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THE EXTENDED ODD WEIBULL-G FAMILY: PROPERTIES
AND APPLICATIONS

MORAD ALIZADEH, EMRAH ALTUN, AHMED Z. AFIFY, AND GAMZE OZEL

Abstract. The Weibull distribution is one of the most popular and widely
used model for failure time in life-testing and reliability theory. In this study,
we introduce a new class of continuous distributions called the extended odd
Weibull-G family. Special models of new family are provided. Various struc-
tural properties including explicit expressions for the ordinary and incomplete
moments, generating function, Rényi and Shannon entropies, order statis-
tics and probability weighted moments are derived. The maximum likelihood
method is used for estimating model parameters. The flexibility of the gener-
ated family is illustrated by means of two applications to real data sets.

1. Introduction

In many applied sciences such as medicine, engineering and finance, among oth-
ers, modeling and analyzing lifetime data are crucial. Many generalized families of
distributions have been proposed and studied over the last two decades for model-
ing lifetime data in many applied areas such as economics, engineering, biological
studies, environmental sciences, medical sciences and finance. Some well-known
families are the Marshall-Olkin-G by Marshall and Olkin (1997), the beta-G by
Eugene et al. (2002), the transmuted-G by Shaw and Buckley (2007), the gamma-
G by Zografos and Balakrishnan (2009), the Kumaraswamy-G by Cordeiro and de
Castro (2011), the McDonald-G by Alexander et al. (2012), the Weibull-G by Bour-
guignon et al. (2014), the exponentiated half-logistic generated family by Cordeiro
et al. (2014), the beta odd log-logistic generalized by Cordeiro et al. (2015) and
the generalized odd log-logistic-G by Cordeiro et al. (2017). Several mathematical
properties of the extended distributions may be easily explored using mixture forms
of exponentiated-G (Exp-G) distributions. However, there still remain many im-
portant problems involving real data, which do not follow any of these families. In
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fact, there are not many flexible distributions to model left-skewed data in statistics
literature.
The exponential distribution does not provide enough flexibility for analyzing

different types of lifetime data because of having constant hazard rate. So, in the
literature there are many generalizations that makes the exponential distribution
more flexible. For example, Cordeiro et al. (2012) introduced a new extension
of the exponential distribution which is called as the extended exponential (EE)
distribution. The cumulative distribution function (cdf) and probability density
function (pdf) of the EE distribution are, respectively, given by

FEE(x) = 1− (1 + β λx)−1/β

fEE(x) = λ (1 + β λx)−1−1/β

where x > 0 and β, λ > 0. When β → 0+, it reduces to exponential distribution.
Now, motivated by Cordeiro et al. (2012), we define Extended Weibull (ExW)

distribution. The cdf and pdf of the ExW distribution are, respectively, given by

FExW (x) = 1− (1 + β λxα)−1/β

fExW (x) = αλxα−1(1 + β λxα)−1−1/β

where λ > 0 is a scale parameter, α, β > 0 are two shape parameters and x > 0.
When β → 0+ , it reduces to Weibull distribution.
The aim of the paper is to propose a new flexible family of distributions using the

ExW distribution. In this way, we will utilize the flexibility of the baseline distribu-
tion for modelling the data. The new family is called as the extended odd Weibull-G
(ExOW-G for short) family and a comprehensive description of its mathematical
properties is given. In fact, the new ExOW-G family is motivated by its ability
to model data with with increasing, decreasing, unimodal, bimodal shaped failure
rates. Furthermore, the special models of this family are shown to provide better
fits than other competitive models generated by other well-known families in the
literature. The new family due to its flexibility in accommodating different forms
of the risk function seems to be an important family that can be used in a variety
of problems in modeling survival data.
Let G (x; ξ) and g (x; ξ) are the baseline cdf and pdf belong a random variable,

respectively. Based on the (T-X) generator of Alzaatreh et al. (2013) and using
the ExW distribution when λ=1, the cdf and pdf of the ExOW-G family are given
(for x > 0) by

F (x;α, β, ξ) =

∫ G(x;ξ)

Ḡ(x;ξ)

0

α tα−1(1 + β tα)−1−1/βdt = 1−
{

1 + β

[
G(x; ξ)

Ḡ(x; ξ)

]α}−1
β

(1.1)
and

f(x;α, β, ξ) =
α g(x; ξ)G(x; ξ)α−1

Ḡ(x; ξ)α+1

{
1 + β

[
G(x; ξ)

Ḡ(x; ξ)

]α}−1
β −1

, (1.2)
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respectively, where Ḡ (x; ξ) = 1 − G (x; ξ), g(x; ξ) = dG(x; ξ)/dx, α, β > 0 and ξ
denote the vector of parameters for baseline cdf G. Henceforth, a random variable
with density (1.2) is denoted by X ∼ExOW-G(α, β, ξ). When β → 0+ we obtain
the Weibull-G (W-G) family of distributions.
The reliability function (rf), hazard rate function (hrf) and cumulative hazard

rate function (chrf) of X are, respectively, given by

R(x;α, β, ξ) =

{
1 + β

[
G(x; ξ)

Ḡ(x; ξ)

]α}−1
β

,

h(x;α, β, ξ) =
α g(x; ξ)G(x; ξ)α−1

Ḡ(x; ξ)α+1
{

1 + β
[
G(x;ξ)
Ḡ(x;ξ)

]α} , (1.3)

and

H(x;α, β, ξ) =
1

β
log

{
1 + β

[
G(x; ξ)

Ḡ(x; ξ)

]β}
.

