Research Article
BibTex RIS Cite
Year 2019, Volume: 8 Issue: 3, 968 - 984, 30.09.2019
https://doi.org/10.17798/bitlisfen.520354

Abstract

References

  • 1. Ersoy U. Özcebe G. 2007. Betonarme, Evrim Yayınevi, Türkiye2. Celep Z. 2014. Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme. Beta Dağıtım, İstanbul.3. Işık E. Özdemir M. 2017. Performance Based Assessment of Steel Frame Structures by Different Material Models. International Journal of Steel Structures. 17(3):1021-1031.4. Mander JB. Priestley MJN. Park R. 1998. Theoretical Stress-strain Model for Confined Concrete, Journal of Structural Engineerings. 114(8):1804-1825.5. İlki A. Fukuta T. Özdemir P. 2003. Sargılı Beton Davranışı ve Üç Doğrudan Oluşan Gerilme –Şekil Değiştirme Modeli. IMO Teknik Dergi. 190:2853-2871.6. Chang GA. Mander JB. 1994. Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part 1 –Evaluation of Seismic Capacity. NCEER Technical Report No. NCEER-94-0006, State University of New York, Buffalo, N.Y.7. Kappos A. Konstantinidis D. 1999. Statistical Analysis of Confined High Strength Concrete Materials and Structures. 32:734-748.8. Antoniou S. Pinho R. 2003. Seismostruct–Seismic Analysis Program by Seismosoft. Technical Manual and User Manual.9. Menegotto M. Pinto PE. 1973. Method of Analysis for Cyclically Loaded RC. Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and Bending, Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15-22.10. Monti G. Nuti C. 1992. Nonlinear Cyclic Behaviour of Reinforcing Bars Including Buckling Journal of Structural Engineerings. 118(12):3268-3284.11. Dodd L. Restrepo-Posada J. 1995. Model for Predicting Cyclic Behavior of Reinforcing Steel Journal of Structural Engineerings, 121(3):433–445.12. Işık E. Özdemir M. 2017. Consistency of Concrete Material Models that Used for RC Buildings. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 36(4):92-105. 13. Karaşin İB. Işık E. Karaşin A. Özdemir M. 2017. Consistency of Steel Material Models that Used in the Design of RC Buildings International Conference on Multidisciplinary, Science, Engineering and Technology (IMESET’17 Bitlis), Bitlis14. Wu H. 2007. Constitutive Model of Concrete Confined by Advanced Fiber Composite Materials and Applications in Seismic Retrofitting, ProQuest.15. Turkish Earthquake Code 2007 Turkish Earthquake Code-Specification for Structures to be Built in Disaster Areas Turkey.16. Özmen HB. İnel M. 2011. Betonarme Yapılarda Malzeme Dayanımı ve Detaylandırma Özelliklerinin Sismik Hasar Üzerine Etkisinin Değerlendirilmesi. 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Türkiye.17. Rediiar MKM. 2009. Stress-strain Model of Unconfined and Confined Concrete and Stress-block Parameters Diss. Texas A&M University.18. Nagashima T. Sugano S. Kimura H. Ichikawa A. 1992. Monotonic Axial Compression Test on Ultra-high-strength Concrete Tied Columns. In 10th World Conference on Earthquake Engineering, 5:2983-2988.19. Sheikh SA. Uzumeri SM. 1982. Analytical Model for Concrete Confinement in tied columns J.ournal of Structural Division. 108(12):2703-2722.20. Yassin MHM. 1994. Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cyclic Loads PhD Thesis, University of California, Berkeley, USA.21. Filippou FC. Popov EP. Bertero VV. 1983. Effects of Bond Deterioration on Hysteretic Behaviour of Reinforced Concrete joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.22. Fragiadakis M. Pinho R. Antoniou S. 2008. Modelling Inelastic Buckling of Reinforcing Bars under Earthquake Loading in Progress in Computational Dynamics and Earthquake Engineering, Eds. M. Papadrakakis, D.C. Charmpis, N.D. Lagaros and Y. Tsompanakis, A.A. Balkema Publishers – Taylor & Francis, The Netherlands.23. Prota A. Cicco F. Cosenza E. 2009. Cyclic Behaviour of Smooth Steel Reinforcing Bars: Experimental Analysis and Modelling Issues. Journal of Earthquake Engineering 13(4):500-519.24. Bosco M. Ferrara E. Ghersi A. Marino E. Rossi PP. 2014. Improvement of the Model Proposed by Menegotto and Pinto for Steel. 2nd European Conference on Earthquake Engineering and Seismology25. Abdelnaby AE. Elnashai AS. 2015. Numerical Modeling and Analysis of RC Frames Subjected to Multiple Earthquakes. Earthquakes and Structures. 9(5):957-981.26. Monti G. Nuti C. Santini S. 1996. CYRUS - Cyclic Response of Upgraded Sections Report No. 96-2, University of Chieti, Italy.27. Kim SH. 2015. Cyclic Uniaxial Constitutive Model for Steel Reinforcement. Doctoral Dissertation, Virginia Tech.28. Kim SH. Koutromanos I. 2016. Constitutive Model for Reinforcing Steel under Cyclic Loading Journal of Structural Engineerings. 142(12):04016133.29. Ademovic N. Hrasnica M. Oliveira DV. 2013. Pushover Analysis and Failure Pattern of a Typical Masonry Residential Building in Bosnia and Herzegovina. Engineering Structures, 50:13-29.30. Aydınoğlu MN. 2007. A Response Spectrum-based Nonlinear Assessment Tool for Practice: Incremental Response Spectrum Analysis (IRSA), ISET Journal of Earthquake Technology. 44(1):169-192.31. Kutanis M. Boru OE. 2014. The Need for Upgrading the Seismic Performance Objectives Earthquakes and Structures. 7(4):401-414.32. Foti D. 2015. A New Experimental Approach to the Pushover Analysis of Masonry Buildings Computers and Structures. 147:165-171.33. Isik E. Kutanis M. 2015. Performance Based Assessment for Existing Residential Buildings in Lake Van Basin and Seismicity of the Region. Earthquakes and Structures, 9(4):893-910.34. Krawinkler H. Seneviratna GDPK. 1998. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation Engineering Structures. 20(4):452-464.35. Estêvão JM. Oliveira CS. 2015. A New Analysis Method for Structural Failure Evaluation Engineering Failure Analysis. 56:573-584.36. Karakaš N. Kalman Šipoš T. Hadzima-Nyarko M. 2018. Application of Different Seismic Analyses to RC Structures. E-GFOS, 9(17):39-51.37. Işık E. Özdemir M. Karaşin İB. 2018. Performance Analysis of Steel Structures with A3 Irregularities. International Journal of Steel Structures, 18(3):1083-1094.38. Inel M. Meral E. 2016. Seismic Performance of RC Buildings Subjected to Past Earthquakes in Turkey. Earthquakes and Structures. 11(3):483-503.39. SeismoStruct v6.5 2013 A computer program for static and dynamic nonlinear analysis of framed structures Seismosoft

