Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 2, 52 - 59, 20.06.2018
https://doi.org/10.26701/ems.360134

Abstract

References

  • Koizumi, M. (1997). FGM activities in Japan. Composites Part B: Engineering, vol. 28, p. 1-4, DOI:10.1016/S1359-8368(96)00016-9.
  • Aydin, M. (2014). Ballistic impact behaviors of functionally graded sandwich plates. Erciyes University, Graduate School of Natural and Applied Sciences, PhD Thesis, p. 129.
  • Timoshenko, S. P., Goodier, J. N. (1970). Therory of Elasticity. McGraw- Hill, New York.
  • Güven U., Baykara C. 2001. On stress distributions in functionally graded isotropic spheres subjected to internal pressure, Mechanic Research Communications, 28(3), 277-281, DOI:10.1016/s0093-6413(01)00174-4.
  • Tütüncü, N., Öztürk, M. (2001). Exact solutions for stresses in functionally graded pressure vessels. Composites Part B: Engineering, vol. 32, no. 8, p. 683-686, DOI: 10.1016/s1359-8368(01)00041-5.
  • You, L.H., Zhang, J.J., You, X.Y. (2005). Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. International Journal of Pressure Vessels and Piping, vol. 82, no 5, p. 347-354, DOI: 10.1016/j.ijpvp.2004.11.001s.
  • Tütüncü, N. (2007). Stresses in thick-walled FGM cylinders with exponentially-varying properties. Engineering Structures, vol. 29, no. 9, p. 2032-2035, DOI: 10.1016/j.engstruct.2006.12.003.
  • Yontar, O., Çelik, U., Keleş, İ. (2017). The effect of Inhomogeneity Parameters in Non-Homogenous (FGM) Spherical Pressure Vessels. XVIII. National Mechanic Congress, Celal Bayar University, Manisa-Türkiye, 26-30 August.
  • Chen, Y.Z., Lin, X.Y., Zhang, J.J., You, X.Y. (2008). Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Computational Materials Science, vol. 44, no. 2, p. 581-587, DOI:10.1016/j.commatsci.2008.04.018.
  • Eraslan, A.N., Akış, T. (2015). Analytical Solutions to Elastic Functionally Graded Cylindrical And Spherical Pressure Vessels. Journal of Multidisciplinary Engineering Science and Technology, vol. 2, no 10, p. 2687-2693.
  • Li, X.F., Peng, X.L., Kang, Y.A. (2009). Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity. AIAA Journal, vol. 47, no. 9, p. 2262-2266, DOI:10.2514/1.41995.
  • Tütüncü, N., Temel, B. (2009). A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Composite Structures, vol. 91, no.3, p. 385-390, DOI:10.1016/j.compstruct.2009.06.009.
  • Chen, Y.Z., Lin, X.Y. (2010). An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials. Computational Materials Science, vol. 48, no. 3, p. 640-647, DOI:10.1016/j.commatsci.2010.02.033.
  • Nie, G.J., Zhong, Z., Batra, R.C. (2011). Material tailoring for functionally graded hollow cylinders and spheres. Composites Science and Technology, vol. 71, no. 5, p. 666-673, DOI:10.1016/j.compscitech.2011.01.009.
  • Nejad, M.Z., Abedi, M., Lotfian, M.H., Ghannad, M. (2012). An exact solution for stresses and displacements of pressurized FGM thick-walled spherical shells with exponential-varying properties. Journal of Mechanical Science and Technology, vol. 26, no. 12, p. 4081-4087, DOI:10.1007/s12206-012-0908-3.
  • Karami, K., Abedi, M., Nejad, M.Z., Lotfian, M.H. (2012). Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties. Frontiers of Mechanical Engineering, vol. 7, no. 4, p. 433-438, DOI:10.1007/s11465-012-0336-1.
  • Khoshgoftar, M. J., Rahimi, G.H., Arefi, M. (2013). Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure. Mechanics Research Communications, vol. 51, p. 61-66, DOI:10.1016/j.mechrescom.2013.05.001.

Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio

Year 2018, Volume: 2 Issue: 2, 52 - 59, 20.06.2018
https://doi.org/10.26701/ems.360134

Abstract

Functionally graded materials (FGM) are advanced composite materials whose mechanical properties vary continuously from one surface to another at macro level. Thick walled annular structures are widely used in industry as nuclear reactors, long pipes used for carrying gases/oil, pressure vessels etc. Elastic analysis of FG thick-walled cylindrical and spherical pressure vessels subjected to internal pressure alone are studied. The material properties, Young' s modulus-Poisson' s ratio, are assumed to obey a graduation with the power-law function through the wall thickness. Under these assumptions, the governing equations of the vessels become a two-point boundary value problem. The analytical solution of such an equation cannot be obtained except for simple grading functions. Complementary Functions Method is performed to solve governing equation in order to obtain displacement and stress distributions depending on inhomogeneity parameters.  

