Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 3, 148 - 152, 20.09.2021
https://doi.org/10.26701/ems.860949

Abstract

References

  • [1] Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: the world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509-1630. DOI: https://doi.org/10.1080/10643389.2011.569871
  • [2] Giugliano, M., Cernuschi, S., Grosso, M., & Rigamonti, L. (2011). Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Management, 31(9-10), 2092-2101. DOI: https://doi.org/10.1016/j.wasman.2011.02.029
  • [3] Li, Y., Jin, Y., Borrion, A., & Li, H. (2019). Current status of food waste generation and management in China. Bioresource technology, 273, 654-665. DOI: https://doi.org/10.1016/j.biortech.2018.10.083
  • [4] Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank. DOI: https://doi.org/10.1596/978-1-4648-1329-0
  • [5] Alzate-Arias, S., Jaramillo-Duque, Á., Villada, F., & Restrepo-Cuestas, B. (2018). Assessment of government incentives for energy from waste in Colombia. Sustainability, 10(4), 1294. DOI: https://doi.org/10.3390/su10041294
  • [6] Jeswani, H. K., & Azapagic, A. (2016). Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Management, 50, 346-363. DOI: https://doi.org/10.1016/j.wasman.2016.02.010
  • [7] Scarlat, N., Motola, V., Dallemand, J. F., Monforti-Ferrario, F., & Mofor, L. (2015). Evaluation of energy potential of municipal solid waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269-1286. DOI: https://doi.org/10.1016/j.rser.2015.05.067
  • [8] Singh, A., Tiwari, R., Chandrahas, & Dutt, T. (2020). Augmentation of farmers’ income in India through sustainable waste management techniques. Waste Management & Research, 0734242X20953892. DOI: https://doi.org/10.1177/0734242X20953892
  • [9] Sapronova, Z., Sverguzova, S., & Svyatchenko, A. (2019, December). Use of municipal vegetative waste as raw material for sorbent production. In IOP Conference Series: Materials Science and Engineering (Vol. 687, No. 6, p. 066061). IOP Publishing.
  • [10] Heredia-Guerrero, J. A., Heredia, A., Domínguez, E., Cingolani, R., Bayer, I. S., Athanassiou, A., & Benítez, J. J. (2017). Cutin from agro-waste as a raw material for the production of bioplastics. Journal of experimental botany, 68(19), 5401-5410. DOI: https://doi.org/10.1093/jxb/erx272
  • [11] Rong, W. U., Shanjiang, L. I. U., & Ying, D. U. (2016). Research Advances in Agricultural Reutilization of Urban-rural Organic Wastes. Agricultural Science & Technology, 17(2).
  • [12] Liu, Y., Ni, Z., Kong, X., & Liu, J. (2017). Greenhouse gas emissions from municipal solid waste with a high organic fraction under different management scenarios. Journal of Cleaner Production, 147, 451-457. DOI: https://doi.org/10.1016/j.jclepro.2017.01.135
  • [13] Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management.
  • [14] Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 117253. DOI: https://doi.org/10.1016/j.energy.2020.117253
  • [15] Tufaner, F., & Avşar, Y. (2014). Yenilenebilir Bir Enerji Kaynağı Olarak Organik İçeriği Yüksek Atıklardan Biyogaz Üretim Teknolojisi. Adıyaman Üniversitesi Bilim, Kültür ve Sanat Sempozyumu (ADYÜ-Sempozyum).
  • [16] Rayner, A. J., Briggs, J., Tremback, R., & Clemmer, R. M. (2017). Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies. Renewable and Sustainable Energy Reviews, 71, 563-571. DOI: https://doi.org/10.1016/j.rser.2016.12.084
  • [17] San Martin, D., Ramos, S., & Zufía, J. (2016). Valorisation of food waste to produce new raw materials for animal feed. Food chemistry, 198, 68-74. DOI: https://doi.org/10.1016/j.foodchem.2015.11.035
  • [18] Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. DOI: https://doi.org/10.1016/j.jclepro.2013.10.051
  • [19] Üstün, İ., Yıldız, K. O. Ç., YAĞLI, H., Özkan, K. Ö. S. E., Başar, M. T., Karakuş, C., ... & Ali, K. O. Ç. (2019). Determination of heat transfer coefficient and electromagnetic directional analysis of pomegranate seed. International Advanced Researches and Engineering Journal, 3(2), 98-104. DOI: https://doi.org/10.35860/iarej.412270
  • [20] Başar, M. T. (2020). Organik atıkların geri kazanımı için mekanik, ısıl ve elektromanyetik özelliklerinin araştırılması (Master's thesis, İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü/Makine Mühendisliği Anabilim Dalı).
  • [21] Abdulkarim, Y. I., Deng, L., Altıntaş, O., Ünal, E., & Karaaslan, M. (2019). Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Physica E: Low-dimensional Systems and Nanostructures, 114, 113593. DOI: https://doi.org/10.1016/j.physe.2019.113593
  • [22] Balçıkanlı, M. (2016). Alkalilerle aktive edilmiş çimentosuz cüruflu betonların mekanik ve geçirimlilik özellikleri ve üretim optimizasyonu (Master's thesis, İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü/İnşaat Mühendisliği Anabilim Dalı).

Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures

Year 2021, Volume: 5 Issue: 3, 148 - 152, 20.09.2021
https://doi.org/10.26701/ems.860949

Abstract

In this experimental study, a composite structure was obtained by combining apple pulp wastes with slag wastes. Electromagnetic field characteristics of test samples have been determined. In the scope of the study, dry apple pulp and slag wastes were transformed into square plate form using a specially designed mold and a pressing bench with a capacity of 50 tons. The measurements were carried out in the 3-18 GHz frequency band in the microwave laboratory. In the measurements, five different measurement results were obtained: air, high quality commercial absorber, pure apple pulp, 50 g apple pulp with slag and 150 g of slag added apple pulp. The results of the measured samples were compared and interpreted with the results of air and high-quality commercial absorber material. As a result, the samples formed by pure apple pulp, 50 g slag-added sample and 150 g slag-added sample in terms of electromagnetic permeability similar results were obtained. The slag-added sample of 50 g performed better absorption in certain frequency regions than the slag-added sample of 150 g. In addition, it produces close transmission values in three samples in the 8-12 GHz X-band frequency range. In addition, considering the absorption values of the slag-added structures, it was determined that they absorb to signals 90% on average in the frequency regions of 8 GHz and above.

References

  • [1] Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: the world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509-1630. DOI: https://doi.org/10.1080/10643389.2011.569871
  • [2] Giugliano, M., Cernuschi, S., Grosso, M., & Rigamonti, L. (2011). Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Management, 31(9-10), 2092-2101. DOI: https://doi.org/10.1016/j.wasman.2011.02.029
  • [3] Li, Y., Jin, Y., Borrion, A., & Li, H. (2019). Current status of food waste generation and management in China. Bioresource technology, 273, 654-665. DOI: https://doi.org/10.1016/j.biortech.2018.10.083
  • [4] Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. The World Bank. DOI: https://doi.org/10.1596/978-1-4648-1329-0
  • [5] Alzate-Arias, S., Jaramillo-Duque, Á., Villada, F., & Restrepo-Cuestas, B. (2018). Assessment of government incentives for energy from waste in Colombia. Sustainability, 10(4), 1294. DOI: https://doi.org/10.3390/su10041294
  • [6] Jeswani, H. K., & Azapagic, A. (2016). Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Management, 50, 346-363. DOI: https://doi.org/10.1016/j.wasman.2016.02.010
  • [7] Scarlat, N., Motola, V., Dallemand, J. F., Monforti-Ferrario, F., & Mofor, L. (2015). Evaluation of energy potential of municipal solid waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269-1286. DOI: https://doi.org/10.1016/j.rser.2015.05.067
  • [8] Singh, A., Tiwari, R., Chandrahas, & Dutt, T. (2020). Augmentation of farmers’ income in India through sustainable waste management techniques. Waste Management & Research, 0734242X20953892. DOI: https://doi.org/10.1177/0734242X20953892
  • [9] Sapronova, Z., Sverguzova, S., & Svyatchenko, A. (2019, December). Use of municipal vegetative waste as raw material for sorbent production. In IOP Conference Series: Materials Science and Engineering (Vol. 687, No. 6, p. 066061). IOP Publishing.
  • [10] Heredia-Guerrero, J. A., Heredia, A., Domínguez, E., Cingolani, R., Bayer, I. S., Athanassiou, A., & Benítez, J. J. (2017). Cutin from agro-waste as a raw material for the production of bioplastics. Journal of experimental botany, 68(19), 5401-5410. DOI: https://doi.org/10.1093/jxb/erx272
  • [11] Rong, W. U., Shanjiang, L. I. U., & Ying, D. U. (2016). Research Advances in Agricultural Reutilization of Urban-rural Organic Wastes. Agricultural Science & Technology, 17(2).
  • [12] Liu, Y., Ni, Z., Kong, X., & Liu, J. (2017). Greenhouse gas emissions from municipal solid waste with a high organic fraction under different management scenarios. Journal of Cleaner Production, 147, 451-457. DOI: https://doi.org/10.1016/j.jclepro.2017.01.135
  • [13] Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management.
  • [14] Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 117253. DOI: https://doi.org/10.1016/j.energy.2020.117253
  • [15] Tufaner, F., & Avşar, Y. (2014). Yenilenebilir Bir Enerji Kaynağı Olarak Organik İçeriği Yüksek Atıklardan Biyogaz Üretim Teknolojisi. Adıyaman Üniversitesi Bilim, Kültür ve Sanat Sempozyumu (ADYÜ-Sempozyum).
  • [16] Rayner, A. J., Briggs, J., Tremback, R., & Clemmer, R. M. (2017). Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies. Renewable and Sustainable Energy Reviews, 71, 563-571. DOI: https://doi.org/10.1016/j.rser.2016.12.084
  • [17] San Martin, D., Ramos, S., & Zufía, J. (2016). Valorisation of food waste to produce new raw materials for animal feed. Food chemistry, 198, 68-74. DOI: https://doi.org/10.1016/j.foodchem.2015.11.035
  • [18] Mirabella, N., Castellani, V., & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. DOI: https://doi.org/10.1016/j.jclepro.2013.10.051
  • [19] Üstün, İ., Yıldız, K. O. Ç., YAĞLI, H., Özkan, K. Ö. S. E., Başar, M. T., Karakuş, C., ... & Ali, K. O. Ç. (2019). Determination of heat transfer coefficient and electromagnetic directional analysis of pomegranate seed. International Advanced Researches and Engineering Journal, 3(2), 98-104. DOI: https://doi.org/10.35860/iarej.412270
  • [20] Başar, M. T. (2020). Organik atıkların geri kazanımı için mekanik, ısıl ve elektromanyetik özelliklerinin araştırılması (Master's thesis, İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü/Makine Mühendisliği Anabilim Dalı).
  • [21] Abdulkarim, Y. I., Deng, L., Altıntaş, O., Ünal, E., & Karaaslan, M. (2019). Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Physica E: Low-dimensional Systems and Nanostructures, 114, 113593. DOI: https://doi.org/10.1016/j.physe.2019.113593
  • [22] Balçıkanlı, M. (2016). Alkalilerle aktive edilmiş çimentosuz cüruflu betonların mekanik ve geçirimlilik özellikleri ve üretim optimizasyonu (Master's thesis, İskenderun Teknik Üniversitesi/Mühendislik ve Fen Bilimleri Enstitüsü/İnşaat Mühendisliği Anabilim Dalı).
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Kaan Baltacıoğlu 0000-0002-4082-902X

Mustafa Başar This is me 0000-0002-3108-8995

Muharrem Karaaslan 0000-0003-0923-1959

Fatih Alkurt 0000-0002-9940-0658

Samet Arıpek 0000-0003-4008-7895

Publication Date September 20, 2021
Acceptance Date February 23, 2021
Published in Issue Year 2021 Volume: 5 Issue: 3

Cite

APA Baltacıoğlu, K., Başar, M., Karaaslan, M., Alkurt, F., et al. (2021). Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. European Mechanical Science, 5(3), 148-152. https://doi.org/10.26701/ems.860949
AMA Baltacıoğlu K, Başar M, Karaaslan M, Alkurt F, Arıpek S. Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. EMS. September 2021;5(3):148-152. doi:10.26701/ems.860949
Chicago Baltacıoğlu, Kaan, Mustafa Başar, Muharrem Karaaslan, Fatih Alkurt, and Samet Arıpek. “Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures”. European Mechanical Science 5, no. 3 (September 2021): 148-52. https://doi.org/10.26701/ems.860949.
EndNote Baltacıoğlu K, Başar M, Karaaslan M, Alkurt F, Arıpek S (September 1, 2021) Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. European Mechanical Science 5 3 148–152.
IEEE K. Baltacıoğlu, M. Başar, M. Karaaslan, F. Alkurt, and S. Arıpek, “Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures”, EMS, vol. 5, no. 3, pp. 148–152, 2021, doi: 10.26701/ems.860949.
ISNAD Baltacıoğlu, Kaan et al. “Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures”. European Mechanical Science 5/3 (September 2021), 148-152. https://doi.org/10.26701/ems.860949.
JAMA Baltacıoğlu K, Başar M, Karaaslan M, Alkurt F, Arıpek S. Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. EMS. 2021;5:148–152.
MLA Baltacıoğlu, Kaan et al. “Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures”. European Mechanical Science, vol. 5, no. 3, 2021, pp. 148-52, doi:10.26701/ems.860949.
Vancouver Baltacıoğlu K, Başar M, Karaaslan M, Alkurt F, Arıpek S. Electromagnetic Analysis of Organic Waste and Blust Furnace Slag Mixtures. EMS. 2021;5(3):148-52.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter