

KISA DEVRE DURUMUNDA GÜÇ TRAFOSUNDA MEYDANA GELEN ELEKTROMANYETİK KUVVETLERİN SONLU ELEMANLAR YÖNTEMİ İLE ANALİZİ

Yıldırım ÖZÜPAK^{1*}, Mehmet Salih MAMİŞ²

¹ Dicle Üniversitesi, Silvan Meslek Yüksekokulu, Diyarbakır, Turkey

² İnönü Üniversitesi, Elektrik Elektronik Mühendisliği Bölümü, Malatya, Turkey

Geliş tarihi: 10.01.2019 Kabul tarihi: 02.04.2019

ÖZET

Geçici elektromanyetik kuvvetler, transformatörlerin parametreleri üzerinde mekanik baskıya neden olurlar. Bu çalışmada, bir güç transformatörünün kısa devre durumunda sargılarında meydana gelen elektromanyetik kuvvetler incelenmiştir. Bu kuvvetleri hesaplamak için transformatör ANSYS@Maxwell ortamında *3D* olarak modellenmiştir. Güç transformatörüne uygulanan kısa devre geçici akımlarına bağlı olarak manyetik vektör potansiyeli, elektromanyetik akı yoğunluğu ve elektromanyetik kuvvetlerin analizi Sonlu Elemanlar Yöntemi (SEY) gerçekleştirilmiştir. Elde edilen sonuçlar analitik sonuçlarla karşılaştırılmış ve tasarlanan modelin gerçek modelle iyi bir uyum içinde olduğu görülmüştür. Bu çalışmada ele alınan sayısal modelleme tekniğinin güç transformatörünün ve diğer transformatör modellerinin tasarımında faydalı olması beklenmektedir.

Anahtar Kelimeler: Sonlu Elemanlar Yöntemi (SEY), Elektromanyetik Kuvvet, Transformatör, Kısa Devre Akımı

ANALYSIS OF ELECTROMAGNETIC FORCES FROM POWER TRANSFORMER IN SHORT CIRCUIT BY FINITE ELEMENT METHOD

ABSTRACT

Transient electromagnetic forces cause mechanical stress on transformer parameters. In this study, the electromagnetic forces occurring in the windings of a power transformer are examined. To calculate these forces, the transformer is modeled in 3D in the ANSYS @ Maxwell environment. The magnetic vector potential, electromagnetic flux density and the analysis of electromagnetic forces are performed by the Finite Element Method (FEM). The results were compared with the analytical results and the model was in good agreement with the real model. The numerical modeling technique discussed in this study is expected to be useful in the design of power transformer and other transformer models.

Keywords: Finite Element Method (FEM), Electromagnetic Force, Transformer, Short Circuit Current

1. Giriş

Bir transformatörün kısa devre testi gerçekleştirildiğinde transformatörde meydana gelen elektromanyetik kuvvetler transformatörün sargılarına uygulanır. Bu kuvvetler, tahribatlara ciddi mekanik hasarlara ve transformatörün patlamasına neden olabilirler. Bu nedenle, transformatörün kısa

^{*} e-posta: <u>yildirimozupak@gmail.com</u> ORCID ID <u>https://orcid.org/0000-0001-8461-8702</u> <u>mehmet.mamis@inonu.edu.tr</u> ORCID ID <u>https://orcid.org/ 0000-0002-6562-0839</u>

devre durumlarındaki dayanıklılığı güç transformatörlerinin temel özelliklerinden biri olarak kabul edilmektedir [1]. Bir elektrik dağıtım tesisine güç trafosu kurmadan önce, kısa devre akımlarından kaynaklanan elektromanyetik kuvvetlerin tahmin edilmesi, güvenli çalışma şartları ve trafonun ömrü için tasarım aşamasında bilinmesi büyük önem taşımaktadır. Transformatörün kısa devre testi için, testleri gerçekleştirmek için özel tesisler, özel cihazlar ve bu testleri gerçekleştirebilecek uzmanlar gerekmektedir. Transformatörün nominal güç değeri arttıkça kısa devre testini gerçekleştirmek daha zorlaşmaktadır. Bu nedenle, güç transformatörünün kısa devre durumlarında meydana gelen geçici elektromanyetik kuvvetleri tahmin edebilmek için sayısal bir model gereklidir [2].