References

  • Koizumi, M. (1997). FGM activities in Japan. Composites Part B: Engineering, vol. 28, p. 1-4, DOI:10.1016/S1359-8368(96)00016-9.
  • Aydin, M. (2014). Ballistic impact behaviors of functionally graded sandwich plates. Erciyes University, Graduate School of Natural and Applied Sciences, PhD Thesis, p. 129.
  • Timoshenko, S. P., Goodier, J. N. (1970). Therory of Elasticity. McGraw- Hill, New York.
  • Güven U., Baykara C. 2001. On stress distributions in functionally graded isotropic spheres subjected to internal pressure, Mechanic Research Communications, 28(3), 277-281, DOI:10.1016/s0093-6413(01)00174-4.
  • Tütüncü, N., Öztürk, M. (2001). Exact solutions for stresses in functionally graded pressure vessels. Composites Part B: Engineering, vol. 32, no. 8, p. 683-686, DOI: 10.1016/s1359-8368(01)00041-5.
  • You, L.H., Zhang, J.J., You, X.Y. (2005). Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. International Journal of Pressure Vessels and Piping, vol. 82, no 5, p. 347-354, DOI: 10.1016/j.ijpvp.2004.11.001s.
  • Tütüncü, N. (2007). Stresses in thick-walled FGM cylinders with exponentially-varying properties. Engineering Structures, vol. 29, no. 9, p. 2032-2035, DOI: 10.1016/j.engstruct.2006.12.003.
  • Yontar, O., Çelik, U., Keleş, İ. (2017). The effect of Inhomogeneity Parameters in Non-Homogenous (FGM) Spherical Pressure Vessels. XVIII. National Mechanic Congress, Celal Bayar University, Manisa-Türkiye, 26-30 August.
  • Chen, Y.Z., Lin, X.Y., Zhang, J.J., You, X.Y. (2008). Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Computational Materials Science, vol. 44, no. 2, p. 581-587, DOI:10.1016/j.commatsci.2008.04.018.
  • Eraslan, A.N., Akış, T. (2015). Analytical Solutions to Elastic Functionally Graded Cylindrical And Spherical Pressure Vessels. Journal of Multidisciplinary Engineering Science and Technology, vol. 2, no 10, p. 2687-2693.
  • Li, X.F., Peng, X.L., Kang, Y.A. (2009). Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity. AIAA Journal, vol. 47, no. 9, p. 2262-2266, DOI:10.2514/1.41995.
  • Tütüncü, N., Temel, B. (2009). A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Composite Structures, vol. 91, no.3, p. 385-390, DOI:10.1016/j.compstruct.2009.06.009.
  • Chen, Y.Z., Lin, X.Y. (2010). An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials. Computational Materials Science, vol. 48, no. 3, p. 640-647, DOI:10.1016/j.commatsci.2010.02.033.
  • Nie, G.J., Zhong, Z., Batra, R.C. (2011). Material tailoring for functionally graded hollow cylinders and spheres. Composites Science and Technology, vol. 71, no. 5, p. 666-673, DOI:10.1016/j.compscitech.2011.01.009.
  • Nejad, M.Z., Abedi, M., Lotfian, M.H., Ghannad, M. (2012). An exact solution for stresses and displacements of pressurized FGM thick-walled spherical shells with exponential-varying properties. Journal of Mechanical Science and Technology, vol. 26, no. 12, p. 4081-4087, DOI:10.1007/s12206-012-0908-3.
  • Karami, K., Abedi, M., Nejad, M.Z., Lotfian, M.H. (2012). Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties. Frontiers of Mechanical Engineering, vol. 7, no. 4, p. 433-438, DOI:10.1007/s11465-012-0336-1.
  • Khoshgoftar, M. J., Rahimi, G.H., Arefi, M. (2013). Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure. Mechanics Research Communications, vol. 51, p. 61-66, DOI:10.1016/j.mechrescom.2013.05.001.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mehmet Eker 0000-0002-6785-1710

Durmuş Yarımpabuç 0000-0002-8763-1125

Kerimcan Çelebi 0000-0001-6294-0872

Publication Date June 20, 2018
Acceptance Date January 18, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Eker, M., Yarımpabuç, D., & Çelebi, K. (2018). Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio. European Mechanical Science, 2(2), 52-59. https://doi.org/10.26701/ems.360134
AMA Eker M, Yarımpabuç D, Çelebi K. Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio. EMS. June 2018;2(2):52-59. doi:10.26701/ems.360134
Chicago Eker, Mehmet, Durmuş Yarımpabuç, and Kerimcan Çelebi. “Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio”. European Mechanical Science 2, no. 2 (June 2018): 52-59. https://doi.org/10.26701/ems.360134.
EndNote Eker M, Yarımpabuç D, Çelebi K (June 1, 2018) Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio. European Mechanical Science 2 2 52–59.
IEEE M. Eker, D. Yarımpabuç, and K. Çelebi, “Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio”, EMS, vol. 2, no. 2, pp. 52–59, 2018, doi: 10.26701/ems.360134.
ISNAD Eker, Mehmet et al. “Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio”. European Mechanical Science 2/2 (June 2018), 52-59. https://doi.org/10.26701/ems.360134.
JAMA Eker M, Yarımpabuç D, Çelebi K. Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio. EMS. 2018;2:52–59.
MLA Eker, Mehmet et al. “Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio”. European Mechanical Science, vol. 2, no. 2, 2018, pp. 52-59, doi:10.26701/ems.360134.
Vancouver Eker M, Yarımpabuç D, Çelebi K. Mechanical Behavior of Functionally Graded Pressure Vessels Under the Effect of Poisson’s Ratio. EMS. 2018;2(2):52-9.

Cited By










Dergi TR Dizin'de Taranmaktadır.

Flag Counter