An interpretation of the ExOW-G family can be given as follows: Let T be a
random variable describing a stochastic system by the cdf G(x). If the random
variable X represents the odds ratio, the risk that the system following the lifetime
T will be not working at time x is given by G(x)/[1 − G(x)]. If we are interested
in modeling the randomness of the odds ratio by the density function of the ExW
distribution r(t) = α tα−1(1 + β tα)−1−1/β (for t > 0), the cdf of X is given by

Pr(X ≤ x) = R

(
G(x)

1−G(x)

)
,

which is exactly the cdf of the new family.
“Furthemore, the basic motivations for using the ExOW-G family in practice are
the following:

X to make the kurtosis more flexible compared to the baseline model;

X to produce a skewness for symmetrical distributions;

X to construct heavy-tailed distributions that are not longer-tailed for mod-
eling real data;

X to generate distributions with symmetric, left-skewed, right-skewed and
reversed-J shaped;

X to define special models with all types of the hrf;

X to provide consistently better fits than other generated models under the
same baseline distribution.”
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Theorem 1 provides some relations of the ExOW-G family with other distribu-
tions.

Theorem 1. Let X ∼ExOW-G(α, β, ξ).

(a) If Y =
[
G(X;ξ)
G(X;ξ)

]α
, then FY (y) = 1− (1 + β y)−1/β y > 0;

(b) If Y =
G(X; ξ)

G(X; ξ)
, then Y ∼ ExW .

The rest of the paper is organized as follows. In Section 2, we give useful linear
representation for the family density function. In Section 3, we present two special
models and plots of their pdfs and hrfs. In Section 4, we derive some of its general
mathematical properties including asymptotics, ordinary and incomplete moments,
quantile and generating functions, quantile power series, entropies, order statis-
tics and probability weighted moments (PWMs). Maximum likelihood estimation
(MLE) of the model parameters is addressed in Section 5. Simulation results to
assess the performance of the maximum likelihood method are reported in Section
6. In Section 7, we provide two applications with real data sets to illustrate the
flexibility of the new family. Finally, we give some concluding remarks in Section
8.

2. Linear representation

In this section, we provide a useful representation for the pdf of ExOW-G family.
Consider the series expansion, we can write

Zq =

∞∑
k=0

(q)k
k!

(z − 1)k, (2.1)

where (q)k = q(q − 1) · · · (q − k + 1).
Applying the power series (2.1) to (1.1), we get

F (x) = 1−
∞∑
k=0

(−1/β)k
k!

βkG(x)αk [1−G(x)]
−αk

. (2.2)

Consider the power series

(1− z)−q =

∞∑
n=0

Γ (q + n)

n! Γ (q)
zn. (2.3)

After applying the power series (2.3) to [1−G(x)]
−αk, we have

[1−G(x)]
−αk

=

∞∑
j=0

Γ (αk + j)

j!Γ (αk)
G(x)j . (2.4)
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Substituting (2.4) in (2.2), we get

F (x) = 1−
∞∑

k,j=0

βkΓ (αk + j) (−1/β)k
k!j!Γ (αk)

G(x)αk+j .

Then, the pdf of ExOW-G family can be expressed as a mixture of Exp-G family
as

F (x) = 1−
∞∑

k,j=0

bk,j Hαk+j(x), (2.5)

where bk,j = βkΓ (αk + j) (−1/β)k /k!j!Γ (αk) and Hαk+j (x) is the cdf of the Exp-
G family with power parameter αk + j. By differentiating (mixture), the pdf in
(1.2) can be expressed as

f(x) =

∞∑
k,j=0

ak,j hαk+j(x),

where ak,j = −bk,j and hαk+j (x) = (αk + j) g(x)G(x)αk+j−1 is the Exp-G density
with power parameter αk+j. Thus, several mathematical properties of the ExOW-
G family can be obtained simply from those properties of the Exp-G family.

3. Special models

In this section, we provide two special models of the ExOW-G family. The pdf
in (1.2) will be most tractable when the cdf G(x) and the pdf g(x) have simple
analytic expressions.

3.1. The ExOW-Normal (ExOW-N) distribution. The ExOW-N distribution
is defined from (1.2) by taking G(x;µ, σ2) = Φ

(
x−µ
σ

)
and g(x;µ, σ2) = σ−1φ

(
x−µ
σ

)
for the cdf and pdf of the normal (N) distribution with a location parameter µ ∈ R
and a scale positive parameter σ2, where Φ (.) and φ (.) are the cdf and pdf of the
standard N distribution, respectively. The pdf of ExOW-N distribution is given
(for x ∈ R) by

f(x;α, β, µ, σ) =
αφ(x−µσ ) Φ(x−µσ )α−1[

1− Φ(x−µσ )
]α+1

{
1 + β

[
Φ(x−µσ )

1− Φ(x−µσ )

]}−1
β −1

where Φ(.), φ(.) denote the cdf and pdf of standard N random variable, respectively.
Plots of the pdf of ExOW-N distribution for selected parameter values are shown in
Figure 1. Figure 1 shows that the pdf of the ExOW-N is symmetric, bimodal and
unimodal. Other shapes can also be obtained using another distribution. These
shape properties show that the ExOW-G family can be very useful to fit different
data sets with various shapes.
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Figure 1. Plots of the pdf of ExOW-N distribution for some pa-
rameter values.

3.2. The ExOW-Weibull (ExOW-W) distribution. By taking G(x; ξ) and

g(x; ξ) in (1.2) to be the cdfG(x) = 1−e−( x
θ )λ and the pdf g (x) = λ

θ

(
x
θ

)λ−1
exp

(
−(x/θ)

λ
)

of the Weibull distribution, the pdf of the ExOW-W distribution is given (for x > 0)
by

f(x;α, β, λ, θ) =
αλxλ−1

θλ
eα( x

θ )λ
[
1− e−( x

θ )λ
]α−1 {

1 + β
[
e( x
θ )λ − 1

]}−1
β −1

Plots of the pdf and hrf the ExOW-W distribution for selected parameter values are
shown in Figure 2. As seen in Figure 2, the distribution has increasing, decreasing
and reversed-J shaped hrfs for different values of parameters. This fact implies
that the ExOW-W distribution can be very useful for fitting data sets with various
shapes.

Figure 2. Plots of the pdf and hrf of the ExOW-W distribution
for some parameter values.
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4. The ExOW-G properties

In this section, we obtain some general properties of the ExOW-G family includ-
ing asymptotics, ordinary and incomplete moments, quantile and quantile power
series, generating function, entropies, order statistics and PWMs.

4.1. Asymptotics. Let d = inf {x|G(x) > 0}, then, the asymptotics of equations
(1.1), (1.2) and (1.3) as x→ d are given by

F (x) ∼ G(x)α as x→ d,

f (x) ∼ αg(x)G(x)α−1 as x→ d,

h (x) ∼ αg(x)G(x)α−1 as x→ d.

The asymptotics of equations (1.1), (1.2) and (1.3) as x→∞ are given by

1− F (x) ∼ β
−1
β Ḡ(x)

α
β as x→∞,

f (x) ∼ αβ
−1
β −1g(x)Ḡ(x)

α
β−1 as x→∞,

h (x) ∼ αg(x)

βḠ(x)
as x→∞.

4.2. Ordinary and incomplete moments. Let Tαk+j denotes the Exp-G distri-
bution with power parameter αk + j. The rth moment of X, say µ′r, follows from
(2.5) as

µ′r = E (Xr) =

∞∑
k,j=0

ak,j E
(
T rαk+j

)
. (4.1)

The nth central moment of X is given by

µn =

n∑
r=0

(
n

r

)
(−µ′1)

n−r
E (Xr) =

n∑
r=0

∞∑
k,j=0

ak,j

(
n

r

)
(−µ′1)

n−r
E
(
T rαk+j

)
.

The cumulants (κn) of X follow recursively from

κn = µ′n −
n−1∑
r=0

(
n− 1

r − 1

)
κr µ

′
n−r,

where κ1 = µ′1, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + µ′31 , etc. The measures of

skewness and kurtosis can be calculated from the ordinary moments using well-
known relationships.
The sth incomplete moment of X can be expressed from (2.5) as

ϕs (t) =

∫ t

−∞
xsf (x) dx =

∞∑
k,j=0

ak,j

∫ t

−∞
xs hαk+j (x) dx. (4.2)

The first incomplete moment, say ϕ1 (t), given by (4.2) with s = 1. ϕ1 (t) can be
applied to construct Bonferroni and Lorenz curves defined for a given probability
π by B(π) = ϕ1 (q) /(πµ′1) and L(π) = ϕ1 (q) /µ′1, respectively, where µ

′
1 given by
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(4.1) with r = 1 and q = Q(π) is the qf of X at π. These curves are very useful in
economics, reliability, demography, insurance and medicine.
Now, we provide two ways to determine ϕ1 (t). First, a general equation for

ϕ1 (t) can be derived from (4.2) as

ϕ1 (t) =

∞∑
k,j=0

ak,j Jαk+j (t) ,

where Jαk+j (t) =
∫ t
−∞ xhαk+j (x) dx is the first incomplete moment of the Exp-G

family.
A second general formula for ϕ1 (t) is given by

ϕ1 (t) =

∞∑
k,j=0

ak,j vαk+j (t) ,

where vαk+j (t) = (αk + j)
∫ G(t)

0
QG (u) uαk+j−1du can be computed numerically

andQG(u) is the quantile function corresponding toG (x; ξ), i.e., QG(u) = G−1(u; ξ).

4.3. Quantile and generating functions. The quantile function (qf) of the
ExOW-G family follows, by inverting (1.1), as

Q(u) = F−1(u) = QG

{ [
−1 + (1− u)−β

]1/α
β1/α + [−1 + (1− u)−β ]

1/α

}
, (4.3)

where QG(u) = G−1(u) is the qf of the baseline G distribution and u ∈ (0, 1).
The effects of the shape parameters on the skewness and kurtosis can be based

on quantile measures. We obtain skewness and kurtosis measures using the qf. The
Bowley’s skewness measure is given by

Skewness =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and the Moors’s kurtosis measure is

Kurtosis =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

These measures enjoy the advantage of having less sensitivity to outliers. More-
over, they do exist for distribution without moments. Both measures equal zero
for the normal distribution. Plots of skewness and kurtosis of the ExOW-N and
ExOW-N distributions are presented in Figure 3. These plots indicate that both
measures depend very much on the shape parameters and the member of the this
family can model various data types in terms of skewness and kurtosis.
Now, we provide two formulae for the moment generating function (mgf)MX (t) =

E
(
etX

)
of X which can be derived from (2.5).
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Figure 3. Plots of skewness and kurtosis of ExOW-N (left panel)
and ExOW-W (right panel) distribution for several values of para-
meters.

The first one is given by

MX (t) =

∞∑
k,j=0

ak,jMαk+j (t) ,

where Mαk+j (t) is the mgf of Tαk+j . Hence, MX (t) can be determined from the
generating function of Exp-G family.
The second formula for MX (t) can be expressed as

MX (t) =

∞∑
k,j=0

ak,j τ (t, k) ,

where τ (t, k) =
∫ 1

0
exp [tQG (u)] uαk+j−1du.

4.4. Quantile power series. In this section, we derive a power series for the qf
x = Q(u) = F−1(u) of X by expanding (4.3). If QG(u) does not have a closed-form
expression, it can be expressed as a power series

QG(u) =

∞∑
i=0

ai u
i, (4.4)

where the coeffi cients a′is are suitably chosen real numbers. They depend on the
parameters of the G distribution. For several important distributions, such as the
normal, Student t, gamma and beta distributions, QG(u) does not have explicit
expressions but it can be expanded as in (4.4). As a simple example, for the N
distribution, ai = 0 for i = 0, 2, 4, . . . and a1 = 1, a3 = 1/6, a5 = 7/120 and
a7 = 127/7560, . . .
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We use throughout the paper a result of Gradshteyn and Ryzhik (2000) for a
power series raised to a positive integer n (for n ≥ 1)

QG(u)n =

( ∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i, (4.5)

where cn,0 = an0 and the coeffi cients cn,i (for i = 1, 2, . . .) are determined from the
recurrence equation

cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m. (4.6)

Next, we derive an expansion for the argument of QG(·) in (4.3), namely

A =

[
−1 + (1− u)−β

] 1
α

β
1
α + [−1 + (1− u)−β ]

1
α

.

Using the generalized binomial expansion, we have[
−1 + (1− u)−β

] 1
α = (−1)

1
α

∞∑
i=0

(−1)i
( 1
α

i

)
(1− u)−β i

= (−1)
1
α

∞∑
i,k=0

(−1)i+k
( 1
α

i

)(
−β i
k

)
uk =

∞∑
k=0

α∗k u
k, (4.7)

where

α∗k =

∞∑
i,k=0

(−1)i+k+ 1
α

( 1
α

i

)(
−β i
k

)
and

β
1
α +

[
−1 + (1− u)−β

] 1
α =

∞∑
k=0

β∗k u
k, (4.8)

where β∗k = α∗k + β
1
α and for k ≥ 1, β∗k = α∗k. Then, using the ratio of two power

series we can write

A =

∑∞
k=0 α

∗
k u

k∑∞
k=0 β

∗
k u

k
=

∞∑
k=0

δk u
k, (4.9)

where δ0 =
α∗0
β∗0
and for k ≥ 1, we have

δk =
1

β∗0

[
α∗k −

1

β∗0

k∑
r=1

β∗rδk−r

]
. (4.10)

Then, the qf of X can be expressed using (4.3) as

Q(u) = QG

( ∞∑
k=0

δk u
k

)
. (4.11)
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For any baseline G distribution, we combine (4.4) and (4.11) to obtain

Q(u) = QG

( ∞∑
m=0

δm u
m

)
=

∞∑
i=0

ai

( ∞∑
m=0

δm u
m

)i
.

Then using (4.5) and (4.6), we have

Q(u) =

∞∑
m=0

em u
m, (4.12)

where em =
∑∞
i=0 ai di,m, and, for i = 0, 1, . . ., di,0 = δi0 and (for m > 1)

di,m = (mδ0)−1
m∑
n=1

[n(i+ 1)−m] δn di,m−n.

Equation (4.12) reveals that the qf of the ExOW-G family can be expressed as
a power series. Then, several mathematical quantities of X can be reduced to
integrals over (0, 1) based on this power series.
Let W (·) be any integrable function in the real line. We can write∫ ∞

−∞
W (x) f(x)dx =

∫ 1

0

W

( ∞∑
m=0

em u
m

)
du. (4.13)

Equations (4.12) and (4.13) are the main results of this section since we can obtain
various mathematical properties of the ExOW-G family based on them. In fact,
they can follow by using the integral on the right-hand side for special W (·) func-
tions, which are usually simple than if they were based on the left-hand integral.
For the great majority of these quantities, we can adopt twenty terms in this power
series. The formulae derived throughout the paper can be easily handled in most
symbolic computation platforms such as Maple, Mathematica and Matlab.

4.5. Entropies. The Rényi entropy of a random variable X represents a measure
of variation of the uncertainty. The Rényi entropy is given by

Iθ (X) = (1− θ)−1
log

(∫ ∞
−∞

f (x)
θ
dx

)
, θ > 0 and θ 6= 1.

Using the pdf in (1.2), we can write

f (x)
θ

=
αθg(x)θG(x)θ(α−1)

Ḡ(x)θ(α+1)

{
1 + β

[
G(x)

Ḡ(x)

]α}−θ
β −θ

.

Applying the series expansion (2.1) to the last term, we obtain

f (x)
θ

= αθg(x)θ
∞∑
k=0

(−θβ − θ)k
k!β−k

G(x)α(k+θ)−θ [1−G(x)]
α(θ−k)+θ

.
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Applying the binomial series to the last term, the last equation reduces to

f (x)
θ

= αθg(x)θ
∞∑

k,j=0

(−1)
j

(−θβ − θ)k
k!β−k

(
α (θ − k) + θ

j

)
G(x)α(k+θ)+j−θ.

Then, the Rényi entropy of the ExOW-G family is given by

Iθ (X) = (1− θ)−1
log

 ∞∑
k,j=0

υk,j

∫ ∞
−∞

g(x)θG(x)α(k+θ)+j−θdx

 ,
where

υk,j =

∞∑
k,j=0

(−1)
j

(−θβ − θ)k
k!α−θβ−k

(
α (θ − k) + θ

j

)
.

The θ-entropy can be obtained as

Hθ (X) = (1− θ)−1
log

1−
∞∑

k,j=0

υk,j

∫ ∞
−∞

g(x)θG(x)α(k+θ)+j−θdx

 .
The Shannon entropy of a random variable X is a special case of the Rényi entropy
when θ ↑ 1. The Shannon entropy, say SI, is defined by SI = E {− [log f (X)]},
which follows by taking the limit of Iθ (X) as θ tends to 1.

4.6. Order statistics. Order statistics make their appearance in many areas of
statistical theory and practice. Let X1, . . . , Xn be a random sample from the
ExOW-G family. The pdf of Xi:n can be written as

fi:n (x) =
f (x)

B (i, n− i+ 1)

n−i∑
j=0

(−1)
j

(
n− i
j

)
F (x)

j+i−1
, (4.14)

where B(·, ·) is the beta function. After applying the generalized binomial series to
(1.1), we have

F (x)
j+i−1

=

∞∑
l=0

(−1)
l

(
j + i− 1

l

){
1 + β

[
G(x)

Ḡ(x)

]α}−l
β

. (4.15)

Using (1.2) and (4.15), we can write

f (x)F (x)
j+i−1

=
αg(x)G(x)α−1

Ḡ(x)α+1

∞∑
l=0

(−1)
l

(
j + i− 1

l

){
1 + β

[
G(x)

Ḡ(x)

]α}−(l+1)
β −1

.

From the series expansion (2.1), we get

f (x)F (x)
j+i−1

=αg(x)

∞∑
l,k=0

(−1)
l

(−l−1
β − 1)k

k!β−k

(
j + i− 1

l

)
G(x)α(k+1)−1

Ḡ(x)α(k+1)+1
.
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Applying the power series (2.3), and after some algebra, we obtain

f (x)F (x)
j+i−1

= α

∞∑
l,k,s=0

(−1)
l
(−l−1

β − 1)kΓ (α [k + 1] + s+ 1)

k!s!β−kΓ (α [k + 1] + 1)

×
(
j + i− 1

l

)
g(x)G(x)α(k+1)+s−1. (4.16)

Substituting (4.16) in (4.14), the pdf of Xi:n can be expressed as

fi:n (x) =

∞∑
k,s=0

dk,s hα(k+1)+s (x) ,

where hα(k+1)+s (x) is the Exp-G density with power parameter α (k + 1) + s and

dk,s =

n−i∑
j=0

∞∑
l=0

α (−1)
l+j

(−l−1
β − 1)kΓ (α [k + 1] + s)

k!s!β−kB (i, n− i+ 1) Γ (α [k + 1] + 1)

(
n− i
j

)(
j + i− 1

l

)
.

Then, the density function of the ExOW-G order statistics is a mixture of Exp-G
densities. Based on the last equation, we note that the properties of Xi:n follow
from those properties of Tα(k+1)+s.
The qth moments of Xi:n can be expressed as

E (Xq
i:n) =

∞∑
k,s=0

dk,sE
(
Tα(k+1)+s

)
. (4.17)

Based upon the moments in (4.17), we can derive explicit expressions for the L-
moments of X as infinite weighted linear combinations of the means of suitable
ExOW-G order statistics. The rth L-moments is given by

λr =
1

r

r−1∑
d=0

(−1)
d

(
r − 1

d

)
E (Xr−d:r) , r ≥ 1.

4.7. PWMs. The PWM is the expectation of certain function of a random variable
whose mean exists. A general theory for the PWMs covers the summarization
and description of theoretical probability distributions and observed data samples,
nonparametric estimation of the underlying distribution of an observed sample,
estimation of parameters, quantiles of probability distributions and hypothesis tests.
The PWMmethod can generally be used for estimating parameters of a distribution
whose inverse form cannot be expressed explicitly.
The (j, i)th PWM ofX following the ExOW-G family, say ρj,i, is formally defined

by

ρj,i = E
{
XjF (X)i

}
=

∫ ∞
−∞

xjf (x)F (X)i dx.
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From (4.16), we can write

f (x)F (x)
i

= α

∞∑
l,k,s=0

(−1)
l
(−l−1

β − 1)kΓ (α [k + 1] + s+ 1)

k!s!β−kΓ (α [k + 1] + 1)

×
(
i

l

)
g(x)G(x)α(k+1)+s−1.

The last equation can be expressed as

f (x)F (X)i =

∞∑
k,s=0

mk,s hα(k+1)+s (x) ,

where

mk,s =

∞∑
l=0

α (−1)
l
(−l−1

β − 1)kΓ (α [k + 1] + s)

k!s!β−kΓ (α [k + 1] + 1)

(
i

l

)
.

Then, the PWM of X is given by

ρj,i =

∞∑
k,s=0

mk,s

∫ ∞
−∞

xj hα(k+1)+s (x) dx =

∞∑
k,s=0

mk,s E
(
T jα(k+1)+s

)
.

5. Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the literature but
the maximum likelihood method is the most commonly employed. The MLEs
enjoy desirable properties and can be used to obtain confidence intervals for the
model parameters. The normal approximation for these estimators in large samples
can be easily handled either analytically or numerically. Here, we consider the
estimation of the unknown parameters of the new family from complete samples
only by maximum likelihood.
Let X1, ..., Xn be a random sample from the ExOW-G family with parameters

α, β and ξ. Let θ =(α, β, ξᵀ)ᵀ be the p× 1 parameter vector. To obtain the MLE
of θ, the log-likelihood function is given by

`(θ) = n log (α) +

n∑
i=1

log g (xi; ξ)− (α+ 1)

n∑
i=1

log [1−G(xi; ξ)α]

+ (α− 1)

n∑
i=1

logG (xi; ξ)−
(

1

β
+ 1

) n∑
i=1

log

[
1 +

βG(xi; ξ)α

Ḡ(xi; ξ)α

]
.

Then, the score vector components, U (θ) = ∂`
∂θ =

(
Uα, Uβ , Uξk

)ᵀ
, are
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Uα =
n

α
−

n∑
i=1

log [1−G(xi; ξ)α] + α

n∑
i=1

G(xi; ξ)α logG (xi; ξ)

1−G(xi; ξ)α

+

n∑
i=1

logG (xi; ξ)− (1 + β)

n∑
i=1

G(xi; ξ)αḠ(xi; ξ)α log
[
G(xi;ξ)
Ḡ(xi;ξ)

]
Ḡ(xi; ξ)2α + βG(xi; ξ)αḠ(xi; ξ)α

,

Uβ =
1

β2

n∑
i=1

log

[
1 +

βG(xi; ξ)α

Ḡ(xi; ξ)α

]
− 1

β

n∑
i=1

G(xi; ξ)α

βG(xi; ξ)α + Ḡ(xi; ξ)α

and

Uξk =

n∑
i=1

g′ (xi; ξ)

g (xi; ξ)
+ (α+ 1)

n∑
i=1

αG′(xi; ξ)α−1

1−G(xi; ξ)α
+ (α− 1)

n∑
i=1

G′ (xi; ξ)

G (xi; ξ)

−α (β + 1)

n∑
i=1

Ḡ(xi; ξ)αG′(xi; ξ)α−1 −G(xi; ξ)αḠ′(xi; ξ)α−1

Ḡ(xi; ξ)α
[
βG(xi; ξ)α + Ḡ(xi; ξ)α

] ,

where g′ (xi; ξ) = ∂g (xi; ξ) /∂ξk and G
′ (xi; ξ) = ∂G (xi; ξ) /∂ξk.

Setting the nonlinear system of equations Uα = Uβ = 0 and Uξk = 0 and solving
them simultaneously yields the MLE θ̂ = (α̂, β̂, ξ̂

ᵀ
)ᵀ. For doing this, it is usually

more convenient to adopt nonlinear optimization methods such as the quasi-Newton
algorithm to maximize ` numerically. For interval estimation of the parameters, we
obtain the p × p observed information matrix J(θ) = { ∂2`

∂r ∂s} (for r, s = α, β, ξ),
whose elements can be computed numerically.
Under standard regularity conditions when n → ∞, the distribution of θ̂ can

be approximated by a multivariate normal Np(0, J(θ̂)−1) distribution to obtain
confidence intervals for the parameters. Here, J(θ̂) is the total observed information
matrix evaluated at θ̂. The method of the re-sampling bootstrap can be used for
correcting the biases of the MLEs of the model parameters. Good interval estimates
may also be obtained using the bootstrap percentile method. Improved MLEs can
be obtained for the new family using second-order bias corrections. However, these
corrected estimates depend on cumulants of log-likelihood derivatives and will be
addressed in future research.

6. Simulation

6.1. Simulation for the ExOW-N distribution. In this subsection, a simula-
tion study is conducted to examine the performance of the MLEs of the ExOW-N
parameters. We generate 1000 samples of size, n =50, 100, 250, 500 and 1000 of
the ExOW-N model. The precision of the MLEs is discussed by means of the fol-
lowing measures: mean, mean square error (MSE), estimated average length (AL)
and coverage probability (CP). The empirical study was conducted with software
R. The empirical results are given in Table 1. The values in Table 1 indicate that
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the estimates are quite stable and, more importantly, are close to the true values
for the these sample sizes. The simulation study shows that the maximum likeli-
hood method is appropriate for estimating the ExOW-N parameters. In fact, the
means of the parameters tend to be closer to the true parameter values when n
increases. This fact supports that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of the MLEs. The nor-
mal approximation can be improved by using bias adjustments to these estimators.
Approximations to the their biases in simple models may be obtained analytically.

Table 1. Simulation results of the ExOW-N distribution for sev-
eral values of parameters.

µ = 0.5, σ = 2 Mean MSE AL CP
α β n

α β µ σ α β µ σ α β µ σ α β µ σ
0.5 0.5 50 0.531 0.482 0.646 2.018 0.163 0.429 0.760 1.049 1.906 3.209 4.884 5.491 0.843 0.913 0.933 0.859

100 0.490 0.491 0.563 1.978 0.058 0.193 0.384 0.452 1.102 2.333 3.577 3.343 0.886 0.942 0.951 0.921
250 0.491 0.486 0.553 1.974 0.021 0.062 0.152 0.182 0.598 1.204 1.888 1.803 0.913 0.941 0.955 0.922
500 0.497 0.492 0.519 1.997 0.012 0.036 0.091 0.106 0.410 0.790 1.252 1.255 0.924 0.945 0.954 0.937
1000 0.501 0.499 0.511 2.008 0.005 0.018 0.047 0.046 0.291 0.545 0.874 0.885 0.946 0.948 0.952 0.954

2 1.5 50 2.041 1.901 0.473 1.871 1.991 1.620 0.114 1.536 9.038 4.900 1.347 8.110 0.813 0.926 0.918 0.791
100 1.997 1.667 0.492 1.933 1.144 0.668 0.054 0.946 6.503 2.883 0.909 6,048 0.845 0.933 0.945 0.847
250 1.996 1.578 0.491 1.969 0.729 0.179 0.019 0.646 4.199 1.598 0.543 3.993 0.896 0.952 0.952 0.888
500 2.072 1.532 0.498 2.053 0.423 0.071 0.007 0.377 3.286 1.044 0.368 3.153 0.927 0.948 0.956 0.922
1000 2.040 1.518 0.497 2.034 0.253 0.035 0.004 0.229 2.226 0.725 0.259 2.144 0.945 0.952 0.954 0.941

1.5 0.8 50 1.390 0.874 0.542 1.799 0.898 0.672 0.142 1.174 6.230 2.980 1.499 7.333 0.830 0.894 0.928 0.811
100 1.448 0.837 0.528 1.911 0.607 0.234 0.064 0.81 4.515 1.735 0.953 5.420 0.835 0.925 0.947 0.845
250 1.542 0.824 0.502 2.034 0.389 0.067 0.018 0.545 3.247 0.984 0.559 3.962 0.888 0.944 0.946 0.886
500 1.497 0.817 0.496 1.989 0.18 0.031 0.009 0.269 2.111 0.666 0.385 2.591 0.924 0.944 0.948 0.926
1000 1.511 0.807 0.493 2.006 0.116 0.013 0.005 0.173 1.579 0.463 0.269 1.539 0.946 0.95 0.952 0.942

3 2 50 2.636 2.402 0.500 1.725 2.693 2.135 0.052 1.017 5.804 5.849 0.999 4.997 0.863 0.915 0.940 0.809
100 2.744 2.326 0.474 1.761 1.664 0.959 0.029 0.662 3.584 3.643 0.672 3.703 0.932 0.944 0.946 0.884
250 2.906 2.111 0.490 1.841 1.005 0.244 0.009 0.426 1.301 1.934 0.398 2.441 0.934 0.952 0.947 0.908
500 2.951 2.032 0.495 1.929 0.617 0.103 0.004 0.245 0.968 1.310 0.278 1.330 0.946 0.952 0.948 0.944
1000 2.991 2.016 0.499 1.998 0.346 0.059 0.002 0.155 0.467 0.504 0.193 0.756 0.949 0.950 0.948 0.949

6.2. Simulation Results for the ExOW-W distribution. We assess the per-
formance of the MLEs of the ExOW-W parameters by means of two simulation
studies. The precision of the MLEs is discussed by means of the following measures:
bias, MSE, AL and CP. We generate N = 1000 samples of size n = 50, 55, . . . , 1000
from the ExOW-W distribution with α = 0.5, β = 0.5, λ = 0.5, θ = 2 using the
inverse transform method. The MLEs of the parameters are obtained for each
generated sample, say (α̂i, β̂i, λ̂i, θ̂i), for i = 1, 2, · · · , N. The standard errors of
the MLEs are evaluated by inverting the observed information matrix, namely
(sα̂i , sβ̂i

, sλ̂i , sθ̂i) for i = 1, 2, · · · , N. The estimated biases and MSEs are given by

B̂iasε(n) =
1

N

N∑
i=1

(ε̂i − ε),

M̂SEε(n) =
1

N

N∑
i=1

(ε̂i − ε)2,
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for ε = α, β, λ, θ. The CPs and ALs are, respectively, given by

CPε(n) =
1

N

N∑
i=1

I(ε̂i − 1.95996sε̂i , ε̂i + 1.95996sε̂i),

ALε(n) =
3.919928

N

N∑
i=1

sε̂i .

The numerical results for the above measures are displayed in Figures 4 to 7. We
note from these plots that the estimated biases decrease as the sample size n in-
creases. Further, the estimated MSEs decay toward zero as n increases. This fact
reveals the consistency property of the MLEs. The CP is near to 0.95 and ap-
proaches to the nominal value when the sample size increases. Moreover, if the
sample size increases, the AL decreases in each case. The reported results are ob-
tained for a selected parameter vector (α, β, λ, θ). However, similar results are hold
for several parameter values.

Figure 4. Estimated bias of the selected parameter vector.

7. Application

In this section, we provide two applications to real data sets to illustrate the
flexibility of the ExOW-G family. In each case, the parameters are estimated by
maximum likelihood method and R statistical software is used for computations.
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Figure 5. Estimated MSEs of the selected parameter vector.

First, we describe the data sets and then determine the MLEs (and the correspond-
ing standard errors) of the parameters. In order to compare the above mentioned
models with the proposed family, we apply goodness-of-fit tests to verify which dis-
tribution fits better the real data set. The statistics Cramer von Mises (W*) and
Anderson Darling (A*) are described in details in Chen and Balakrishnan (1995).
The log-likelihood values are also obtained for all models and used to decide best
model. In general, the smaller the values of these statistics, the better the fit to
the data.

7.1. First Application with the ExOW-W distribution. The first real data
set was originally reported by Proschan (1963), which consists of 213 observations
on the number of successive failures of the air conditioning system of a fleet of 13
Boeing 720 jet airplanes. The data are as follows:
50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209,

41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283,
7, 61, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239,
14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5,
36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 156, 21, 16, 88, 130, 14, 118, 44, 15,
42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 31, 118, 326,
12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111,
97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163, 208, 1,
24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71.



EXOW-G FAMILY OF DISTRIBUTIONS 179

Figure 6. Estimated ALs of the selected parameter vector.

The descriptive statistics for the first data are: x̄ = 89.134, σ2 = 11142.35,
skewness = 2.233 and kurtosis = 8.735. According to these results, the data
is right-skewed and leptokurtic. Now, we compare the fitting performance of
ExOW-W with other known models, namely Weibull (W), odd log-logistic-Weibull
(OLL-W), generalized odd log-logistic-Weibull (GOLL-W), Kumaraswamy-Weibull
(Kum-W), exponentiated generalized-Weibull (EG-W), odd Burr-Weibull (OBu-
W), and Weibull-Weibull (W-W). The fitted distributions and their abbreviations
are presented in Table 2.

Table 2. Fitted distributions and their abbreviations for the first
data set.

Distributions References
Weibull Weibull (1951)
Odd Log-Logistic-Weibull Gleaton and Lynch (2006)
Generalized Odd Log-Logistic-Weibull Cordeiro et al. (2016)
Kumaraswamy-Weibull Cordeiro et al. (2010)
Exponentiated Generalized-Weibull Oguntunde et al. (2015)
Odd Burr-Weibull Alizadeh et al. (2017)
Weibull-Weibull Bourguignon et al. (2014)
ExOW-W Proposed
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Figure 7. Estimated CPs of the selected parameter vector.

Table 3 gives W* and A* statistics and log-likelihood values. Based on Table 3,
it is clear that the ExOW-W distribution provides the overall best fit and therefore
could be chosen as the more adequate model from other models for explaining the
first data set.
More information can be provided in Figure 8 by a histogram of the data with

fitted lines of the pdfs for all distributions. Figure 8 suggests that the ExOW-W fits
skewed data very well. Then, we present the plots of the fitted density, cumulative
and survival functions with the probability-probability (P-P) plot for the ExOW-W
model in Figure 9. They reveal a good adjustment for the data of the estimated
density, cumulative and survival functions of the ExOW-W distribution.

7.2. Second Application with the ExOW-N distribution. The second data
set is related to failure data of Hong and Meeker (2013) in weeks of a product called
Product D2 that is used in offi ces or residences. Gitifar et al. (2016) selected one
hundred data randomly from a total of 1800 observations to evaluate the fitting
performance of their compounding distributions. The selected data are as follows:
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Table 3. Fitting summary of distributions for the first data set.

Models α β λ θ A∗ W ∗ −`
W 0.906 84.697 0.975 0.157 981.147

0.051 7.390
OLL-W 1.633 0.600 96.282 0.572 0.086 979.418

0.572 0.193 17.272
GOLL-W 0.573 5.360 0.661 16.560 0.198 0.025 976.603

0.201 2.442 0.146 7.914
Kum-W 2.963 0.154 0.732 4.974 0.218 0.028 976.779

0.188 0.012 0.007 0.009
EG-W 1.044 3.353 0.509 20.008 0.289 0.039 977.565

3.807 1.804 0.119 141.242
OBu-W 1.771 0.154 0.794 14.988 0.166 0.020 976.387

0.341 0.082 0.072 6.602
W-W 0.023 5.056 0.107 27.097 0.340 0.218 983.643

0.029 1.901 0.036 37.114
ExOW-W 1.618 4.254 0.95 39.557 0.158 0.019 976.178

0.326 1.889 0.103 11.161

Figure 8. Fitted densities of distributions for the first data set.

0.222673061 0.257639905 0.328155859 0.515672484 0.583401130 0.642256077 0.621521735
0.587506929 0.594755485 0.316753044 0.550884304 0.312962380 0.516646945 0.546445582
0.600493703 0.297813235 0.332441913 0.333245894 0.364800151 0.429097225 0.627439232
0.313363071 0.579554283 0.391397547 0.125167305 0.541816854 0.665764686 0.398880874
0.402492151 0.423982077 0.428143776 0.341767913 0.514537781 0.686683383 0.333088363
0.249962985 0.226748439 0.286643595 0.645490088 0.584664074 0.397377064 0.609634794
0.353187577 0.536304985 0.406031202 0.586163204 0.648786836 0.516497130 0.318475607
0.494774308 0.436782434 0.245923132 0.618409876 0.255245760 0.464312202 0.454133994
0.387982016 0.218311879 0.526363495 0.418258490 0.272839591 0.151997829 0.492728139
0.290973052 0.471553883 0.363069573 0.668371780 0.501805967 0.600306622 0.477109810
0.515188714 0.283784543 0.600625759 0.299420135 0.368553098 0.653382502 0.687845701
0.379423961 0.279504337 0.407995757 0.685695223 0.259685231 0.514854899 0.501119729
0.003522425 0.672089253 0.630145059 0.310811342 0.384073475 0.388312955 0.268080935
0.437408445 0.634243302 0.239656858 0.391844012 0.347107733 0.499160234 0.325770026
0.290634387 0.371908794.
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Figure 9. Plots for fitted functions of the ExOW-W model for
the first data set.

The descriptive statistics for second data are: x̄ = 0.435, σ2 = 0.0219, skewness =
−0.126 and kurtosis = 2.386. These results show that the data is left-skewed
and leptokurtic. Since there are not many flexible distributions to model left-
skewed data in statistics literature, we evaluate the fitting performance of the
ExOW-N distribution in modelling left skewed data. The fitting performance of the
ExOW-N distribution is compared with other known models, namely Normal (N),
odd log-logistic-normal (OLL-N), generalized odd log-logistic-normal (GOLL-N),
Kumaraswamy-normal (Kum-N), exponentiated generalized-normal (EG-N), odd
Burr-normal (OBu-N), and Weibull-normal (W-N) distributions given in Table 4.

Table 4. Fitted distributions and their abbreviations for the sec-
ond data set.

Distributions References
Normal Gauss (1809)
Odd Log-Logistic-Normal Braga et al. (2016)
Generalized odd log-logistic-Normal Cordeiro et al. (2016)
Kumaraswamy-Normal Cordeiro and de Castro (2011)
Exponentiated Generalized-Normal Cordeiro et al. (2013)
Weibull-Normal Bourguignon et al. (2014)
Odd Burr-Normal Alizadeh et al. (2017)
ExOW-N Proposed

Table 5 gives W* and A* statistics and log-likelihood values. Table 5 shows that
the ExOW-N distribution provides the overall best fit and therefore could be chosen
as the more adequate model from other models for explaining the second data set.
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Table 5. Fitting summary of distributions for the second data set

Models α β µ σ A∗ W ∗ −`
N 0.435 0.147 0.894 0.135 -49.457

0.014 0.010
OLL-N 0.235 0.442 0.051 0.337 0.034 -53.449

0.112 0.011 0.015
GOLL-N 0.245 0.410 0.497 0.039 0.43 0.06 -54.272

0.119 0.311 0.046 0.011
Kum-N 17.626 12.869 -0.219 0.648 1.063 0.169 -49.353

44.647 53.755 1.431 0.947
EG-N 0.625 0.162 0.583 0.072 0.943 0.149 -50.515

0.005 0.0173 0.004 0.001
OBu-N 0.201 1.297 0.467 0.048 0.285 0.026 -54.203

0.096 0.260 0.022 0.014
W-N 0.989 0.127 0.496 0.045 0.1805 0.019 -57.248

0.175 0.056 0.016 0.012
ExOW-N 0.127 0.009 0.498 0.046 0.177 0.018 -57.276

0.064 0.515 0.041 0.012

Figure 10 shows a histogram of the data with fitted lines of the pdfs for all
distributions. As seen in Figure 10, the ExOW-N distribution fits left-skewed data
very well. Then, the plots of the fitted density, cumulative and survival functions
with the P-P plot for the ExOW-N model are presented in Figure 11. They reveal
a good adjustment for the data of the estimated density, cumulative and survival
functions of the ExOW-N distribution.

Figure 10. Fitted densities of distributions for the second data set.
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Figure 11. Plots for fitted functions of the ExOW-N model for
the second data set.

8. Conclusions

The Weibull distribution is one of the most widely used lifetime distributions
in reliability. However, a drawback of this distribution as far as lifetime analysis
is concerned is the monotonic behaviour of its hazard rate function (hrf). In real
life applications, empirical hazard rate curves often exhibit non-monotonic shapes
such as a bathtub, upside-down bathtub (unimodal) and others. Hence, there is
a genuine desire to search for some generalizations or modifications of the Weibull
distribution that can provide more flexibility in lifetime modeling. There is great in-
terest among statisticians and practitioners in the past decade to generate new and
flexible generalized families from classic ones. We have presented a new extended
odd Weibull -G (ExOW-G) family by adding two extra shape parameters. Many
well-known distributions emerge as special cases of the ExOW-G family. The ordi-
nary Weibull-G family is particular case of the proposed distribution family. The
mathematical properties of the new family including explicit expansions for the
ordinary, probability weighted and incomplete moments, quantile and generating
functions, entropies, order statistics have been provided. The model parameters
have been estimated by the maximum likelihood estimation method. It is shown,
by means of two real data sets, that special cases of the ExOW-G family can provide
better fits than other families each having the same number of parameters. Further,
we obtain that this family could generate a bimodal shaped distribution. Finally
we conclude that adding parameters to any continuous distribution via ExOW-G
family construction increases its flexibility. We hope that the ExOW-G family may
be extensively used in statistics.
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