Research Article
BibTex RIS Cite

Perlit İçeriğinin Odun Plastik Kompozitlerin Yanma Dayanımına Etkisi

Year 2020, Volume: 22 Issue: 3, 852 - 860, 15.12.2020
https://doi.org/10.24011/barofd.754531

Abstract

Bu çalışmada odun plastik kompozit üretiminde perlit kullanımının yanma dayanımı üzerine etkileri araştırılmıştır. Sarıçam odun unu, polipropilen ve perlit belirli oranlarda kullanılarak odun plastik kompozit malzemeler doğrudan pres yöntemi ile üretilmiştir. Üretilen odun plastik kompozitlerin üretiminde karışımın %5, %10, %15 ve %20 oranlarında perlit kullanılmıştır. Üretilen odun plastik kompozit levhalardan ilgili standartlara uygun olarak test numuneleri elde edilmiştir. Yanma dayanım özelliklerinin belirlenmesinde yatay ve dikey yanma hızı ve Limited Oksijen Index testleri yapılmıştır. Yatay yanma hızı ASTM D 635, dikey yanma hızı (UL 94) ve LOI testi ASTM 2863-09 standartlarına uygun olarak yapılmıştır. Sonuçta hem yatay ve dikey yanma hızı hem de LOI ile ilgili verilere göre perlit kullanım oranının artmasına bağlı olarak yanma dayanımını iyileştirdiği belirlenmiştir. Odun plastik malzeme üretiminde yanma dayanımı için en olumlu etki %20 perlit kullanım oranında tespit edilmiştir. MAPP kullanımı ile bu etkinin arttığı sonucuna ulaşılmıştır.

Supporting Institution

KSU-BAP BİRİMİ

Project Number

2018/1-8

Thanks

Kahramanmaraş Sütçü İmam Üniversitesi BAP birimine teşekkür ederim

References

  • Alam, S., Habib, F., Irfan, M., , Iqbal, W., Khalid, K. (2010). Effect of orientation of glass fiber on mechanical properties of GRP composites. Journal of the Chemical Society of Pakistan, 32: 265–269.
  • Alkan, M., & Doğan, M. (2001). Adsorption of Copper(II) onto Perlite. Journal of Colloid and Interface Science, 243(2), 280–291.
  • Altuntaş, E., Salan, T., Alma, M.H. (2016). Farklı bor bileşik kullanılarak MDF-LDPE odun plastik kompozitlerin yangına dayanıklılığının araştırılması. Kahramanmaraş Sütçü İmam University Journal of Engineering Sciences 19(3): 19-23.
  • ASTM D 2863, (2006). Standard test method for Measuring the minimum Oxygen Concentration to Support Candle-like Combustion of Plastics, ASTM İnternatıonal, United State.
  • ASTM D 635, (2014). Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position, ASTM International, West Conshohocken, USA.
  • Atagür, M., Sarikanat, M., Uysalman, T., Polat, O., Elbeyli, İ. Y., Seki, Y., & Sever, K. (2018). Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. Journal of Elastomers & Plastics, 50(8), 747–761.
  • Baral, D., De, P., & Nando, G. B. (1999). Thermal characterization of mica-filled thermoplastic polyurethane composites. Polymer Degradation and Stability, 65(1), 47–51.
  • Demjén, Z., Pukánszky, B., & Nagy, J. (1998). Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing, 29(3), 323–329.
  • Erden, S., Sever, K., Seki, Y., and Sarikanat M. (2010). Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification. Fibers and Polymers 11: 732–737.
  • Gan, D., Cao, W., Song, C., & Wang, Z. (2001a). Mechanical properties and morphologies of poly(ether ketone ketone)/glass fibers/mica ternary composites. Materials Letters, 51(2), 120–124.
  • Gan, D., Lu, S., Song, C., & Wang, Z. (2001b). Mechanical properties and frictional behavior of a mica-filled poly(aryl ether ketone) composite. European Polymer Journal, 37(7), 1359–1365.
  • Gan, D., Lu, S., Song, C., & Wang, Z. (2001c). Physical properties of poly(ether ketone ketone)/mica composites: effect of filler content. Materials Letters, 48(5), 299–302.
  • Harben, P. W., and Bates, R. L. (1990). Industrial Minerals Geology and World Deposits, Metal Bulletin Inc., London p. 184.
  • Huang, R., Kim, B.-J., Lee, S., Zhang, Y., & Wu, Q. (2013). Co-extruded wood-plastic composites with talc-filled shells: morphology, mechanical, and thermal expansion performance. BioResources, 8(2).
  • Karrad, S., Lopez Cuesta, J., & Crespy, A. (1998). Influence of a fine talc on the properties of composites with high density polyethylene and polyethylene/polystyrene blends. Journal of Materials Science 33, 453–461
  • Kayan, S. (2004). Marmara Üniversitesi FBE Tekstil Eğitimi Anabilim Dalı Testil Materyallerinin Yanma Mekanizması ve Limit Oksijen indeks Değerleri. Enstrümantal Analiz Dersi, İstanbul.
  • Killough, J.M. (1995). The plastic side of the equation. Woodfiber–plastic composites: Virgin and recycled wood fiber and polymers for composites. Pages 7-15 in 3rd Inter Conf on Woodfiber–Plastic Composites; 1-3 May, 1995; Madison, WI.
  • Li, Z., Shen, S. Y., Peng, J. R., & Yang, C. R. (2003). Mechanochemical Modification of Wollastonite and its Application to Polypropylene. Key Engineering Materials, 249, 409–412.
  • Lopez, F.A., Martin, M.I., Alguacil, F.J., Alguacil, J. M., Rincón, T. A. (2012). Centeno, and M. Romero, Thermolysis of fiber glass polyester composite and reutilization of the glass fiber residue to obtain a glass-ceramic material. Journal of Analytical and Applied Pyrolysis, 93: 104–112.
  • Mathew M.T., Padaki N.V., Rocha, L.A., Gomes, J. R., Alagirusamy, R., Deopura, B. L., and Fangueiro, R. (2007). Tribological properties of the directionally oriented warp knit GFRP composites. Wear 263: 930–938.
  • Meng, M.R., & Dou, Q. (2008). Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Materials Science and Engineering: A, 492(1-2), 177–184.
  • Nielsen, L.E., and Landel, R.F. (1994). Mechanical properties of polymers and composites. New York:Marcel Dekker Textile Research Journal, 64(11), pp.696–696.
  • Öktem, G. A., & Tincer, T. (1993). A study on the yield stress of perlite-filled high-density polyethylenes. Journal of Materials Science, 28(23), 6313–6317.
  • Özdemir, F., Ayrılmıs N, Mengeloğlu F.(2017) Effect of dolomite powder on combustion and technological properties of WPC and neat polypropylene. J. Chil. Chem. Soc., 62 (4): pp. 3716-3720.
  • Pastorini M.T., and Nunes R.C.R. (1999). Mica as a filler for ABS/polycarbonate blends. Journal of Applied Polymer Science, 74: 1361–1365.
  • Pinto, U. A., Visconte, L. L. Y., & Reis Nunes, R. C. (2001). Mechanical properties of thermoplastic polyurethane elastomers with mica and aluminum trihydrate. European Polymer Journal, 37(9), 1935–1937.
  • Principia, P. (2003). Current and Emerging Applications for Natural & Wood Fiber Composites,” 7th International Conference of Woodfiber-Plastic Composites.
  • Ribeiro, L.M., Ladchumananandasivam, R., Galvão, A.O., and Belarmino, D.D. (2013). Influencıa do retardante de chama em compósıto de palf e polıéster não-saturado, HOLOS, vol. 1, p. 115.
  • Sengul, O., Azizi, S., Karaosmanoglu, F., & Tasdemir, M. A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2-3), 671–676.
  • Silva, V.L.D.Da. (2006). Comportamento mecânico e de flamabilidade de compósito de polipropileno reciclado com fibra de coco ehidróxido de alumínio 119 f. dissertação do departamento de engenharia mecânica, UFPA, Belém,
  • Švab, I., Musil, V., Šmit, I., & Makarovič, M. (2007). Mechanical properties of wollastonite-reinforced polypropylene composites modified with SEBS and SEBS-g-MA elastomers. Polymer Engineering & Science, 47(11), 1873–1880.
  • Tekin, N., Kadıncı, E., Demirbaş, Ö., Alkan, M., Kara, A., & Doğan, M. (2006). Surface properties of poly(vinylimidazole)-adsorbed expanded perlite. Microporous and Mesoporous Materials, 93(1-3), 125–133.
  • Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661–3674.
  • UL 94, (2006). Test for Flammability of Plastic Materials for Parts in Devices and Appliances.
  • Uluatam, S. S. (1991). Assessing Perlite as a Sand Substitute in Filtration. Journal - American Water Works Association, 83(6), 70–71.
  • URL-1. http://www.bfyapim.com/perlit.pdf, 11.10.2019.
  • URL-2. https://insapedia.com/perlit-nedir-ham-ve-genlestirilmis-perlit-nedir/11.10.2019.

The Effect of Perlite Content on the Combustion Resistance of Wood Plastic Composites

Year 2020, Volume: 22 Issue: 3, 852 - 860, 15.12.2020
https://doi.org/10.24011/barofd.754531

Abstract

In this study, the effects of perlite use on fire resistance in wood plastic composite production were investigated. Scots pine wood flour, polypropylene and perlite using certain proportions of wood plastic composite materials were produced by flat-presses method. In the production of wood plastic composites, 5%, 10%, 15% and 20% perlite was used in the mixture. Test samples were obtained from the produced wood plastic composite boards in accordance with the relevant standards. Horizontal and vertical combustion rate and Limited Oxygen Index tests were performed to determine the fire resistance properties. Horizontal combustion rate (ASTM D 635), vertical combustion rate (UL-94) and LOI test (ASTM 2863-09 standards) were carried out. As a result, according to both the horizontal-vertical combustion rate and LOI data, It has been determined that perlite improves the fire resistance due to the increase in the usage rate. In the production of wood plastic composite, the most positive effect on fire resistance was determined at a 20% perlite usage rate. It was concluded that this effect increased with the use of MAPP.

Project Number

2018/1-8

References

  • Alam, S., Habib, F., Irfan, M., , Iqbal, W., Khalid, K. (2010). Effect of orientation of glass fiber on mechanical properties of GRP composites. Journal of the Chemical Society of Pakistan, 32: 265–269.
  • Alkan, M., & Doğan, M. (2001). Adsorption of Copper(II) onto Perlite. Journal of Colloid and Interface Science, 243(2), 280–291.
  • Altuntaş, E., Salan, T., Alma, M.H. (2016). Farklı bor bileşik kullanılarak MDF-LDPE odun plastik kompozitlerin yangına dayanıklılığının araştırılması. Kahramanmaraş Sütçü İmam University Journal of Engineering Sciences 19(3): 19-23.
  • ASTM D 2863, (2006). Standard test method for Measuring the minimum Oxygen Concentration to Support Candle-like Combustion of Plastics, ASTM İnternatıonal, United State.
  • ASTM D 635, (2014). Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position, ASTM International, West Conshohocken, USA.
  • Atagür, M., Sarikanat, M., Uysalman, T., Polat, O., Elbeyli, İ. Y., Seki, Y., & Sever, K. (2018). Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. Journal of Elastomers & Plastics, 50(8), 747–761.
  • Baral, D., De, P., & Nando, G. B. (1999). Thermal characterization of mica-filled thermoplastic polyurethane composites. Polymer Degradation and Stability, 65(1), 47–51.
  • Demjén, Z., Pukánszky, B., & Nagy, J. (1998). Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing, 29(3), 323–329.
  • Erden, S., Sever, K., Seki, Y., and Sarikanat M. (2010). Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification. Fibers and Polymers 11: 732–737.
  • Gan, D., Cao, W., Song, C., & Wang, Z. (2001a). Mechanical properties and morphologies of poly(ether ketone ketone)/glass fibers/mica ternary composites. Materials Letters, 51(2), 120–124.
  • Gan, D., Lu, S., Song, C., & Wang, Z. (2001b). Mechanical properties and frictional behavior of a mica-filled poly(aryl ether ketone) composite. European Polymer Journal, 37(7), 1359–1365.
  • Gan, D., Lu, S., Song, C., & Wang, Z. (2001c). Physical properties of poly(ether ketone ketone)/mica composites: effect of filler content. Materials Letters, 48(5), 299–302.
  • Harben, P. W., and Bates, R. L. (1990). Industrial Minerals Geology and World Deposits, Metal Bulletin Inc., London p. 184.
  • Huang, R., Kim, B.-J., Lee, S., Zhang, Y., & Wu, Q. (2013). Co-extruded wood-plastic composites with talc-filled shells: morphology, mechanical, and thermal expansion performance. BioResources, 8(2).
  • Karrad, S., Lopez Cuesta, J., & Crespy, A. (1998). Influence of a fine talc on the properties of composites with high density polyethylene and polyethylene/polystyrene blends. Journal of Materials Science 33, 453–461
  • Kayan, S. (2004). Marmara Üniversitesi FBE Tekstil Eğitimi Anabilim Dalı Testil Materyallerinin Yanma Mekanizması ve Limit Oksijen indeks Değerleri. Enstrümantal Analiz Dersi, İstanbul.
  • Killough, J.M. (1995). The plastic side of the equation. Woodfiber–plastic composites: Virgin and recycled wood fiber and polymers for composites. Pages 7-15 in 3rd Inter Conf on Woodfiber–Plastic Composites; 1-3 May, 1995; Madison, WI.
  • Li, Z., Shen, S. Y., Peng, J. R., & Yang, C. R. (2003). Mechanochemical Modification of Wollastonite and its Application to Polypropylene. Key Engineering Materials, 249, 409–412.
  • Lopez, F.A., Martin, M.I., Alguacil, F.J., Alguacil, J. M., Rincón, T. A. (2012). Centeno, and M. Romero, Thermolysis of fiber glass polyester composite and reutilization of the glass fiber residue to obtain a glass-ceramic material. Journal of Analytical and Applied Pyrolysis, 93: 104–112.
  • Mathew M.T., Padaki N.V., Rocha, L.A., Gomes, J. R., Alagirusamy, R., Deopura, B. L., and Fangueiro, R. (2007). Tribological properties of the directionally oriented warp knit GFRP composites. Wear 263: 930–938.
  • Meng, M.R., & Dou, Q. (2008). Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Materials Science and Engineering: A, 492(1-2), 177–184.
  • Nielsen, L.E., and Landel, R.F. (1994). Mechanical properties of polymers and composites. New York:Marcel Dekker Textile Research Journal, 64(11), pp.696–696.
  • Öktem, G. A., & Tincer, T. (1993). A study on the yield stress of perlite-filled high-density polyethylenes. Journal of Materials Science, 28(23), 6313–6317.
  • Özdemir, F., Ayrılmıs N, Mengeloğlu F.(2017) Effect of dolomite powder on combustion and technological properties of WPC and neat polypropylene. J. Chil. Chem. Soc., 62 (4): pp. 3716-3720.
  • Pastorini M.T., and Nunes R.C.R. (1999). Mica as a filler for ABS/polycarbonate blends. Journal of Applied Polymer Science, 74: 1361–1365.
  • Pinto, U. A., Visconte, L. L. Y., & Reis Nunes, R. C. (2001). Mechanical properties of thermoplastic polyurethane elastomers with mica and aluminum trihydrate. European Polymer Journal, 37(9), 1935–1937.
  • Principia, P. (2003). Current and Emerging Applications for Natural & Wood Fiber Composites,” 7th International Conference of Woodfiber-Plastic Composites.
  • Ribeiro, L.M., Ladchumananandasivam, R., Galvão, A.O., and Belarmino, D.D. (2013). Influencıa do retardante de chama em compósıto de palf e polıéster não-saturado, HOLOS, vol. 1, p. 115.
  • Sengul, O., Azizi, S., Karaosmanoglu, F., & Tasdemir, M. A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2-3), 671–676.
  • Silva, V.L.D.Da. (2006). Comportamento mecânico e de flamabilidade de compósito de polipropileno reciclado com fibra de coco ehidróxido de alumínio 119 f. dissertação do departamento de engenharia mecânica, UFPA, Belém,
  • Švab, I., Musil, V., Šmit, I., & Makarovič, M. (2007). Mechanical properties of wollastonite-reinforced polypropylene composites modified with SEBS and SEBS-g-MA elastomers. Polymer Engineering & Science, 47(11), 1873–1880.
  • Tekin, N., Kadıncı, E., Demirbaş, Ö., Alkan, M., Kara, A., & Doğan, M. (2006). Surface properties of poly(vinylimidazole)-adsorbed expanded perlite. Microporous and Mesoporous Materials, 93(1-3), 125–133.
  • Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002). Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661–3674.
  • UL 94, (2006). Test for Flammability of Plastic Materials for Parts in Devices and Appliances.
  • Uluatam, S. S. (1991). Assessing Perlite as a Sand Substitute in Filtration. Journal - American Water Works Association, 83(6), 70–71.
  • URL-1. http://www.bfyapim.com/perlit.pdf, 11.10.2019.
  • URL-2. https://insapedia.com/perlit-nedir-ham-ve-genlestirilmis-perlit-nedir/11.10.2019.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Biomaterial Engineering, Bio-based Materials, Wood Science
Authors

Ferhat Özdemir 0000-0002-2282-1884

Project Number 2018/1-8
Publication Date December 15, 2020
Published in Issue Year 2020 Volume: 22 Issue: 3

Cite

APA Özdemir, F. (2020). Perlit İçeriğinin Odun Plastik Kompozitlerin Yanma Dayanımına Etkisi. Bartın Orman Fakültesi Dergisi, 22(3), 852-860. https://doi.org/10.24011/barofd.754531


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com