Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 4, 511 - 523, 31.12.2023
https://doi.org/10.54287/gujsa.1357391

Abstract

References

  • ., N., & Rarasati, D. B. (2022). Recommendation for Classification of News Categories Using Support Vector Machine Algorithm with SVD. Ultimatics : Jurnal Teknik Informatika, 13(2), 72-80. https://www.doi.org/10.31937/ti.v13i2.1854
  • Algarni, S. E., Qasrawi, A. F., & Khusayfan, N. M. (2022). Enhanced Optical and Electrical Interactions at the Pt/MgSe Interfaces Designed for 6G Communication Technology. Crystal Research and Technology, 58(1), 2200185. https://www.doi.org/10.1002/crat.202200185
  • Alsmael, J. A. M. , Urgun, N. , Tan, S. O. & Tecimer, H. (2022). Effectuality of the Frequency Levels on the C&G/ω–V Data of the Polymer Interlayered Metal-Semiconductor Structure. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 554-561. https://www.doi.org/10.54287/gujsa.1206332
  • Ashery, A. (2022). Novel Negative Capacitance Appeared in all Frequencies in Au/AlCu/SiO2/p-Si/Al Structure. Silicon, 14, 11061-11078. https://www.doi.org/10.1007/s12633-022-01850-0
  • Ashery, A., Gad, S. A., & Turky, G. M. (2021). Analysis of Electrical and Capacitance–Voltage of PVA/nSi. Journal of Electronic Materials, 50(6), 3498-3516. https://www.doi.org/10.1007/s11664-021-08867-y
  • Barkhordari, A., Altındal, Ş., E., Pirgholi-Givi, G., Mashayekhi, H., Özçelik, S., & Azizian-Kalandaragh, Y. (2022). The Influence of PVC and (PVC:SnS) Interfacial Polymer Layers on the Electric and Dielectric Properties of Au/n-Si Structure. Silicon, 15(2), 855-865. https://www.doi.org/10.1007/s12633-022-02044-4
  • Bisquert, J. (2011). A variable series resistance mechanism to explain the negative capacitance observed in impedance spectroscopy measurements of nanostructured solar cells. Physical Chemistry Chemical Physics, 13(10), 4679. https://www.doi.org/10.1039/c0cp02555k
  • Cheema, S. S., Shanker, N., Wang, L. C., Hsu, C.-H., Hsu, S.-L., Liao, Y.-H., San Jose, M., Gomez, J., Chakraborty, W., Li, W., Bae, J.-H., Volkman, S. K., Kwon, D., Rho, Y., Pinelli, G., Rastogi, R., Pipitone, D., Stull, C., Cook, M., Salahuddin, S. (2022). Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature, 604, 65-71. https://www.doi.org/10.1038/s41586-022-04425-6
  • Çakıcı, T., Ajjaq, A., Çağırtekin, A. O., Barin, Ö., Özdal, M., & Acar, S. (2023). Surface activation of Si-based Schottky diodes by bacterial biosynthesized AgInSe2 trimetallic alloy nanoparticles with evidenced negative capacitance and enhanced electro-dielectric performance. Applied Surface Science, 631, 157522. https://www.doi.org/10.1016/j.apsusc.2023.157522
  • Demirezen, S., & Yerişkin, S. A. (2021). Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. Journal of Materials Science: Materials in Electronics, 32, 25339-25349. https://www.doi.org/10.1007/s10854-021-06993-1
  • Ershov, M., Liu, H., Li, L., Buchanan, M., Wasilewski, Z., & Jonscher, A. (1998). Negative capacitance effect in semiconductor devices. IEEE Transactions on Electron Devices, 45(10), 2196-2206. https://www.doi.org/10.1109/16.725254
  • Hoffmann, M., Fengler, F. P. G., Herzig, M., Mittmann, T., Max, B., Schroeder, U., Negrea, R., Pintilie, L., Slesazeck, S., & Mikolajick, T. (2019). Unveiling the double-well energy landscape in a ferroelectric layer. Nature, 565, 464-467. https://www.doi.org/10.1038/s41586-018-0854-z
