Research Article
BibTex RIS Cite

Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode

Year 2024, Volume: 8 Issue: 1, 52 - 64, 31.03.2024
https://doi.org/10.30939/ijastech..1315759

Abstract

HSLA steels are widely preferred in the automotive industry due to their advantages of high strength, lightening of vehicle weight and formability. The fact that a lot of welding processes are carried out during the creation of the vehicle body has made the welding operations of these steels an important topic. In this study, zinc coated HX340LAD+Z sheet material was welded by RSW application in factory conditions. The welding opera-tion was carried out with different current intensities and 300 spot welds for three different electrodes, keeping the weld duration constant. After the welding trials, the shortening of the electrodes was examined and information about the electrode lifetime was obtained. The weld core diameter was measured on the sheet metal also microstructure and micro-hardness investigations were made. As a result of the findings, information was obtained about weld hardness and collapse. Determination of splashing in the HX340LAD+Z ma-terial was provided by SEM imaging and EDX studies. It was determined that F type Copper electrode was more efficient.

References

  • [1] Lesch C, Kwi̇aton N, Klose FB. Advanced high strength steels (ahss) for automotive applications − tailored properties by smart microstructural adjustments. Steel Research Internation-al. 2017;88(10):1700210. https://doi.org/10.1002/srin.201700210
  • [2] Kuzi̇ak R, Waengler RK&S. Advanced high strength steels for automotive industry. Archi̇ves Of Ci̇vi̇l And Mechani̇cal Engi̇neeri̇ng. 2008;8:103-117. https://doi.org/10.1016/S1644-9665(12)60197-6
  • [3] Beardmore P. The potential for high strength steels in the u.s. automotive industry. Materi̇als & Desi̇gn. 1981;2(5):250-259. https://doi.org/10.1016/0261-3069(81)90068-6
  • [4] Galán J, Samek L, Verleysen P, Verbeken K, Houbaert Y. Advanced high strength steels for automotive industry. Re-vi̇sta De Metalurgi̇a. 2012;48(2):118-131. https://doi.org/10.3989/revmetalm.1158
  • [5] Pouranvari̇ M, Ranjbarnoodeh E. Failure mode of hsla/dqsk dissimilar steel resistance spot welds. Ironmaking & Steelmaki̇ng. 2013;40(4):276-281. https://doi.org/10.1179/1743281212Y.0000000044
  • [6] Raut M, Achwal V. Optımızatıon of spot weldıng processpa-rameters for maxımum tensıle strength. İnternati̇onal Journal Of Mechani̇cal Engi̇neeri̇ng And Roboti̇cs Research. 2014;3(4):506-517. https://doi.org/10.18178/ijmerr
  • [7] Pouranvari̇ M, Asgari̇ HR, Mosavi̇zadch SM, Marashi̇ PH, Goodarzi̇ M. Effect of weld nugget size on overload failure mode of resistance spot welds. Science and Technology of Welding and Joining. 2013;12(3):217-225. https://doi.org/10.1179/174329307X164409
  • [8] Wei̇ P, Wu T, Chen L. Joint quality affected by electrode con-tact condition during resistance spot welding. İeee Transac-ti̇ons On Components, Packagi̇ng And Manufacturing Tech-nology. 2013; 3(12):2164 - 2173. https://doi.org/10.1109/TCPMT.2013.2284497
  • [9] Xi̇ng B, Yan S, Zhou H, Chen H, Qi̇n QH. Qualitative and quantitative analysis of misaligned electrode degradation when welding galvannealed steel. The İnternati̇onal Journal of Advanced Manufacturi̇ng Technology. 2018;97:629-640. https://doi.org/10.1007/s00170-018-1958-1
  • [10] Gulyaev AP, Sarmanova LM. High-temperature plasticity of carbon steels. Metal Sci̇ence And Heat Treatment. 1972;14:329-332. https://doi.org/10.1007/BF00657023
  • [11] Rezaei̇an A, Keshavarz M, EH. Mechanical properties of steel welds at elevated temperatures. Journal of Constructi̇onal Steel Research. 2020;167:105853. https://doi.org/10.1016/j.jcsr.2019.105853
  • [12] Vi̇ňáš J, Kaščák Ľ, Greš M. Optimization of resistance spot welding parameters for microalloyed steel sheets. Open Engi̇neeri̇ng. 2016;6(1):504-510. https://doi.org/10.1515/eng-2016-0069
  • [13] Vural M, Akkuş A, Eryürek B. Effect of welding nugget diameter on the fatigue strength of the resistance spot welded joints of different steel sheets. Journal of Materi̇als Processi̇ng Technology. 2006;176(1-3):127-132. https://doi.org/10.1016/j.jmatprotec.2006.02.026
  • [14] Arghavani̇ M, Movahedi̇ M, Kokabi̇ A. Role of zinc layer in resistance spot welding of aluminium to steel. Materi̇als & De-si̇gn. 2016;102:106-104. https://doi.org/10.1016/j.matdes.2016.04.033
  • [15] Buschow K.H.J. Encyclopedia of materials. Science and technology. Elsevier; 2001
  • [16] Huh, D. Electrode Life and Weldability Improvement in Re-sistance Spot Welding of DP600 [Master's thesis]. University of Waterloo; 2017.
  • [17] Yi̇ F, Deli̇si̇o JB, Nguyen N, Zachari̇ah MR, Lavan DA. High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry. Chemi̇cal Physi̇cs Letters. 2017;689:26-29. https://doi.org/10.1016/j.cplett.2017.09.066
Year 2024, Volume: 8 Issue: 1, 52 - 64, 31.03.2024
https://doi.org/10.30939/ijastech..1315759

Abstract

References

  • [1] Lesch C, Kwi̇aton N, Klose FB. Advanced high strength steels (ahss) for automotive applications − tailored properties by smart microstructural adjustments. Steel Research Internation-al. 2017;88(10):1700210. https://doi.org/10.1002/srin.201700210
  • [2] Kuzi̇ak R, Waengler RK&S. Advanced high strength steels for automotive industry. Archi̇ves Of Ci̇vi̇l And Mechani̇cal Engi̇neeri̇ng. 2008;8:103-117. https://doi.org/10.1016/S1644-9665(12)60197-6
  • [3] Beardmore P. The potential for high strength steels in the u.s. automotive industry. Materi̇als & Desi̇gn. 1981;2(5):250-259. https://doi.org/10.1016/0261-3069(81)90068-6
  • [4] Galán J, Samek L, Verleysen P, Verbeken K, Houbaert Y. Advanced high strength steels for automotive industry. Re-vi̇sta De Metalurgi̇a. 2012;48(2):118-131. https://doi.org/10.3989/revmetalm.1158
  • [5] Pouranvari̇ M, Ranjbarnoodeh E. Failure mode of hsla/dqsk dissimilar steel resistance spot welds. Ironmaking & Steelmaki̇ng. 2013;40(4):276-281. https://doi.org/10.1179/1743281212Y.0000000044
  • [6] Raut M, Achwal V. Optımızatıon of spot weldıng processpa-rameters for maxımum tensıle strength. İnternati̇onal Journal Of Mechani̇cal Engi̇neeri̇ng And Roboti̇cs Research. 2014;3(4):506-517. https://doi.org/10.18178/ijmerr
  • [7] Pouranvari̇ M, Asgari̇ HR, Mosavi̇zadch SM, Marashi̇ PH, Goodarzi̇ M. Effect of weld nugget size on overload failure mode of resistance spot welds. Science and Technology of Welding and Joining. 2013;12(3):217-225. https://doi.org/10.1179/174329307X164409
  • [8] Wei̇ P, Wu T, Chen L. Joint quality affected by electrode con-tact condition during resistance spot welding. İeee Transac-ti̇ons On Components, Packagi̇ng And Manufacturing Tech-nology. 2013; 3(12):2164 - 2173. https://doi.org/10.1109/TCPMT.2013.2284497
  • [9] Xi̇ng B, Yan S, Zhou H, Chen H, Qi̇n QH. Qualitative and quantitative analysis of misaligned electrode degradation when welding galvannealed steel. The İnternati̇onal Journal of Advanced Manufacturi̇ng Technology. 2018;97:629-640. https://doi.org/10.1007/s00170-018-1958-1
  • [10] Gulyaev AP, Sarmanova LM. High-temperature plasticity of carbon steels. Metal Sci̇ence And Heat Treatment. 1972;14:329-332. https://doi.org/10.1007/BF00657023
  • [11] Rezaei̇an A, Keshavarz M, EH. Mechanical properties of steel welds at elevated temperatures. Journal of Constructi̇onal Steel Research. 2020;167:105853. https://doi.org/10.1016/j.jcsr.2019.105853
  • [12] Vi̇ňáš J, Kaščák Ľ, Greš M. Optimization of resistance spot welding parameters for microalloyed steel sheets. Open Engi̇neeri̇ng. 2016;6(1):504-510. https://doi.org/10.1515/eng-2016-0069
  • [13] Vural M, Akkuş A, Eryürek B. Effect of welding nugget diameter on the fatigue strength of the resistance spot welded joints of different steel sheets. Journal of Materi̇als Processi̇ng Technology. 2006;176(1-3):127-132. https://doi.org/10.1016/j.jmatprotec.2006.02.026
  • [14] Arghavani̇ M, Movahedi̇ M, Kokabi̇ A. Role of zinc layer in resistance spot welding of aluminium to steel. Materi̇als & De-si̇gn. 2016;102:106-104. https://doi.org/10.1016/j.matdes.2016.04.033
  • [15] Buschow K.H.J. Encyclopedia of materials. Science and technology. Elsevier; 2001
  • [16] Huh, D. Electrode Life and Weldability Improvement in Re-sistance Spot Welding of DP600 [Master's thesis]. University of Waterloo; 2017.
  • [17] Yi̇ F, Deli̇si̇o JB, Nguyen N, Zachari̇ah MR, Lavan DA. High heating rate decomposition dynamics of copper oxide by nanocalorimetry-coupled time-of-flight mass spectrometry. Chemi̇cal Physi̇cs Letters. 2017;689:26-29. https://doi.org/10.1016/j.cplett.2017.09.066
There are 17 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Resul Önder Temiz 0000-0002-7918-5938

Mert Onan 0000-0002-8793-8215

Halit Cebi 0000-0002-1062-8948

Salim Aslanlar 0000-0001-6676-110X

Şükrü Talaş 0000-0002-4721-0844

Publication Date March 31, 2024
Submission Date June 16, 2023
Acceptance Date December 31, 2023
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Temiz, R. Ö., Onan, M., Cebi, H., Aslanlar, S., et al. (2024). Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode. International Journal of Automotive Science And Technology, 8(1), 52-64. https://doi.org/10.30939/ijastech..1315759
AMA Temiz RÖ, Onan M, Cebi H, Aslanlar S, Talaş Ş. Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode. ijastech. March 2024;8(1):52-64. doi:10.30939/ijastech.1315759
Chicago Temiz, Resul Önder, Mert Onan, Halit Cebi, Salim Aslanlar, and Şükrü Talaş. “Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode”. International Journal of Automotive Science And Technology 8, no. 1 (March 2024): 52-64. https://doi.org/10.30939/ijastech. 1315759.
EndNote Temiz RÖ, Onan M, Cebi H, Aslanlar S, Talaş Ş (March 1, 2024) Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode. International Journal of Automotive Science And Technology 8 1 52–64.
IEEE R. Ö. Temiz, M. Onan, H. Cebi, S. Aslanlar, and Ş. Talaş, “Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode”, ijastech, vol. 8, no. 1, pp. 52–64, 2024, doi: 10.30939/ijastech..1315759.
ISNAD Temiz, Resul Önder et al. “Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode”. International Journal of Automotive Science And Technology 8/1 (March 2024), 52-64. https://doi.org/10.30939/ijastech. 1315759.
JAMA Temiz RÖ, Onan M, Cebi H, Aslanlar S, Talaş Ş. Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode. ijastech. 2024;8:52–64.
MLA Temiz, Resul Önder et al. “Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode”. International Journal of Automotive Science And Technology, vol. 8, no. 1, 2024, pp. 52-64, doi:10.30939/ijastech. 1315759.
Vancouver Temiz RÖ, Onan M, Cebi H, Aslanlar S, Talaş Ş. Effect of Electrode Type and Weld Current on Service Life of Resistance Spot Weld Electrode. ijastech. 2024;8(1):52-64.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png