Betonarme Yapılarda Kullanılan Malzeme Modellerinin Karşılaştırılması

Year 2019, Volume: 8 Issue: 3, 968 - 984, 30.09.2019
https://doi.org/10.17798/bitlisfen.520354

Abstract

Malzeme
modelleri yapıların sismik analizlerinde önemli rol oynamaktadır. Literatürde,
betonarme yapılarda kullanılan malzemelerin gerilme-şekil değiştirme ilişkisini
tanımlamak için çeşitli malzeme modelleri bulunmaktadır. Beton ve çelik gibi
iki farklı yapı malzemesinin bir arada kullanılması ile elde edilen betonarme
yapılarda malzeme modelleri ayrı bir öneme sahiptir. Hem beton hem de çelik
için kullanılan farklı malzeme modellerinin karşılıklı etkileşimi çalışmanın
konusunu oluşturmaktadır. Çalışmanın amacı betonarme yapılarda kullanılan
farklı malzeme modellerinin birbirleri ile uyumlu olup olmadığını kontrol
etmektir. Bu çalışmada dörder farklı beton ve çelik malzeme modeli dikkate
alınarak seçilen iki katlı betonarme bir yapı için hesaplamalar yapılmıştır.
Her bir malzeme modeli için X ve Y doğrultularında taban kesme kuvveti –
deplasman eğrileri elde edilmiştir. Çalışmada dikkate alınan malzeme modelleri
hakkında bilgiler verilmiştir. Farklı malzeme modelleri arasında bir uyum
olduğu gözlemlenmiştir. Bu malzeme modellerinin birlikte kullanılabilirliğini
ortaya koymuştur.  