  • Hoffmann, M., Slesazeck, S., & Mikolajick, T. (2021a). Progress and future prospects of negative capacitance electronics: A materials perspective. APL Materials, 9(2), 020902. https://www.doi.org/10.1063/5.0032954
  • Hoffmann, M., Gui, M., Slesazeck, S., Fontanini, R., Segatto, M., Esseni, D., & Mikolajick, T. (2021b). Intrinsic Nature of Negative Capacitance in Multidomain Hf0.5Zr0.5O2‐Based Ferroelectric/Dielectric Heterostructures. Advanced Functional Materials, 32(2), 2108494. https://www.doi.org/10.1002/adfm.202108494
  • Iwashige, K., Toprasertpong, K., Takenaka, M., & Takagi, S. (2023). Effect of Hfx Zr1−x O2/Ge metal–ferroelectrics–insulator–semiconductor interfaces on polarization reversal behavior. Japanese Journal of Applied Physics, 62(SC), SC1093. https://www.doi.org/10.35848/1347-4065/acb829
  • Joly, R., Girod, S., Adjeroud, N., Grysan, P., & Polesel‐Maris, J. (2021). Evidence of negative capacitance and capacitance modulation by light and mechanical stimuli in pt/zno/pt schottky junctions. Sensors, 21(6), 2253. https://www.doi.org/10.3390/s21062253
  • Karataş, Ş. (2021). Temperature and voltage dependence C–V and G/ω–V characteristics in Au/n-type GaAs metal–semiconductor structures and the source of negative capacitance. Journal of Materials Science: Materials in Electronics, 32(1), 707-716. https://www.doi.org/10.1007/s10854-020-04850-1
  • Kaur, R., Arora, A., & Tripathi, S. K. (2020). Fabrication and characterization of metal insulator semiconductor Ag/PVA/GO/PVA/n-Si/Ag device. Microelectronic Engineering, 233, 111419. https://www.doi.org/10.1016/j.mee.2020.111419
  • Khan, A. I. (2015). Negative Capacitance for Ultra-low Power Computing. PhD Thesis, University of California, Berkeley.
  • Khosla, R., & Sharma, S. K. (2021). Integration of Ferroelectric Materials: An Ultimate Solution for Next-Generation Computing and Storage Devices. ACS Applied Electronic Materials, 3(7), 2862-2897. https://www.doi.org/10.1021/acsaelm.0c00851
  • Landauer, R. (1957). Electrostatic Considerations in BaTiO3 Domain Formation during Polarization Reversal. Journal of Applied Physics, 28(2), 227-234. https://www.doi.org/10.1063/1.1722712
  • Lee, H., & Yoon, Y. (2022). Simulation of Negative Capacitance Based on the Miller Model: Beyond the Limitation of the Landau Model. IEEE Transactions on Electron Devices, 69(1), 237-241. https://www.doi.org/10.1109/ted.2021.3124475
  • Li, J., Si, M., Qu, Y., Lyu, X., & Ye, P. D. (2021). Quantitative Characterization of Ferroelectric/Dielectric Interface Traps by Pulse Measurements. IEEE Transactions on Electron Devices, 68(3), 1214-1220. https://www.doi.org/10.1109/ted.2021.3053497
  • Liu, L., Lei, L., Lu, X., Xia, Y., Wu, Z., & Huang, F. (2023). Direct Measurement of Negative Capacitance in Ferroelectric/Semiconductor Heterostructures. ACS Applied Materials & Interfaces, 15(7), 10175-10181. https://www.doi.org/10.1021/acsami.2c19930
  • Luk’yanchuk, I., Tikhonov, Y., Sené, A., Razumnaya, A., & Vinokur, V. M. (2019). Harnessing ferroelectric domains for negative capacitance. Communications Physics, 2(22). https://www.doi.org/10.1038/s42005-019-0121-0
  • Merz, W. J. (1956). Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. Journal of Applied Physics, 27(8), 938-943. https://www.doi.org/10.1063/1.1722518
  • Migita, S., Ota, H., & Toriumi, A. (2019). Design points of ferroelectric field-effect transistors for memory and logic applications as investigated by metal-ferroelectric-metal-insulator-semiconductor gate stack structures using Hf0.5Zr0.5O2 films. Japanese Journal of Applied Physics, 58(SL), SLLB06. https://www.doi.org/10.7567/1347-4065/ab389b
  • Noh, Y. S., Chatterjee, S., Nandi, S., Samanta, S. K., Maiti, C. K., Maikap, S., & Choi, W. K. (2003). Characteristics of MIS capacitors using Ta2O5 films deposited on ZnO/p-Si. Microelectronic Engineering, 66(1-4), 637-642. https://www.doi.org/10.1016/s0167-9317(02)00976-0
  • Park, H. W., Roh, J., Lee, Y. B., & Hwang, C. S. (2019). Modeling of Negative Capacitance in Ferroelectric Thin Films. Advanced Materials, 31(32), 1805266. https://www.doi.org/10.1002/adma.201805266
  • Poklonski, N. A., Kovalev, A. I., Usenko, K. V., Ermakova, E. A., Gorbachuk, N. I., & Lastovski, S. B. (2023). Inductive Type Impedance of Mo/n-Si Barrier Structures Irradiated with Alpha Particles. Devices and Methods of Measurements, 14(1), 38-43. https://www.doi.org/10.21122/2220-9506-2023-14-1-38-43
  • Saghrouni, H., Jomni, S., Belgacem, W., Elghoul, N., & Beji, L. (2015). Temperature dependent electrical and dielectric properties of a metal/Dy2O3/n-GaAs (MOS) structure. Materials Science in Semiconductor Processing, 29, 307-314. https://www.doi.org/10.1016/j.mssp.2014.05.039
  • Salahuddin, S., & Datta, S. (2008). Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Letters, 8(2), 405-410. https://www.doi.org/10.1021/nl071804g
  • Segatto, M., Fontanini, R., Driussi, F., Lizzit, D., & Esseni, D. (2022). Limitations to Electrical Probing of Spontaneous Polarization in Ferroelectric-Dielectric Heterostructures. IEEE Journal of the Electron Devices Society, 10, 324-333. https://www.doi.org/10.1109/jeds.2022.3164652
  • Senapati, A., Roy, S., Lin, Y. F., Dutta, M., & Maikap, S. (2020). Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM. Electronics, 9(7), 1106. https://www.doi.org/10.3390/electronics9071106
  • Song, J., Qi, Y., Xiao, Z., Wang, K., Li, D., Kim, S. H., Kingon, A. I., Rappe, A. M., & Hong, X. (2022). Domain wall enabled steep slope switching in MoS2 transistors towards hysteresis-free operation. Npj 2D Materials and Applications, 6, 77. https://www.doi.org/10.1038/s41699-022-00353-1
  • Tade, O. O., Gardner, P., & Hall, P. S. (2012). Negative impedance converters for broadband antenna matching. In: Proceedings of the 42nd European Microwave Conference, Amsterdam, Netherlands, (pp. 613-616). https://www.doi.org/10.23919/eumc.2012.6459295
  • Tan, S. O., Tecimer, H. U., Çiçek, O., Tecimer, H., & Altındal. (2016). Frequency dependent C–V and G/ω–V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 28, 4951-4957. https://www.doi.org/10.1007/s10854-016-6147-0
  • Yadav, A. K., Nguyen, K. X., Hong, Z., García-Fernández, P., Aguado-Puente, P., Nelson, C. T., Das, S., Prasad, B., Kwon, D., Cheema, S., Khan, A. I., Hu, C., Íñiguez, J., Junquera, J., Chen, L. Q., Muller, D. A., Ramesh, R., & Salahuddin, S. (2019). Spatially resolved steady-state negative capacitance. Nature, 565, 468-471. .doi.org/10.1038/s41586-018-0855-y
  • Zhang, Y., Ma, X., Wang, X., Xiang, J., & Wang, W. (2021). Revisiting the definition of ferroelectric negative capacitance based on Gibbs free energy. In: Proceedings of the 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), (pp. 1-3), Chengdu, China. https://www.doi.org/10.1109/edtm50988.2021.9420889

An Informetric View to the Negative Capacitance Phenomenon at Interlayered Metal-Semiconductor Structures and Distinct Electronic Devices

Year 2023, Volume: 10 Issue: 4, 511 - 523, 31.12.2023
https://doi.org/10.54287/gujsa.1357391

Abstract

Negative Capacitance (NC) phenomenon, which can be explained as the material exhibiting an inductive behavior, is often referred to as "anomalous" or "abnormal" in the literature. Especially in the forward bias/deposition region, the presence of surface states (Nss) and their relaxation times (τ), series resistance (Rs), minority carrier injection, interface charge loss in occupied states under the Fermi energy level, parasitic inductance, or poor measuring equipment calibration problems can be counted among the causes of this phenomenon. Studies on NC behavior have shown that this behavior can be observed for different frequencies, temperatures, and related parameters at forward biases. However, the NC behavior, which appears as an unidentified peak in admittance spectroscopy data, is not yet fully understood. Ultimately, this study aims to compile and analyze the NC reported in selected scientific studies, investigate the source of this phenomenon, and observe statistics in a general view.

References

  • ., N., & Rarasati, D. B. (2022). Recommendation for Classification of News Categories Using Support Vector Machine Algorithm with SVD. Ultimatics : Jurnal Teknik Informatika, 13(2), 72-80. https://www.doi.org/10.31937/ti.v13i2.1854
  • Algarni, S. E., Qasrawi, A. F., & Khusayfan, N. M. (2022). Enhanced Optical and Electrical Interactions at the Pt/MgSe Interfaces Designed for 6G Communication Technology. Crystal Research and Technology, 58(1), 2200185. https://www.doi.org/10.1002/crat.202200185
  • Alsmael, J. A. M. , Urgun, N. , Tan, S. O. & Tecimer, H. (2022). Effectuality of the Frequency Levels on the C&G/ω–V Data of the Polymer Interlayered Metal-Semiconductor Structure. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 554-561. https://www.doi.org/10.54287/gujsa.1206332
  • Ashery, A. (2022). Novel Negative Capacitance Appeared in all Frequencies in Au/AlCu/SiO2/p-Si/Al Structure. Silicon, 14, 11061-11078. https://www.doi.org/10.1007/s12633-022-01850-0
  • Ashery, A., Gad, S. A., & Turky, G. M. (2021). Analysis of Electrical and Capacitance–Voltage of PVA/nSi. Journal of Electronic Materials, 50(6), 3498-3516. https://www.doi.org/10.1007/s11664-021-08867-y
  • Barkhordari, A., Altındal, Ş., E., Pirgholi-Givi, G., Mashayekhi, H., Özçelik, S., & Azizian-Kalandaragh, Y. (2022). The Influence of PVC and (PVC:SnS) Interfacial Polymer Layers on the Electric and Dielectric Properties of Au/n-Si Structure. Silicon, 15(2), 855-865. https://www.doi.org/10.1007/s12633-022-02044-4
  • Bisquert, J. (2011). A variable series resistance mechanism to explain the negative capacitance observed in impedance spectroscopy measurements of nanostructured solar cells. Physical Chemistry Chemical Physics, 13(10), 4679. https://www.doi.org/10.1039/c0cp02555k
  • Cheema, S. S., Shanker, N., Wang, L. C., Hsu, C.-H., Hsu, S.-L., Liao, Y.-H., San Jose, M., Gomez, J., Chakraborty, W., Li, W., Bae, J.-H., Volkman, S. K., Kwon, D., Rho, Y., Pinelli, G., Rastogi, R., Pipitone, D., Stull, C., Cook, M., Salahuddin, S. (2022). Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature, 604, 65-71. https://www.doi.org/10.1038/s41586-022-04425-6
  • Çakıcı, T., Ajjaq, A., Çağırtekin, A. O., Barin, Ö., Özdal, M., & Acar, S. (2023). Surface activation of Si-based Schottky diodes by bacterial biosynthesized AgInSe2 trimetallic alloy nanoparticles with evidenced negative capacitance and enhanced electro-dielectric performance. Applied Surface Science, 631, 157522. https://www.doi.org/10.1016/j.apsusc.2023.157522
  • Demirezen, S., & Yerişkin, S. A. (2021). Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. Journal of Materials Science: Materials in Electronics, 32, 25339-25349. https://www.doi.org/10.1007/s10854-021-06993-1
