, containing a ring-shaped crack located at z = 0 
plane and two rigid penny-shaped inclusions located at z = ± L planes and subjected to tensile axial loads of uniform intensity at 
infinity are given below.  
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where 

( ) ( )[ ] ),.....,1(i                 ,1/1cos, nniii =−−= πηφ                                                                                                     
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The derivation of the system of linear algebraic equations are given in Durucan (2010).   

3.  INTEGRAL EQUATIONS 

3.1. Finite Cylinder Containing a Ring-Shaped Internal Crack 
When the rigid inclusions at z = ± L spread out (c→A), the portion of the infinite cylinder between z = -L and z = L 

becomes a finite cylinder with rigid ends (Fig. 2). In this case, Eqs. (1a-c) are replaced by (see Durucan, 2010 for details) 

 

 

Figure 2. Finite cylinder with a ring-shaped internal crack. 
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where (Erdogan et al., 1973) 
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and γ is calculated. 

3.2 Finite Cylinder Containing an Edge Crack 
In this case, the finite cylinder of radius A and length 2L containing a transverse edge crack of width (A-a) at z = 0 

subjected to axial tensile loads of uniform intensity p0 through the rigid clamps at the ends z = ±L is considered (Figure 1). In 
this case, Equations (1a-c) are replaced by (see Durucan, 2010 for details) 
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N is selected to be an odd number, ),...,1( nii =η  and )1,...,1( −= njjε are calculated again from Eqs. (6a,b) and 

[ ] )1,...,1(,)22/()12(cos −=−−= NjNjj πψ                                                                

[ ] ),...,1(,)1/()1(cos NiNii =−−= πφ                                                                                     (9a,b) 

3.3. Stress Intensity Factors  
Stress intensity factors form a very important basis in fracture mechanics. Stresses become infinity in the vicinity of tips or 

edges of cracks and inclusions. These infinite stresses are represented by means of stress intensity factors. Mode I stress 
intensity factors at the edges of the internal ring-shaped crack are defined and calculated in the form 
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Mode I stress intensity factor at the root of the edge crack may be defined and calculated as 
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Mode I and II stress intensity factors at the corners of the finite cylinder with stiffened ends are 
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4. NUMERICAL RESULTS 

The system of linear algebraic equations, Eqs. (4a-c) and (5a,b), or Eqs. (7a-c) and (8), are solved numerically and the 
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unknown functions g1 (φ), gi (η) (i = 2,3) are calculated at discrete collocation points. Then, the physically significant 

quantities, for example, the stress intensity factors at the edges of the crack, at the edges of the inclusion and around the 
clamped corners of the finite cylinder can be calculated.  

 

4.1. Finite Cylinder with Clamped Ends Containing an Internal Ring-Shaped Crack 
Normalized stress intensity factors may be defined and calculated as: 
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for the internal crack. 

 

When the radius of the rigid inclusions approaches the outer radius of the cylinder (c→A), the portion of the infinite 
cylinder becomes identical with a finite cylinder with clamped ends whose outer sides are under the action of uniformly 
distributed normal forces and an internal ring-shaped crack. Figure 3 shows variations of the normalized Mode I stress 

intensity factors ak 1 and bk 1  defined in Eqs. (14a,b) at the edges of the crack with relative crack width (b-a)/A when b+a = A 

and ν  = 0.3. Results are given for L/A = 0.25 and 1 noting that the numerical results for ak 1 and bk 1 remain unchanged for 

values of L/A greater than 1. Figure 4 shows variations of the normalized stress intensity factors Ak 1 and Ak 2  defined as 
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where γ is calculated with (b-a)/A when b+a = A and ν  = 0.3. It can be observed from this figure that, Ak 1  is much larger than 

Ak 2 . For relatively small aspect ratio L/A, Ak 1 and Ak 2  increase as the outer edge of the crack gets closer to the lateral 
surface of the cylinder which means also that it is getting closer to the corners at which the stress intensity factors are 
calculated. This is expected, since the edge of the crack increases the prevailing stress levels. However, for relatively large 

values of L/A, Ak 1 and Ak 2  appear to be insensitive to crack width. 

4.2. Finite Cylinder with Clamped Ends Containing a Circumferential Edge Crack 
When the outer radius of the internal ring-shaped crack approaches the outer radius of the cylinder (b→A), the case of a 

finite cylinder with a circumferential edge crack is obtained. Figure 5 shows the normalized Mode I stress intensity factor 
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at the inner edge of the circumferential edge crack. Figure 5 shows the variation of ak 1  with the relative crack depth (A-a)/A 

when ν = 0.3 for L/A = 0.25 and for L/A ≥ 1. ak 1  increases with increasing crack depth. It is smaller for shorter cylinders when 

the crack is relatively narrow and larger when the crack is relatively deep.  Figure 6 shows the variation of Ak 1 and Ak 2  
defined in Eqs. (16a,b) with the relative crack depth (A-a)/A when L/A = 1 for ν  = 0.1, 0.3 and ~ 0.5. It may be observed from 

this figure that, increase in the value of ν increases Ak 2 , but decreases Ak 1 . Both Ak 1 and Ak 2  decrease slightly, in general, 

with increasing crack depth. Ak 1  is always larger than Ak 2 . 

 

Figure 3. Normalized stress intensity factors ak 1  and bk 1  at the edges of the internal crack when ν = 0.3 and b+a = A in 
finite cylinder. 

 

Figure 4. Normalized stress intensity factors Ak 1 and Ak 2  at the corner of the finite cylinder with a ring-shaped internal 
crack when ν = 0.3 and b+a = A. 
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Figure 5. Normalized stress intensity factor ak 1   at the inner edge of the edge crack in finite cylinder when ν = 0.3. 

 

Figure 6. Normalized stress intensity factors Ak 1 and Ak 2  at the corner of the finite cylinder containing an edge crack 
when L = A. 
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Nomenclature 

a, b  Inner and outer radii of ring-shaped crack 
A  Radius of cylinder 
c  Radius of penny-shaped inclusions 
Ci  Weighting constants of the Gauss-Lobatto polynomials 
dij  Coefficient functions 
g1(r)  Crack surface displacement derivative 
g1

*(r)  Hölder-continuous function on crack 
𝑔𝑔1���(𝑟𝑟)  Normalized bounded part of g1(r) 
g2(r), g3(r) Normal and shear stress jumps on rigid inclusions 
g2

*(r), g3
* (r) Hölder-continuous functions on inclusions 

𝑔𝑔2���(𝑟𝑟),𝑔𝑔3���(𝑟𝑟)  Normalized bounded parts of g2(r), g3(r) 
I0, K0, I1, K1 Modified Bessel functions of the 1st and 2nd kinds of order zero and one 
J0, J1  Bessel functions of the 1st kind of order zero and one 
k1a, k1b  Mode I stress intensity factors at the edges of crack  
k1c, k2c  Stress intensity factors at the edge of internal rigid inclusions 
𝑘𝑘�1𝑎𝑎, 𝑘𝑘�2𝑏𝑏              Normalized stress intensity factors at the edges of crack 
𝑘𝑘�1𝑐𝑐 , 𝑘𝑘�2𝑐𝑐   Normalized stress intensity factors at the edge of internal rigid inclusions 
K, E  Complete elliptic integrals of the 1st and the 2nd kinds 
Lij  Integrands of the kernels Nij 
Lij∞  Dominants part of Lij as α→∞ 
L  Distance between crack and inclusions 
mi, Mi, Nij, Ti Kernels of the integral equations 
Nijb, Nijs  Bounded and singular parts of  Nij  as α→∞ 
p0  Intensity of the axial tensile load 



KSÜ Mühendislik Bilimleri Dergisi 21(2):121-130, 2018     130     KSU Journal of Engineering Sciences, 21(2):121-130, 2018 

A. R. Durucan 

Pn (α,β)  Jacobi polynomials 
r, z  Cylindrical coordinates 
t  Integration variable 
u, w  Displacement components in r- and z-directions 
Wi  Weighting constants of the Jacobi polynomials 
α  Fourier transform variable 
β, θ, γ   Powers of singularity at the edges of the crack an inclusion 
𝜂𝜂, 𝜀𝜀   Normalized variables on inclusions 
𝜙𝜙,𝜓𝜓  Normalized variables on crack 
μ  Shear modulus of elasticity 
ν  Poisson’s ratio 
σ, τ  Normal and shear stresses 
σzb, σzs  Bounded and singular parts of σz at the edges of the crack and inclusions 
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