Short Communication
BibTex RIS Cite
Year 2016, Volume: 1 Issue: 1, 18 - 23, 01.10.2016
https://doi.org/10.26833/ijeg.285221

Abstract

References

  • Banarjee, P., Foulger, G.R., Satyaprakash, Dabral, C.P. (1999). Geoid undulation modelling and interpretation at Ladak, NW Himalaya using GPS and levelling data. Journal of Geodesy, 73, 79-86.
  • Erol, B., Sideris, M.G., Celik, R.N. (2009). Comparison of global geopotential models from the champ and grace missions for regional geoid modelling in Turkey. Studia Geophysica et Geodaetica, 53, 419-441.
  • Fecher, T., Pail, R., Gruber, T. and the GOCO Project Team. (2016). The combined satellite gravity field model GOCO05C. EGU General Assembly, 17-22 April, Vienna, Austria, Geophysical Research Abstracts, 18 (EGU2016-7696).
  • Förste, C., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer, K.H., Biancale, R., Lemoine, J.-M., Barthelmes, F., Bruinsma, S., König, R., Meyer, U. (2008). EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03426, SRef-ID: 1607-7962/gra/EGU2008-A-03426, 2008.
  • Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R. (2015). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://dx.doi.org/10.5880/icgem.2015.1.
  • Gilardoni, M., Reguzzoni, M., Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60, 228-247.
  • Heiskanen, W.A., Moritz, H. (1967). Physical Geodesy.W.H. Freeman, San Francisco.
  • Kiamehr, R., Sjöberg, L.E. (2005). Comparison of the qualities of recent global and local gravimetric geoid models in Iran. Studia Geophysica et Geodaetica, 49, 289-304.
  • Kilicoglu, A., Direnc, A., Yildiz, H., Bolme, M., Aktug, B., Simav, M., Lenk, O. (2011). Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Studia Geophysica et Geodaetica, 55, 557-578.
  • Kotsakis, C. (2008). Transforming ellipsoidal heights and geoid undulations between different geodetic reference frames. Journal of Geodesy, 82, 249-260.
  • Mainville, A., Forsberg, R., Sideris, M.G. (1992). Global positioning system testing of geoids computed from geopotential model and local gravity data: a case study. Journal of Geophysical Research, 97 (B7), 11137-11147.
  • Pavlis, N.K., Holmes, S.A., Kenyon S.C., Factor J.K. (2008). An earth gravitational model to degree 2160: EGM2008. General Assembly of the European Geosciences Union, 13-18 April, Vienna, Austria.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406, doi: 10.1029/2011JB008916.
  • Rapp, R.H. (1997). Past and future developments in geopotential modelling, in: Forsberg, R, Feissl, M., Dietrich, R. (Eds.) Geodesy on the Move, Springer, Berlin, pp. 58-78.
  • Ries, J., Bettadpur, S., Eanes, R., Kang, Z., Ko, U., McCullough, C., Nagel, P., Pie, N., Poole, S., Richter, T., Save, H., Tapley, B. (2016). The combined gravity model GGM05C. http://dx.doi.org/10.5880/icgem.2016.002.
  • Rummel, R., Balmino, G., Johannessen, ., Visser, P., Woodworth, P. (2002). Dedicated gravity field missions-principles and aims. Journal of Geodynamics, 33, 3-20.
  • Tenzer, R., Vanicek, P., Santos, M., Featherstone, W.E., Kuhn, M. (2005). The rigorous determination of orthometric heights. Journal of Geodesy, 79, 82-92.

Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region

Year 2016, Volume: 1 Issue: 1, 18 - 23, 01.10.2016
https://doi.org/10.26833/ijeg.285221

Abstract

Global geopotential models of spherical
harmonic coefficients are used to determine the external gravitational field of
the Earth. These coefficients are derived from satellite orbit perturbations,
terrestrial gravity anomalies and altimeter data. Hundreds of thousands of
coefficients and standard deviation values for these coefficients are estimated
from millions of observation. Measurement amount, homogenous distribution of
the measurements of global scale, different measurement types reflecting the
different frequencies of the gravity signal and measuring-assessment techniques
affect the model accuracy directly. Starting from 1960’s and lasts to the
present day and also gaining new acceleration with the satellite gravity field
missions, every outcome of the studies related to the determination of the
global Geopotential model is experienced by a series of validation tests.
Accuracy of the model can either be determined from the estimated error degree
variances concerning the coefficients (interior validation) or comparison of
geoid heights, gravity anomalies, gravity disturbances and components of
vertical deflection calculated from the model with terrestrial measurements
directly (outer validation). In this paper, recent global geopotential models
are primarily explained. Global geopotential models are compared with GNSS/levelling
data of the study area. The objective of this comparison is to determine the
best fit global geopotential model which will contribute to the study of
Turkish geoid determination.

References

  • Banarjee, P., Foulger, G.R., Satyaprakash, Dabral, C.P. (1999). Geoid undulation modelling and interpretation at Ladak, NW Himalaya using GPS and levelling data. Journal of Geodesy, 73, 79-86.
  • Erol, B., Sideris, M.G., Celik, R.N. (2009). Comparison of global geopotential models from the champ and grace missions for regional geoid modelling in Turkey. Studia Geophysica et Geodaetica, 53, 419-441.
  • Fecher, T., Pail, R., Gruber, T. and the GOCO Project Team. (2016). The combined satellite gravity field model GOCO05C. EGU General Assembly, 17-22 April, Vienna, Austria, Geophysical Research Abstracts, 18 (EGU2016-7696).
  • Förste, C., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer, K.H., Biancale, R., Lemoine, J.-M., Barthelmes, F., Bruinsma, S., König, R., Meyer, U. (2008). EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03426, SRef-ID: 1607-7962/gra/EGU2008-A-03426, 2008.
  • Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R. (2015). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://dx.doi.org/10.5880/icgem.2015.1.
  • Gilardoni, M., Reguzzoni, M., Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60, 228-247.
  • Heiskanen, W.A., Moritz, H. (1967). Physical Geodesy.W.H. Freeman, San Francisco.
  • Kiamehr, R., Sjöberg, L.E. (2005). Comparison of the qualities of recent global and local gravimetric geoid models in Iran. Studia Geophysica et Geodaetica, 49, 289-304.
  • Kilicoglu, A., Direnc, A., Yildiz, H., Bolme, M., Aktug, B., Simav, M., Lenk, O. (2011). Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Studia Geophysica et Geodaetica, 55, 557-578.
  • Kotsakis, C. (2008). Transforming ellipsoidal heights and geoid undulations between different geodetic reference frames. Journal of Geodesy, 82, 249-260.
  • Mainville, A., Forsberg, R., Sideris, M.G. (1992). Global positioning system testing of geoids computed from geopotential model and local gravity data: a case study. Journal of Geophysical Research, 97 (B7), 11137-11147.
  • Pavlis, N.K., Holmes, S.A., Kenyon S.C., Factor J.K. (2008). An earth gravitational model to degree 2160: EGM2008. General Assembly of the European Geosciences Union, 13-18 April, Vienna, Austria.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406, doi: 10.1029/2011JB008916.
  • Rapp, R.H. (1997). Past and future developments in geopotential modelling, in: Forsberg, R, Feissl, M., Dietrich, R. (Eds.) Geodesy on the Move, Springer, Berlin, pp. 58-78.
  • Ries, J., Bettadpur, S., Eanes, R., Kang, Z., Ko, U., McCullough, C., Nagel, P., Pie, N., Poole, S., Richter, T., Save, H., Tapley, B. (2016). The combined gravity model GGM05C. http://dx.doi.org/10.5880/icgem.2016.002.
  • Rummel, R., Balmino, G., Johannessen, ., Visser, P., Woodworth, P. (2002). Dedicated gravity field missions-principles and aims. Journal of Geodynamics, 33, 3-20.
  • Tenzer, R., Vanicek, P., Santos, M., Featherstone, W.E., Kuhn, M. (2005). The rigorous determination of orthometric heights. Journal of Geodesy, 79, 82-92.
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Yilmaz This is me

Bayram Turgut This is me

Mevlüt Gullu This is me

İbrahim Yilmaz

Publication Date October 1, 2016
Published in Issue Year 2016 Volume: 1 Issue: 1

Cite

APA Yilmaz, M., Turgut, B., Gullu, M., Yilmaz, İ. (2016). Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region. International Journal of Engineering and Geosciences, 1(1), 18-23. https://doi.org/10.26833/ijeg.285221
AMA Yilmaz M, Turgut B, Gullu M, Yilmaz İ. Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region. IJEG. October 2016;1(1):18-23. doi:10.26833/ijeg.285221
Chicago Yilmaz, Mustafa, Bayram Turgut, Mevlüt Gullu, and İbrahim Yilmaz. “Evaluation of Recent Global Geopotential Models by GNSS/Levelling Data: Internal Aegean Region”. International Journal of Engineering and Geosciences 1, no. 1 (October 2016): 18-23. https://doi.org/10.26833/ijeg.285221.
EndNote Yilmaz M, Turgut B, Gullu M, Yilmaz İ (October 1, 2016) Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region. International Journal of Engineering and Geosciences 1 1 18–23.
IEEE M. Yilmaz, B. Turgut, M. Gullu, and İ. Yilmaz, “Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region”, IJEG, vol. 1, no. 1, pp. 18–23, 2016, doi: 10.26833/ijeg.285221.
ISNAD Yilmaz, Mustafa et al. “Evaluation of Recent Global Geopotential Models by GNSS/Levelling Data: Internal Aegean Region”. International Journal of Engineering and Geosciences 1/1 (October 2016), 18-23. https://doi.org/10.26833/ijeg.285221.
JAMA Yilmaz M, Turgut B, Gullu M, Yilmaz İ. Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region. IJEG. 2016;1:18–23.
MLA Yilmaz, Mustafa et al. “Evaluation of Recent Global Geopotential Models by GNSS/Levelling Data: Internal Aegean Region”. International Journal of Engineering and Geosciences, vol. 1, no. 1, 2016, pp. 18-23, doi:10.26833/ijeg.285221.
Vancouver Yilmaz M, Turgut B, Gullu M, Yilmaz İ. Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region. IJEG. 2016;1(1):18-23.

Cited By