Bu çalışmada, Sonlu Elemanlar Yöntemi, bir transformatörün sargılarını etkileyen geçici elektromanyetik kuvvetleri tahmin etmek için kullanılmıştır. Bunun için bir transformatör terminaline uygulanan tek faz-toprak kısa devre koşulu göz önünde bulundurulmuştur. Transformatörün geçici elektromanyetik kuvvetlerini hesaplamak için ANSYS@Maxwell ortamında tasarlanan transformatörün 3-D modeli kullanılmıştır. Güç transformatörüne uygulanan kısa devre geçici akımlarından kaynaklanan manyetik vektör potansiyeli, elektromanyetik akı yoğunluğu ve elektromanyetik kuvvetler Sonlu Elemanlar Yöntemi ile analiz edilmiştir. Transformatör modelinin elektromanyetik kuvvetleri hesaplanmış ve sonuçlar analitik sonuçlarla karşılaştırılmıştır.

2. Elektromekanik Alan Analizi

Güç trafosundaki elektromanyetik kuvvetler, yerel manyetik akı yoğunluğundan hesaplanmaktadır. Trafonun sargılarından akım geçtiğinde manyetik alanın temel denklemi aşağıdaki gibi olmaktadır [3]:

$$\nabla x \frac{1}{\mu} \left(\nabla x \vec{A} \right) = \vec{J}_s - \sigma \frac{\partial \vec{A}}{\partial t} \tag{1}$$

Burada, μ manyetik geçirgenlik, \vec{A} manyetik vektör potansiyeli, \vec{J}_s akım yoğunluğu ve σ iletkenliktir. Sargılardaki kaçak akıyı hesaplamak için 3-D Sonlu Elemanlar Yöntemi kullanılmıştır. Transformatörün sargılardan akan geçici kısa devre akımları elektromanyetik kuvvetlerin hesaplanmasında önemli bir parametredir. Kısa devre durumu, sistemden çok büyük akımların aktığı arıza durumlarıdır. Kısa devre durumunda sistemden akan akım nominal akımın yaklaşık 20 katı kadar olabilmektedir. Kısa devre geçici akımları yaklaşık olarak aşağıda verilen denklemdeki gibi hesaplanmaktadır [4]:

$$I_{sc}(t) = I_0 e^{-\frac{R}{L}t} + \frac{V_m}{\sqrt{R^2 + X^2}} \sin(wt - \theta)$$
(2)

burada I_0 nominal akım, R, L ve X direnç ve V_m maksimum gerilimdir.

ADYU Mühendislik Bilimleri Dergisi 10 (2019) 10-22

Şekil 1. Bir güç transformatörünün eş merkezli sargısındaki elektromanyetik kuvvet ve kaçak akı dağılım yoğunluğu [5]

Bu çalışmada, güç trafosunun sargılarında meydana gelen geçici elektromanyetik kuvvetler, kısa devre akımı ve manyetik akı yoğunluğu parametreleri ile tahmin edilmiştir. Transformatörün sargılarındaki elektromanyetik kuvvetler, geçici akımlar ve sargılardaki kaçak akı arasında kalan bölgedeki kombinasyonun bir sonucu olarak meydana gelir [6]. Bu nedenle, güç trafosundaki elektromanyetik kuvveti olarak ifade edilir.

$$d\vec{F} = id\vec{l}x\vec{B} \tag{3}$$

Burada, F kuvvet ve B akı yoğunluğudur.

Daha önce belirtildiği gibi elektromanyetik kuvvetlerin değerlendirilmesinde önemli bir parametre olan manyetik vektör potansiyeli, manyetik alan analizinden hesaplanmaktadır. Manyetik akı yoğunluğunun radyal ve eksenel bileşenleri aşağıdaki denklemlerde ifade edilmiştir [7].

$$B_r = -\frac{\partial A_{\phi}}{\partial z} \tag{4}$$

$$B_{\emptyset} = 0 \tag{5}$$

$$B_z = \frac{1}{r} \frac{\partial r A_{\phi}}{\partial r} \tag{6}$$

Br, $B\varphi$ ve Bz, silindirik koordinattaki akı yoğunluğunun bileşenleridir. Manyetik akı yoğunluğu radyal ve eksenel bileşenlerine ayrıştırıldığında, elektromanyetik kuvvetlerin radyal ve eksenel bileşenleri birleştirilebilir.

$$\vec{F} = \int_{\mathcal{W}} J_{\emptyset} \widehat{\emptyset} \, x (B_r \hat{r} + B_z \hat{z}) dv = F_r \hat{r} + F_z \hat{z} \tag{7}$$

 J_{\emptyset} , φ yönlü kısa devre akım yoğunluğu, \hat{r} , $\hat{\emptyset}$ ve \hat{z} ise silindirik koordinattaki birim vektörler, dv element hacminin türevidir. (5) 'de görüldüğü üzere, radyal kuvvet manyetik akı yoğunluğunun eksenel bileşenine bağlıyken, eksenel kuvvetler manyetik akı yoğunluğunun radyal bileşenine bağlıdır [6]. Güç transformatörünün sargı modeli aşağıda Şekil 1'de sunulmuştur. Bu sargı konfigürasyonunda, sargının iç yüzeyine uygulanan radyal kuvvetler, nüve yönündeki baskı kuvveti olarak kabul edilir. Sargının dışındaki radyal kuvvetler, trafo tankının yönüne doğru çekme kuvveti görevi görür. Ayrıca, elektromanyetik kuvvetlerin radyal bileşeni, trafodaki sıcaklığın yükselmesine ve nüve ile sargı arasındaki veya sargı katmanları arasındaki yalıtkan materyalinin tahrip olmasına neden olabilir [7]. Öte yandan, sargılardaki iç ve dış eksenel kuvvetler merkez tarafın eksenel yönde sıkıştırmaya neden olmaktadır. Elektromanyetik kuvvetlerin eksenel bileşeni, sargı yapısının bükülmesine neden olabilir [8].

3. Transformatörün Modellenmesi

Gerçek trafo boyutlarına ve geometrisine dayanan SEY modelleri, düşük frekanslı geçici elektromanyetik alanın 3-D simülasyonu için oluşturulmuştur. Transient simülasyonun temel süreci, fiziksel denklemlerin mekansal ve zamansal ayrılmasını içermektedir. Sonlu Elemanlar Yöntemi, mühendislik uygulamalarında yaygın olarak kullanılmaktadır. Bu yöntem ile karmaşık, homojen olmayan ve anizotropik materyaller modellenebilmekte ve düzensiz ağlar (mesh) kullanılarak karmaşık geometriler analiz edilebilmektedir. Aşağıda Şekil 2'de SEY'e dayanan ANSY@Maxwell ortamında tasarlanan trafo modeli sunulmuştur.

Şekil 2. Transformatörün 3D Modeli

SEY, verilen bir uyarma ve frekans değerine bağlı olarak Maxwell denklemlerini çözmektedir. Geçici simülasyon, tüm zaman aşamalarını eşzamanlı olarak çözmek için zaman ekseni boyunca alan ayrıştırması yapılarak gerçekleştirilir. Transformatör modelinde, sınır koşulları, dış geometri ve tüm materyallerin özellikleri üzerinde tanımlanmaktadır. Tasarlanan transformatöre ait elektriksel ve mekaniksel veriler aşağıda Çizelge 1'de verilmiştir.

Parametre	Değer				
Görünür Güç	15 MVA				
Yüksek Gerilim (YG)	33.000 V				
Alçak Gerilim (AG)	11.000 V				
Nüve Kaybı	12.500 W				
Bakır Kaybı	97.000 W				
Frekans	50 Hz				
Nüve Materyali	M125-027S				
YG Sargı Direnci	1.7 Ω				
AG Sargı Direnci	40 mΩ				
YG Bağlantı	Delta				
AG Bağlantı	Yıldız				
YG Spir Sayısı	135				
AG Spir Sayısı	665				
YG Faz Akımı	784 A				
AG Faz Akımı	156 A				
Akım Yoğunluğu	1.8 A/m2				

Çizelge 1. Üç Fazlı 15 MVA Transformatör Tasarım Öncesi Bilgileri

Kısa devre testi için geçici rejim çözücüye bağlı simülasyonda önceden tanımlanmış zaman aralığı ve zaman adımı için analiz gerçekleştirilmiştir. Trafonun 3-D modelinin simülasyonundan manyetik akı yoğunluğu, manyetik alan şiddeti ve elektromanyetik kuvvetler elde edilmiştir. Analizler, 0.08-0.1 s zaman aralığında 0.005 s adımlarla gerçekleştirilmiştir.

4. Modelin Simülasyonu ve Sonuçları

4.1. Kısa Devre Testinin Uygulanması

Kısa devre akımı, transformatörlerde ciddi hasarlar meydana getirebilir. Elektromanyetik analiz için, yüksek gerilim tarafına gerilim uygulanarak alçak gerilim tarafı kısa devre edilerek kısa devre testi gerçekleştirilmiştir. Kısa devre testinin süresi 0.08 ile 0.1 s arasında değişmektedir.

4.2. Kaçak Akı Yoğunluğu

Alan analizinden elde edilen manyetik vektör potansiyeli, sargı bölgesindeki manyetik akı yoğunluğunun ve elektromanyetik kuvvetlerin hesaplanmasında kullanılmıştır. Manyetik akı yoğunluğunun normal şartlardaki dağılımı, Şekil 3'te gösterilmiştir.

Şekil 3. Normal durumda manyetik akı yoğunluğu dağılımı.

Yukarıdaki şekilde görüldüğü gibi, manyetik akı yoğunluğu nüve üzerinde düzgün bir şekilde dağılmıştır. Aşağıda Şekil 4'te geçici durumda hesaplanan manyetik akı dağılımı sunulmuştur. Sargı etrafındaki kaçak akı gösterilmiş ve nüvedeki manyetik akı yoğunluğunun bazı bölgelerde doyum noktasına ulaştığı görülmüştür. Bu kaçak akı, geçici elektromanyetik kuvvetin yanı sıra trafoda sıcaklık artışına da neden olmaktadır.

Şekil 4. Geçici bir durumda manyetik akı yoğunluğu dağılımı.

4.3. Elektromanyetik Kuvvet

Transformatörün sargılarında meydana gelen elektromanyetik kuvvetler, kaçak akı ve geçici akımlarla hesaplanmaktadır. Alçak gerilim (AG) ve yüksek gerilim (YG) sargı bölgelerinde her iletken hücrenin radyal kuvvetleri aşağıda Şekil 5 ve 6'da sunulmuştur. Radyal kuvvetler, her iletken hücrenin kaçak akısının eksenel bileşeni kullanılarak hesaplanmaktadır. YG sargısındaki her bir iletken hücrenin radyal kuvvetleri Şekil 10'da verilmiştir; kuvvetler, radyal pozitif bir yönü göstermektedir. Sargının dışındaki elektromanyetik kuvvetler, transformatör tankına doğru etki göstermektedir. Öte yandan, AG sargısındaki iç radyal kuvvetler, Şekil 9'da gösterildiği gibi radyal doğrultuda nüveye doğru bir yöne sahiptir. AG sargısındaki radyal kuvvetler ise nüvenin yan tarafına doğru yönelmiştir.

Şekil 5. YG sargısında radyal kuvvetler.

Şekil 6. AG sargısında radyal kuvvetler.

Kısa devre durumunda yüksek gerilim (YG) sargısında meydana gelen eksenel elektromanyetik kuvvetlerin farklı zaman aralıklarındaki değerleri aşağıda Çizelge 2'de sunulmuştur. YG sargısında meydana gelen elektromanyetik kuvvetin radyal değerleri 6432.1 N ve 7877.3 N arasında değişmiştir.

Zaman (ms)	F _{YG} (mag)	F(x)	F(y)	F(z)	Zaman (ms)	F _{YG} (mag)	F(x)	F(y)	F(z)
1	1.714.992	1.479.716	-0.598390	-0.627351	45	5.730.014	-1.140.037	1.390.012	5.440.703
2	2.100.946	1.826.487	-0.771649	-0.694606	46	4.534.528	-0.799541	1.232.314	4.289.997
2	2.309.140	2.043.041	-0.882171	-0.616352	47	3.185.323	-0.081083	0.851808	3.068.246
4	2.320.933	2.095.993	-0.912844	-0.400326	48	1.925.323	0.895045	0.294374	1.679.020
5	2.169.435	1.992.757	-0.857214	-0.023519	49	2.011.147	1.956.683	-0.368167	0.283823
6	3.154.150	1.744.026	-0.506855	2.578.786	50	3.344.945	3.011.920	-1.048.367	-1.008.921
7	3.577.727	1.057.274	-0.132494	3.415.369	51	4.734.053	4.082.606	-1.656.577	-1.731.860
8	4.092.071	0.348095	0.261250	4.068.861	52	5.672.425	5.022.451	-2.118.405	-1.569.636
9	4.559.481	-0.254400	0.619509	4.510.029	53	6.221.204	5.490.992	-2.370.652	-1.712.424
10	4.650.891	-0.672217	0.890659	4.515.046	54	6.043.047	5.493.334	-2.384.989	-0.808408
11	4.483.328	-0.869768	1.029.304	4.276.010	55	5.517.781	5.065.937	-2.164.151	0.314072
12	3.872.726	-0.781129	1.007.003	3.657.019	56	4.932.831	4.324.674	-1.745.512	1.607.235
13	2.906.125	-0.393509	0.815715	2.761.399	57	4.429.192	3.354.427	-1.188.257	2.636.969
15	1.162.956	1.008.758	0.012732	0.578544	59	5.880.270	1.815.813	-0.308524	5.584.372
16	1.922.009	1.828.704	-0.502613	-0.311991	60	6.672.217	0.564841	0.358278	6.638.605
17	2.955.470	2.651.459	-1.010.048	-0.827268	61	7.172.845	-0.422727	0.943371	7.097.962
19	4.711.313	4.085.093	-1.743.603	-1.571.093	63	6.534.343	-1.318.600	1.551.958	6.208.893
20	4.830.024	4.322.195	-1.877.147	-1.060.228	64	5.420.524	4.811.360	-2.094.347	-1.358.902
21	4.599.712	4.206.875	-1.824.381	-0.362201	65	6.695.164	1.064.466	0.113565	6.609.027

Çizelge 2. YG sarılarının eksenel elektromanyetik kuvvetleri

22	4.138.057	3.781.459	-1.595.502	0.527692	66	7.394.235	-0.088674	0.775253	7.352.948
23	3.661.361	3.135.918	-1.224.825	1.439.231	67	6.761.949	6.020.683	-2.560.786	-1.708.130
24	3.385.885	2.307.467	-0.764697	2.356.916	68	7.147.165	6.374.521	-2.764.113	-1.675.450
26	3.407.435	0.428314	0.165090	3.376.375	70	6.127.948	5.581.326	-2.349.641	0.937946
27	3.435.457	-0.224238	0.500648	3.391.376	71	5.800.084	5.319.185	-2.285.976	0.348652
29	2.549.353	-0.533107	0.675933	2.399.607	73	5.606.199	4.258.341	-1.530.545	3.309.597
31	0.896622	0.402239	0.141495	0.788742	75	6.559.308	1.581.240	-0.144533	6.364.221
32	1.194.716	1.153.383	-0.308233	-0.045229	76	7.320.075	0.286612	0.563923	7.292.691
33	2.309.004	2.017.386	-0.792529	-0.795958	77	7.826.730	-0.703211	1.154.838	7.709.056
34	3.413.099	2.924.618	-1.235.876	-1.252.382	78	7.877.318	-1.281.225	1.540.402	7.618.251
35	4.081.798	3.620.019	-1.572.128	-1.041.611	79	6.755.152	-1.387.889	1.658.979	6.399.503
36	4.381.818	3.995.571	-1.743.452	-0.442850	80	5.634.190	-0.986165	1.487.054	5.344.178
37	4.412.658	4.039.078	-1.719.511	0.447968	81	3.833.613	-0.169153	1.042.643	3.685.223
40	4.604.446	2.208.979	-0.582839	3.997.704	90	3.781.140	3.499.990	-1.207.061	-0.768178
41	5.366.148	1.112.460	-0.002993	5.249.568	91	5.521.143	4.775.548	-1.927.959	-1.990.007
42	6.092.662	0.105885	0.555801	6.066.334	95	6.733.557	5.859.644	-2.473.713	-2.210.453
43	6.067.494	-1.096.600	1.311.049	5.821.778	99	7.225.935	6.432.110	-2.775.486	-1.771.658
44	6.470.549	5.937.938	-2.530.539	0.453071	100	7.065.793	6.428.908	-2.791.266	-0.896327

Kısa devre durumunda alçak gerilim sargısında meydana gelen eksenel elektromanyetik kuvvetlerin zamana bağlı olarak değişen değerleri aşağıda Çizelge 3'te verilmiştir. Ayrıca, AG sargılarında meydana gelen radyal kuvvetler –9186.9 N ile –8609.6 N aralığında değişmiştir.

Zaman (ms)	F _{AG} (mag)	F(x)	F(y)	F(z)	Zaman (ms)	F _{AG} (mag)	F(x)	F(y)	F(z)
1	2.035.578	-1.572.832	1.243.088	0.352864	51	8.262.592	-0.364638	-1.691.810	-8.079.309
2	2.288.505	-1.903.513	1.250.005	0.226673	52	7.672.049	0.828215	-1.818.692	-7.407.210
3	2.389.350	-2.096.008	1.144.715	-0.073275	53	7.258.539	1.635.494	-1.603.235	-6.887.756
4	2.369.033	-2.129.783	0.938355	-0.442528	54	6.067.681	2.045.479	-1.062.333	-5.612.862
5	2.286.022	-2.022.667	0.657608	-0.838013	55	4.541.222	1.820.935	-0.263818	-4.151.782
6	2.152.870	-1.739.603	0.340486	-1.221.761	56	6.176.455	-5.021.796	1.014.499	-3.449.776
7	2.001.961	-1.269.761	0.032685	-1.547.413	57	5.766.061	-3.697.767	0.149035	-4.421.738
9	3.543.138	-3.176.815	1.307.483	-0.867275	59	6.590.866	-5.868.277	2.820.768	-1.022.796
10	3.921.058	-3.404.212	1.012.201	-1.661.770	60	7.010.656	-6.279.132	2.302.599	-2.102.343
11	4.245.275	-3.265.636	0.593140	-2.646.916	62	7.467.307	-6.170.569	1.543.616	-3.911.777
14	5.146.772	-1.201.057	-0.812657	-4.938.250	69	8.392.649	-2.521.942	-1.065.918	-7.933.486
15	5.253.119	-0.334396	-1.104.168	-5.124.866	71	8.648.437	-0.936824	-1.639.146	-8.439.848
16	5.237.799	0.489897	-1.210.825	-5.072.321	72	8.570.312	0.430168	-1.897.945	-8.346.437
17	4.874.802	1.102.137	-1.104.997	-4.618.222	73	7.840.305	1.456.096	-1.798.704	-7.490.983

Çizelge 3. AG sarılarının eksenel elektromanyetik kuvvetleri

18	4.172.129	1.398.845	-0.786958	-3.851.051	75	6.807.449	2.050.677	-1.344.699	-6.350.423
19	3.129.593	1.320.981	-0.286734	-2.822.614	76	5.280.893	2.073.093	-0.590541	-4.820.931
22	5.935.057	-5.068.224	1.351.378	-2.777.009	77	6.760.958	-5.477.690	3.821.501	1.049.572
23	6.149.922	-4.517.978	0.651024	-4.121.358	78	7.191.222	-6.218.160	3.612.022	0.038071
26	7.167.711	-1.104.933	-1.303.047	-6.961.126	81	6.655.813	-5.621.519	1.370.315	-3.289.470
27	6.933.608	0.130950	-1.589.126	-6.747.774	82	6.234.055	-4.346.964	0.442072	-4.446.562
30	4.973.175	1.833.928	-0.707049	-4.568.288	83	5.445.204	-0.105482	-1.202.567	-5.309.704
31	6.161.473	-5.225.308	3.238.327	0.416106	84	4.869.398	0.858310	-1.125.669	-4.659.099
32	6.276.904	-5.562.852	2.861.509	-0.515721	85	6.564.857	-5.800.165	3.023.279	-0.561437
33	6.197.291	-5.523.565	2.241.969	-1.694.174	86	7.104.581	-6.328.782	2.592.505	-1.923.669
34	5.980.089	-5.132.497	1.467.650	-2.695.357	87	7.545.359	-6.476.795	1.886.948	-3.379.791
40	5.027.420	-4.155.504	2.780.324	0.525869	89	7.808.896	-5.777.751	0.999229	-5.157.324
42	5.789.538	-5.072.092	2.783.570	-0.210662	90	8.066.410	-4.583.719	0.053141	-6.637.293
45	6.374.199	-5.679.412	2.480.670	-1.490.291	93	8.427.500	-3.112.117	-0.820393	-7.788.738
46	6.723.564	-5.956.406	1.907.448	-2.467.628	94	8.748.529	-1.507.959	-1.499.463	-8.486.132
47	7.092.444	-5.560.314	1.137.396	-4.253.469	95	8.892.242	-0.019407	-1.882.757	-8.690.617
48	7.393.545	-4.581.488	0.275043	-5.796.449	98	8.084.080	1.204.793	-1.908.398	-7.762.656
49	7.778.001	-3.260.708	-0.558967	-7.039.364	99	7.379.695	1.928.043	-1.565.392	-6.949.252
50	8.063.567	-1.839.751	-1.248.320	-7.751.008	100	6.602.012	-5.242.820	3.876.349	1.036.010

YG ve AG sargılarının her bir iletkeninin üzerindeki eksenel kuvvetler yukarıda Çizelge'2 ve Çizelge 3'te verilmiştir. Eksenel elektromanyetik kuvvetlerin her bir sargı üzerindeki etkisi ayrı ayrı aşağıda Şekil 7'de sunulmuştur. YG sargısının üst ve alt bölgelerindeki eksenel kuvvetler sırasıyla z = 0 eksenine doğru gitmektedir. AG sargısının üst yarı kısmındaki eksenel kuvvet (+ z) yönlüdür ve alt yarı kısmındaki eksenel kuvvet (-z) yönlüdür. Net kuvvetin dikey olarak çekme kuvveti gibi davrandığı düşünülmektedir.

Şekil 7. YG sargısındaki eksenel elektromanyetik kuvvetler.

AG sargısının üst ve alt kısımlarının kuvvet yönleri YG sargılarının tam tersidir. Sargısının üst kısmındaki eksenel kuvvet (+z) yönlüdür ve alt kısmındaki eksenel kuvvet (-z) yönlüdür.

ADYU Mühendislik Bilimleri Dergisi 10 (2019) 10-22

Şekil 8. AG sargılarında meydana gelen eksenel elektromanyetik kuvvetlerin zamana bağlı olarak değişimi.

ADYU Mühendislik Bilimleri Dergisi 10 (2019) 10-22

Her iletken hücrenin eksenel kuvvetleri, kaçak akı nedeniyle sargının alt kısmında daha fazla olmuştur. Eksenel kuvvetler, YG sargısının orta bölgesinde ve AG sargısının uç noktalarında en yüksek değere ulaşmıştır. Ayrıca, sargılara etki eden eksenel kuvvetlerin, radyal kuvvetlere oranla daha fazla olduğu görülmüştür. Güç transformatörü modelindeki elektromanyetik kuvvetler, Çizelge 4'te gösterildiği gibi analitik değerlerle karşılaştırılmıştır.

Parametreler	Nümerik	Analitik
	Sonuçlar	Sonuçlar
YG Sargısı F _{YG} (N)	7877.3	7834.6
AG Sargısı $F_{AG}(N)$	-9186.9	-9158.7

Çizelge 4. Transformatörün Kısa Devre Durumundaki Toplam Radyal Elektromanyetik Kuvvetlerin Analitik sonuclarla Karsılastırılması

5. Sonuç ve Öneriler

Bu çalışmada, bir transformatörün sargılarına kısa devre durumunda etki eden geçici elektromanyetik kuvvetlerin tahmini için Sonlu Elemanlar Yöntemi kullanılmıştır. Geçici elektromanyetik kuvvetleri hesaplamak için transformatörün ANSYS@Maxwell *3-D* ortamında tasarlanan model kullanılmıştır. Güç transformatörüne uygulanan kısa devre geçici akımlarından kaynaklanan manyetik vektör potansiyeli, manyetik akı yoğunluğu ve elektromanyetik kuvvetler Sonlu Elemanlar Yöntemi ile analiz edilmiştir. Transformatör modelinin eksenel ve radyal elektromanyetik kuvvetleri hesaplanmış ve analitik değerlerle karşılaştırılmıştır. Geçici durumda, YG sargısındaki radyal ve eksenel kuvvetlerin sırasıyla 5568 N ve 2851 N olduğu belirlenmiştir. Bununla birlikte, AG sargısı için bu değerler sırasıyla 11698 N ve 2597 N olmuştur. Bu sonuçlar analitik değerlerle iyi bir uyum içinde olduğu görülmüştür. Bu çalışma ile kullanılan nümerik modelleme tekniğinin transformatörlerin tasarım aşamasında kolaylık sağlaması amaçlanmıştır.

Teşekkür

Bu çalışma İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir. Proje Numarası: FBA-2017-639. Katkılarından dolayı teşekkürler.

Kaynaklar

- Hyun-Mo Ahn, Ji-Yeon Lee, Joong-Kyoung Kim, Yeon-Ho Oh, Sang-Yong Jung, Sung-Chin Hahn, "Finite element analysis of short circuit electromagnetic force in power transformer," in *Proc. ICEMS*, Tokyo, Japan, 2009, pp. 1–4.
- [2] S. Jamali, M. Ardebili, and K. Abbaszadh, "Calculation of short circuit reactance and electromagnetic force in three phase transformer by finite element method," in Proc. Int. Conf. Elect. Mach. Syst., 2005, vol. 3, pp. 1725–1730.
- [3] S. J. Salon, *Finite Element Analysis of Electrical Machines*. Troy, New York: Rensselaer Polytech. Inst., 1995.
- [4] S. V. Kulkarni and S. A. Khaparde, *Transformer Engineering*. NewYork: Marcel Dekker, 2004.
- [5] Erdi doğan, Bedri Kekezoğlu "Güç Transformatörlerinde Gürültü Seviyesinin Analizi", YTÜ, Fen Bilimleri Enstitüsü, 2016
- [6] G. Bertagnolli, Short-Circuit Duty of Power Transformer. Zurich, Switzerland: ABB Ltd., 2007.
- [7] Yugendrao K. N., *Structural Modeling of a Three Phase Core Type Transformer using ANSYS Maxwell 3D*, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering Vol. 4, Issue 4, April 2016, pp. 17-20.
- [8] S. Vasilija, FEM 2D and 3D design of transformer for core losses computation, Scientific Proceedings XIV International Congress "Machines. Technologies. Materials." 2017–Summer Session Volume V, 345-348.
- [9] G. B. Kumbhar and S. V. Kulkarni, "Analysis of short-circuit performance of split-winding transformer using coupled field-circuit approach," *IEEE Trans. Power Del.*, vol. 22, no. 2, pp. 936– 943, Apr. 2007.