  • Ershov, M., Liu, H., Li, L., Buchanan, M., Wasilewski, Z., & Jonscher, A. (1998). Negative capacitance effect in semiconductor devices. IEEE Transactions on Electron Devices, 45(10), 2196-2206. https://www.doi.org/10.1109/16.725254
  • Hoffmann, M., Fengler, F. P. G., Herzig, M., Mittmann, T., Max, B., Schroeder, U., Negrea, R., Pintilie, L., Slesazeck, S., & Mikolajick, T. (2019). Unveiling the double-well energy landscape in a ferroelectric layer. Nature, 565, 464-467. https://www.doi.org/10.1038/s41586-018-0854-z
  • Hoffmann, M., Slesazeck, S., & Mikolajick, T. (2021a). Progress and future prospects of negative capacitance electronics: A materials perspective. APL Materials, 9(2), 020902. https://www.doi.org/10.1063/5.0032954
  • Hoffmann, M., Gui, M., Slesazeck, S., Fontanini, R., Segatto, M., Esseni, D., & Mikolajick, T. (2021b). Intrinsic Nature of Negative Capacitance in Multidomain Hf0.5Zr0.5O2‐Based Ferroelectric/Dielectric Heterostructures. Advanced Functional Materials, 32(2), 2108494. https://www.doi.org/10.1002/adfm.202108494
  • Iwashige, K., Toprasertpong, K., Takenaka, M., & Takagi, S. (2023). Effect of Hfx Zr1−x O2/Ge metal–ferroelectrics–insulator–semiconductor interfaces on polarization reversal behavior. Japanese Journal of Applied Physics, 62(SC), SC1093. https://www.doi.org/10.35848/1347-4065/acb829
  • Joly, R., Girod, S., Adjeroud, N., Grysan, P., & Polesel‐Maris, J. (2021). Evidence of negative capacitance and capacitance modulation by light and mechanical stimuli in pt/zno/pt schottky junctions. Sensors, 21(6), 2253. https://www.doi.org/10.3390/s21062253
  • Karataş, Ş. (2021). Temperature and voltage dependence C–V and G/ω–V characteristics in Au/n-type GaAs metal–semiconductor structures and the source of negative capacitance. Journal of Materials Science: Materials in Electronics, 32(1), 707-716. https://www.doi.org/10.1007/s10854-020-04850-1
  • Kaur, R., Arora, A., & Tripathi, S. K. (2020). Fabrication and characterization of metal insulator semiconductor Ag/PVA/GO/PVA/n-Si/Ag device. Microelectronic Engineering, 233, 111419. https://www.doi.org/10.1016/j.mee.2020.111419
  • Khan, A. I. (2015). Negative Capacitance for Ultra-low Power Computing. PhD Thesis, University of California, Berkeley.
  • Khosla, R., & Sharma, S. K. (2021). Integration of Ferroelectric Materials: An Ultimate Solution for Next-Generation Computing and Storage Devices. ACS Applied Electronic Materials, 3(7), 2862-2897. https://www.doi.org/10.1021/acsaelm.0c00851
  • Landauer, R. (1957). Electrostatic Considerations in BaTiO3 Domain Formation during Polarization Reversal. Journal of Applied Physics, 28(2), 227-234. https://www.doi.org/10.1063/1.1722712
  • Lee, H., & Yoon, Y. (2022). Simulation of Negative Capacitance Based on the Miller Model: Beyond the Limitation of the Landau Model. IEEE Transactions on Electron Devices, 69(1), 237-241. https://www.doi.org/10.1109/ted.2021.3124475
  • Li, J., Si, M., Qu, Y., Lyu, X., & Ye, P. D. (2021). Quantitative Characterization of Ferroelectric/Dielectric Interface Traps by Pulse Measurements. IEEE Transactions on Electron Devices, 68(3), 1214-1220. https://www.doi.org/10.1109/ted.2021.3053497
  • Liu, L., Lei, L., Lu, X., Xia, Y., Wu, Z., & Huang, F. (2023). Direct Measurement of Negative Capacitance in Ferroelectric/Semiconductor Heterostructures. ACS Applied Materials & Interfaces, 15(7), 10175-10181. https://www.doi.org/10.1021/acsami.2c19930
  • Luk’yanchuk, I., Tikhonov, Y., Sené, A., Razumnaya, A., & Vinokur, V. M. (2019). Harnessing ferroelectric domains for negative capacitance. Communications Physics, 2(22). https://www.doi.org/10.1038/s42005-019-0121-0
  • Merz, W. J. (1956). Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. Journal of Applied Physics, 27(8), 938-943. https://www.doi.org/10.1063/1.1722518
  • Migita, S., Ota, H., & Toriumi, A. (2019). Design points of ferroelectric field-effect transistors for memory and logic applications as investigated by metal-ferroelectric-metal-insulator-semiconductor gate stack structures using Hf0.5Zr0.5O2 films. Japanese Journal of Applied Physics, 58(SL), SLLB06. https://www.doi.org/10.7567/1347-4065/ab389b
  • Noh, Y. S., Chatterjee, S., Nandi, S., Samanta, S. K., Maiti, C. K., Maikap, S., & Choi, W. K. (2003). Characteristics of MIS capacitors using Ta2O5 films deposited on ZnO/p-Si. Microelectronic Engineering, 66(1-4), 637-642. https://www.doi.org/10.1016/s0167-9317(02)00976-0
  • Park, H. W., Roh, J., Lee, Y. B., & Hwang, C. S. (2019). Modeling of Negative Capacitance in Ferroelectric Thin Films. Advanced Materials, 31(32), 1805266. https://www.doi.org/10.1002/adma.201805266
  • Poklonski, N. A., Kovalev, A. I., Usenko, K. V., Ermakova, E. A., Gorbachuk, N. I., & Lastovski, S. B. (2023). Inductive Type Impedance of Mo/n-Si Barrier Structures Irradiated with Alpha Particles. Devices and Methods of Measurements, 14(1), 38-43. https://www.doi.org/10.21122/2220-9506-2023-14-1-38-43
  • Saghrouni, H., Jomni, S., Belgacem, W., Elghoul, N., & Beji, L. (2015). Temperature dependent electrical and dielectric properties of a metal/Dy2O3/n-GaAs (MOS) structure. Materials Science in Semiconductor Processing, 29, 307-314. https://www.doi.org/10.1016/j.mssp.2014.05.039
  • Salahuddin, S., & Datta, S. (2008). Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Letters, 8(2), 405-410. https://www.doi.org/10.1021/nl071804g
  • Segatto, M., Fontanini, R., Driussi, F., Lizzit, D., & Esseni, D. (2022). Limitations to Electrical Probing of Spontaneous Polarization in Ferroelectric-Dielectric Heterostructures. IEEE Journal of the Electron Devices Society, 10, 324-333. https://www.doi.org/10.1109/jeds.2022.3164652
  • Senapati, A., Roy, S., Lin, Y. F., Dutta, M., & Maikap, S. (2020). Oxide-Electrolyte Thickness Dependence Diode-Like Threshold Switching and High on/off Ratio Characteristics by Using Al2O3 Based CBRAM. Electronics, 9(7), 1106. https://www.doi.org/10.3390/electronics9071106
  • Song, J., Qi, Y., Xiao, Z., Wang, K., Li, D., Kim, S. H., Kingon, A. I., Rappe, A. M., & Hong, X. (2022). Domain wall enabled steep slope switching in MoS2 transistors towards hysteresis-free operation. Npj 2D Materials and Applications, 6, 77. https://www.doi.org/10.1038/s41699-022-00353-1
  • Tade, O. O., Gardner, P., & Hall, P. S. (2012). Negative impedance converters for broadband antenna matching. In: Proceedings of the 42nd European Microwave Conference, Amsterdam, Netherlands, (pp. 613-616). https://www.doi.org/10.23919/eumc.2012.6459295
  • Tan, S. O., Tecimer, H. U., Çiçek, O., Tecimer, H., & Altındal. (2016). Frequency dependent C–V and G/ω–V characteristics on the illumination-induced Au/ZnO/n-GaAs Schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 28, 4951-4957. https://www.doi.org/10.1007/s10854-016-6147-0
  • Yadav, A. K., Nguyen, K. X., Hong, Z., García-Fernández, P., Aguado-Puente, P., Nelson, C. T., Das, S., Prasad, B., Kwon, D., Cheema, S., Khan, A. I., Hu, C., Íñiguez, J., Junquera, J., Chen, L. Q., Muller, D. A., Ramesh, R., & Salahuddin, S. (2019). Spatially resolved steady-state negative capacitance. Nature, 565, 468-471. .doi.org/10.1038/s41586-018-0855-y
  • Zhang, Y., Ma, X., Wang, X., Xiang, J., & Wang, W. (2021). Revisiting the definition of ferroelectric negative capacitance based on Gibbs free energy. In: Proceedings of the 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), (pp. 1-3), Chengdu, China. https://www.doi.org/10.1109/edtm50988.2021.9420889
There are 39 citations in total.

Details

Primary Language English
Subjects Semiconductors
Journal Section Electronics, Sensors and Digital Hardware
Authors

Nuray Urgun 0000-0001-6574-4287

Jaafar Alsmael 0000-0002-2426-9421

Serhat Orkun Tan 0000-0001-6184-5099

Early Pub Date December 13, 2023
Publication Date December 31, 2023
Submission Date September 8, 2023
Published in Issue Year 2023 Volume: 10 Issue: 4

Cite

APA Urgun, N., Alsmael, J., & Tan, S. O. (2023). An Informetric View to the Negative Capacitance Phenomenon at Interlayered Metal-Semiconductor Structures and Distinct Electronic Devices. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), 511-523. https://doi.org/10.54287/gujsa.1357391