References

  • 1. Ersoy U. Özcebe G. 2007. Betonarme, Evrim Yayınevi, Türkiye2. Celep Z. 2014. Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme. Beta Dağıtım, İstanbul.3. Işık E. Özdemir M. 2017. Performance Based Assessment of Steel Frame Structures by Different Material Models. International Journal of Steel Structures. 17(3):1021-1031.4. Mander JB. Priestley MJN. Park R. 1998. Theoretical Stress-strain Model for Confined Concrete, Journal of Structural Engineerings. 114(8):1804-1825.5. İlki A. Fukuta T. Özdemir P. 2003. Sargılı Beton Davranışı ve Üç Doğrudan Oluşan Gerilme –Şekil Değiştirme Modeli. IMO Teknik Dergi. 190:2853-2871.6. Chang GA. Mander JB. 1994. Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part 1 –Evaluation of Seismic Capacity. NCEER Technical Report No. NCEER-94-0006, State University of New York, Buffalo, N.Y.7. Kappos A. Konstantinidis D. 1999. Statistical Analysis of Confined High Strength Concrete Materials and Structures. 32:734-748.8. Antoniou S. Pinho R. 2003. Seismostruct–Seismic Analysis Program by Seismosoft. Technical Manual and User Manual.9. Menegotto M. Pinto PE. 1973. Method of Analysis for Cyclically Loaded RC. Plane Frames Including Changes in Geometry and Non-elastic Behavior of Elements under Combined Normal Force and Bending, Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15-22.10. Monti G. Nuti C. 1992. Nonlinear Cyclic Behaviour of Reinforcing Bars Including Buckling Journal of Structural Engineerings. 118(12):3268-3284.11. Dodd L. Restrepo-Posada J. 1995. Model for Predicting Cyclic Behavior of Reinforcing Steel Journal of Structural Engineerings, 121(3):433–445.12. Işık E. Özdemir M. 2017. Consistency of Concrete Material Models that Used for RC Buildings. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 36(4):92-105. 13. Karaşin İB. Işık E. Karaşin A. Özdemir M. 2017. Consistency of Steel Material Models that Used in the Design of RC Buildings International Conference on Multidisciplinary, Science, Engineering and Technology (IMESET’17 Bitlis), Bitlis14. Wu H. 2007. Constitutive Model of Concrete Confined by Advanced Fiber Composite Materials and Applications in Seismic Retrofitting, ProQuest.15. Turkish Earthquake Code 2007 Turkish Earthquake Code-Specification for Structures to be Built in Disaster Areas Turkey.16. Özmen HB. İnel M. 2011. Betonarme Yapılarda Malzeme Dayanımı ve Detaylandırma Özelliklerinin Sismik Hasar Üzerine Etkisinin Değerlendirilmesi. 1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Türkiye.17. Rediiar MKM. 2009. Stress-strain Model of Unconfined and Confined Concrete and Stress-block Parameters Diss. Texas A&M University.18. Nagashima T. Sugano S. Kimura H. Ichikawa A. 1992. Monotonic Axial Compression Test on Ultra-high-strength Concrete Tied Columns. In 10th World Conference on Earthquake Engineering, 5:2983-2988.19. Sheikh SA. Uzumeri SM. 1982. Analytical Model for Concrete Confinement in tied columns J.ournal of Structural Division. 108(12):2703-2722.20. Yassin MHM. 1994. Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cyclic Loads PhD Thesis, University of California, Berkeley, USA.21. Filippou FC. Popov EP. Bertero VV. 1983. Effects of Bond Deterioration on Hysteretic Behaviour of Reinforced Concrete joints. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley.22. Fragiadakis M. Pinho R. Antoniou S. 2008. Modelling Inelastic Buckling of Reinforcing Bars under Earthquake Loading in Progress in Computational Dynamics and Earthquake Engineering, Eds. M. Papadrakakis, D.C. Charmpis, N.D. Lagaros and Y. Tsompanakis, A.A. Balkema Publishers – Taylor & Francis, The Netherlands.23. Prota A. Cicco F. Cosenza E. 2009. Cyclic Behaviour of Smooth Steel Reinforcing Bars: Experimental Analysis and Modelling Issues. Journal of Earthquake Engineering 13(4):500-519.24. Bosco M. Ferrara E. Ghersi A. Marino E. Rossi PP. 2014. Improvement of the Model Proposed by Menegotto and Pinto for Steel. 2nd European Conference on Earthquake Engineering and Seismology25. Abdelnaby AE. Elnashai AS. 2015. Numerical Modeling and Analysis of RC Frames Subjected to Multiple Earthquakes. Earthquakes and Structures. 9(5):957-981.26. Monti G. Nuti C. Santini S. 1996. CYRUS - Cyclic Response of Upgraded Sections Report No. 96-2, University of Chieti, Italy.27. Kim SH. 2015. Cyclic Uniaxial Constitutive Model for Steel Reinforcement. Doctoral Dissertation, Virginia Tech.28. Kim SH. Koutromanos I. 2016. Constitutive Model for Reinforcing Steel under Cyclic Loading Journal of Structural Engineerings. 142(12):04016133.29. Ademovic N. Hrasnica M. Oliveira DV. 2013. Pushover Analysis and Failure Pattern of a Typical Masonry Residential Building in Bosnia and Herzegovina. Engineering Structures, 50:13-29.30. Aydınoğlu MN. 2007. A Response Spectrum-based Nonlinear Assessment Tool for Practice: Incremental Response Spectrum Analysis (IRSA), ISET Journal of Earthquake Technology. 44(1):169-192.31. Kutanis M. Boru OE. 2014. The Need for Upgrading the Seismic Performance Objectives Earthquakes and Structures. 7(4):401-414.32. Foti D. 2015. A New Experimental Approach to the Pushover Analysis of Masonry Buildings Computers and Structures. 147:165-171.33. Isik E. Kutanis M. 2015. Performance Based Assessment for Existing Residential Buildings in Lake Van Basin and Seismicity of the Region. Earthquakes and Structures, 9(4):893-910.34. Krawinkler H. Seneviratna GDPK. 1998. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation Engineering Structures. 20(4):452-464.35. Estêvão JM. Oliveira CS. 2015. A New Analysis Method for Structural Failure Evaluation Engineering Failure Analysis. 56:573-584.36. Karakaš N. Kalman Šipoš T. Hadzima-Nyarko M. 2018. Application of Different Seismic Analyses to RC Structures. E-GFOS, 9(17):39-51.37. Işık E. Özdemir M. Karaşin İB. 2018. Performance Analysis of Steel Structures with A3 Irregularities. International Journal of Steel Structures, 18(3):1083-1094.38. Inel M. Meral E. 2016. Seismic Performance of RC Buildings Subjected to Past Earthquakes in Turkey. Earthquakes and Structures. 11(3):483-503.39. SeismoStruct v6.5 2013 A computer program for static and dynamic nonlinear analysis of framed structures Seismosoft
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Ercan Işık 0000-0001-8057-065X

Mesut Özdemir This is me 0000-0003-0769-5098

İbrahim Baran Karaşin

Abdulhalim Karaşin 0000-0002-8802-0588

Publication Date September 30, 2019
Submission Date January 31, 2019
Acceptance Date July 22, 2019
Published in Issue Year 2019 Volume: 8 Issue: 3

Cite

IEEE E. Işık, M. Özdemir, İ. B. Karaşin, and A. Karaşin, “Betonarme Yapılarda Kullanılan Malzeme Modellerinin Karşılaştırılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 3, pp. 968–984, 2019, doi: 10.17798/bitlisfen.520354.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS