Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 4, 213 - 220, 20.12.2022
https://doi.org/10.26701/ems.1056942

Abstract

References

  • [1] Hansu, T.A., Caglar, A., Sahin, O., Kivrak, H., (2020). Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Materials Chemistry and Physics. doi: 10.1016/j.matchemphys.2019.122031.
  • [2] Barbir, F., Gorgun, H., & Wang, X. (2005). Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. Journal of Power Sources, 141(1), 96-101.
  • [3] Sahiner, N., Demirci, S., (2017). Very fast H2 production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. International Journal of Energy Research. doi: 10.1002/er.3679.
  • [4] Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M., Azad, A.K., (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. doi: 10.1016/j.enconman.2018.03.088.
  • [5] Rivarolo, M., Improta, O., Magistri, L., Panizza, M., Barbucci, A., (2018). Thermo-economic analysis of a hydrogen production system by sodium borohydride (NaBH4). International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2017.11.079.
  • [6] Balbay, A., Saka, C., (2018). Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi: 10.1080/15567036.2018.1463311.
  • [7] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., (1953). Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi: 10.1021/ja01097a057.
  • [8] Zhang, J., Zheng, Y., Gore, J.P., Fisher, T.S., (2007). 1 kWe sodium borohydride hydrogen generation system. Part I: Experimental study. Journal of Power Sources. doi: 10.1016/j.jpowsour.2006.12.055.
  • [9] Amendola, S.C., Sharp-Goldman, S.L., Saleem Janjua, M., Kelly, M.T., Petillo, P.J., Binder, M., (2000). An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources. doi: 10.1016/S0378-7753(99)00301-8.
  • [10] Kojima, Y., Suzuki, K.I., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., et al., (2002). Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(02)00014-9.
  • [11] Arzac, G.M., Hufschmidt, D., Jiménez De Haro, M.C., Fernández, A., Sarmiento, B., Jiménez, M.A., et al., (2012). Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.06.117.
  • [12] Wang, F.C., Chiang, Y.S., (2012). Design and control of a PEMFC powered electric wheelchair. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.04.156.
  • [13] Guo, Y.F., Chen, H.C., Wang, F.C., (2015). The development of a hybrid PEMFC power system. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.01.169.
  • [14] Murooka, S., Tomoda, K., Hoshi, N., Haruna, J., Cao, M., Yoshizaki, A., et al., (2012). Consideration on fundamental characteristic of hydrogen generator system fueled by NaBH 4 for fuel cell hybrid electric vehicle. 2012 IEEE International Electric Vehicle Conference, IEVC 2012,.
  • [15] Kojima, Y., Suzuki, K.I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., et al., (2004). Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources. doi: 10.1016/S0378-7753(03)00827-9.
  • [16] Kim, J.H., Lee, H., Han, S.C., Kim, H.S., Song, M.S., Lee, J.Y., (2004). Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(03)00128-9.
  • [17] Kim, T., Lee, J., (2011). A complete power source of micro PEM fuel cell with NABH4 microreactor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS),.
  • [18] Kim, T., (2011). Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. International Journal of Hydrogen Energy. 36(2): 1404–10. doi: 10.1016/j.ijhydene.2010.10.079.
  • [19] Li, S.C., Wang, F.C., (2016). The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.12.019.
  • [20] Sim, J.H., Lee, C.J., Kim, T., (2014). Hydrogen generation from solid-state NaBH4 particles using NaHCO3 agents for PEM fuel cell systems. Energy Procedia,.
  • [21] Avrahami, I., Shvalb, N., Sasson, M., Nagar, Y., Dahan, O., Dayee, I., et al., (2020). Hydrogen production on-demand by hydride salt and water two-phase generator. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.03.203.
  • [22] Zakhvatkin, L., Zolotih, M., Maurice, Y., Schechter, A., Avrahami, I., (2021). Hydrogen Production on Demand by a Pump Controlled Hydrolysis of Granulated Sodium Borohydride. Energy and Fuels. doi: 10.1021/acs.energyfuels.1c00367.
  • [23] İskenderoğlu, F.C., Baltacıoğlu, M.K., (2021). Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.12.219.
  • [24] Liu, B.H., Li, Q., (2008). A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2008.09.055.
  • [25] Kılınç, D., Şahin, Ö., (2019). Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.12.225.

An autonomous hydrogen production system design based on the solid chemical hydride

Year 2022, Volume: 6 Issue: 4, 213 - 220, 20.12.2022
https://doi.org/10.26701/ems.1056942

Abstract

This paper develops a hydrogen generator prototype that is for fuel cell systems used in portable applications. This generator is designed based on the use of solid-state hydrides with high hydrogen storage capacity in the catalytic hydrolysis reaction. Some using problems such as unstable hydrogen production, one-off service life, heavy or large-volume storage system, and short duty time can be avoided in moveable applications when the use of the produced prototype. In addition, A simulation model and an autonomous control algorithm, which evaluates the hydrogen generation and temperature responses of the prototype, are developed. The results confirm that the performance of a portable and autonomous prototype with 4 parts and 1-hour hydrogen production capacity is enough for small fuel cell applications.

References

  • [1] Hansu, T.A., Caglar, A., Sahin, O., Kivrak, H., (2020). Hydrolysis and electrooxidation of sodium borohydride on novel CNT supported CoBi fuel cell catalyst. Materials Chemistry and Physics. doi: 10.1016/j.matchemphys.2019.122031.
  • [2] Barbir, F., Gorgun, H., & Wang, X. (2005). Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. Journal of Power Sources, 141(1), 96-101.
  • [3] Sahiner, N., Demirci, S., (2017). Very fast H2 production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. International Journal of Energy Research. doi: 10.1002/er.3679.
  • [4] Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M., Azad, A.K., (2018). Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. doi: 10.1016/j.enconman.2018.03.088.
  • [5] Rivarolo, M., Improta, O., Magistri, L., Panizza, M., Barbucci, A., (2018). Thermo-economic analysis of a hydrogen production system by sodium borohydride (NaBH4). International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2017.11.079.
  • [6] Balbay, A., Saka, C., (2018). Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. doi: 10.1080/15567036.2018.1463311.
  • [7] Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K., (1953). Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society. doi: 10.1021/ja01097a057.
  • [8] Zhang, J., Zheng, Y., Gore, J.P., Fisher, T.S., (2007). 1 kWe sodium borohydride hydrogen generation system. Part I: Experimental study. Journal of Power Sources. doi: 10.1016/j.jpowsour.2006.12.055.
  • [9] Amendola, S.C., Sharp-Goldman, S.L., Saleem Janjua, M., Kelly, M.T., Petillo, P.J., Binder, M., (2000). An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources. doi: 10.1016/S0378-7753(99)00301-8.
  • [10] Kojima, Y., Suzuki, K.I., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y., et al., (2002). Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(02)00014-9.
  • [11] Arzac, G.M., Hufschmidt, D., Jiménez De Haro, M.C., Fernández, A., Sarmiento, B., Jiménez, M.A., et al., (2012). Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.06.117.
  • [12] Wang, F.C., Chiang, Y.S., (2012). Design and control of a PEMFC powered electric wheelchair. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2012.04.156.
  • [13] Guo, Y.F., Chen, H.C., Wang, F.C., (2015). The development of a hybrid PEMFC power system. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.01.169.
  • [14] Murooka, S., Tomoda, K., Hoshi, N., Haruna, J., Cao, M., Yoshizaki, A., et al., (2012). Consideration on fundamental characteristic of hydrogen generator system fueled by NaBH 4 for fuel cell hybrid electric vehicle. 2012 IEEE International Electric Vehicle Conference, IEVC 2012,.
  • [15] Kojima, Y., Suzuki, K.I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., et al., (2004). Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources. doi: 10.1016/S0378-7753(03)00827-9.
  • [16] Kim, J.H., Lee, H., Han, S.C., Kim, H.S., Song, M.S., Lee, J.Y., (2004). Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance. International Journal of Hydrogen Energy. doi: 10.1016/S0360-3199(03)00128-9.
  • [17] Kim, T., Lee, J., (2011). A complete power source of micro PEM fuel cell with NABH4 microreactor. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS),.
  • [18] Kim, T., (2011). Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. International Journal of Hydrogen Energy. 36(2): 1404–10. doi: 10.1016/j.ijhydene.2010.10.079.
  • [19] Li, S.C., Wang, F.C., (2016). The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.12.019.
  • [20] Sim, J.H., Lee, C.J., Kim, T., (2014). Hydrogen generation from solid-state NaBH4 particles using NaHCO3 agents for PEM fuel cell systems. Energy Procedia,.
  • [21] Avrahami, I., Shvalb, N., Sasson, M., Nagar, Y., Dahan, O., Dayee, I., et al., (2020). Hydrogen production on-demand by hydride salt and water two-phase generator. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.03.203.
  • [22] Zakhvatkin, L., Zolotih, M., Maurice, Y., Schechter, A., Avrahami, I., (2021). Hydrogen Production on Demand by a Pump Controlled Hydrolysis of Granulated Sodium Borohydride. Energy and Fuels. doi: 10.1021/acs.energyfuels.1c00367.
  • [23] İskenderoğlu, F.C., Baltacıoğlu, M.K., (2021). Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.12.219.
  • [24] Liu, B.H., Li, Q., (2008). A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2008.09.055.
  • [25] Kılınç, D., Şahin, Ö., (2019). Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation. International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.12.225.
There are 25 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Feride Cansu İskenderoğlu This is me 0000-0003-4083-677X

Kaan Baltacıoğlu 0000-0002-4082-902X

Çağlar Conker 0000-0002-1923-9092

Hasan Hüseyin Bilgiç 0000-0001-6006-8056

Publication Date December 20, 2022
Acceptance Date March 4, 2022
Published in Issue Year 2022 Volume: 6 Issue: 4

Cite

APA İskenderoğlu, F. C., Baltacıoğlu, K., Conker, Ç., Bilgiç, H. H. (2022). An autonomous hydrogen production system design based on the solid chemical hydride. European Mechanical Science, 6(4), 213-220. https://doi.org/10.26701/ems.1056942
AMA İskenderoğlu FC, Baltacıoğlu K, Conker Ç, Bilgiç HH. An autonomous hydrogen production system design based on the solid chemical hydride. EMS. December 2022;6(4):213-220. doi:10.26701/ems.1056942
Chicago İskenderoğlu, Feride Cansu, Kaan Baltacıoğlu, Çağlar Conker, and Hasan Hüseyin Bilgiç. “An Autonomous Hydrogen Production System Design Based on the Solid Chemical Hydride”. European Mechanical Science 6, no. 4 (December 2022): 213-20. https://doi.org/10.26701/ems.1056942.
EndNote İskenderoğlu FC, Baltacıoğlu K, Conker Ç, Bilgiç HH (December 1, 2022) An autonomous hydrogen production system design based on the solid chemical hydride. European Mechanical Science 6 4 213–220.
IEEE F. C. İskenderoğlu, K. Baltacıoğlu, Ç. Conker, and H. H. Bilgiç, “An autonomous hydrogen production system design based on the solid chemical hydride”, EMS, vol. 6, no. 4, pp. 213–220, 2022, doi: 10.26701/ems.1056942.
ISNAD İskenderoğlu, Feride Cansu et al. “An Autonomous Hydrogen Production System Design Based on the Solid Chemical Hydride”. European Mechanical Science 6/4 (December 2022), 213-220. https://doi.org/10.26701/ems.1056942.
JAMA İskenderoğlu FC, Baltacıoğlu K, Conker Ç, Bilgiç HH. An autonomous hydrogen production system design based on the solid chemical hydride. EMS. 2022;6:213–220.
MLA İskenderoğlu, Feride Cansu et al. “An Autonomous Hydrogen Production System Design Based on the Solid Chemical Hydride”. European Mechanical Science, vol. 6, no. 4, 2022, pp. 213-20, doi:10.26701/ems.1056942.
Vancouver İskenderoğlu FC, Baltacıoğlu K, Conker Ç, Bilgiç HH. An autonomous hydrogen production system design based on the solid chemical hydride. EMS. 2022;6(4):213-20.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter