Research Article
BibTex RIS Cite

Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu / Polyvinyl pyrrolidone (PVP) Nanoyüzeylerin Elektrospinning Tekniği İle Elde Edilmesi Ve Karakterizasyonu

Year 2018, Volume: 21 Issue: 3, 184 - 194, 23.10.2018
https://doi.org/10.17780/ksujes.382282

Abstract

Bu çalışmada, yüksek iletkenlik özelliğine sahip çok hafif
ve çok mukavemetli bir madde olan grafen, sıvılaştırılmış Fındık Kabuğu /
Polyvinyl pyrrolidone (PVP)  karışımına
katılarak Elektrospinning tekniği ile nano yüzeyler  elde edilmiştir. Önce fındık kabuğu, fenol
(phenol) ve diğer kimyasallarla muamele edilerek sıvılaştırılmış (Liquefied
hazelnut shell, LHS), daha sonra etanol ile çözelti haline getirilen PVP ile
sıvılaştırılmış fındık kabuğu  çözeltisi
belli oranlarda grafen ile katkılandırılarak 
homojen karışım elde edilmiştir. Elde edilen homojen karışımdan yarı
endüstriyel elektrospinning cihazında nanolifli yüzeyler (nano malzemeler)
üretilmiştir. Üretilen nano yüzeylerin yapısal, morfolojik, termal ve
elektriksel özellikleri incelenmiştir. Grafen oksit, grafen, grafen/fındık
kabuğu, grafen pvp, grafen/fındık kabuğu/PVP örnekleri SEM, EDX, FTIR, Zeta
Potansiyeli ve Raman analizleri ile karakterize edilmiştir.
Manuscript Template

References

  • KAYNAKLAR Sengupta R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K. (2011). A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36: 5 638–670.
  • Topçu, A. A.( 2012). A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation. Master of Science, Koç University, Material Science and Engineering, İstanbul.
  • Karteri, İ., Karataş, Ş., Yakuphanoğlu, F. (2014). Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor, Applied Surface Science, 318, 74-78.
  • Karteri, İ., Karataş, Ş., Al-Ghamdi, A., Yakuphanoğlu, F. (2015). The electrical characteristics of thin film transistors with graphene oxide and organic ınsulators. Synthetic Metals, 199, 241–245.
  • Yazıcı M. (Yürütücü) (2017). Elektromanyetik Kalkanlama Amaçlı Grafen Katkılı Spunbond ve Meltblown Tekstil Yüzeylerinin Üretilmesi ve Grafenin Kalkanlanma Verimine Etkisinin Araştırılması, Tübitak Proje No: 114M527.
  • Song, J., Wang, X., Chang, C.T. (2014). Preparation and characterization of graphene oxide. Journal of Nanomaterials, Artical ID 276143. Park, S., Ruoff, R. (2009). Chemical methods for the production of graphene. Nature Nanotechnology, 4, 217-224.
  • Wang, Q., Du,Y., Feng, Q., Huang, F., Lu, K., Lui, J., Wei, Q. (2013). Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibres by electrospinning. Journal of Applied Polymer Science, 128,1152-1156.
  • Ji, X., Cui, L., Xu,Y., Liu, J. (2015). Non-covalent interactions for synthesis of new graphene based composites. Composites Science And Technology, 106, 25-31.
  • Song, N., Yang, J., Ding, P., Tang, S., Liu,Y., Shi, L. (2014). Effect of covalent-functionalized graphene oxide with polymer and reactive compatibilization on thermal properties of maleic anhydride grafted polypropylene. Industrial & Engineering Chemistry Research, 53:51, 19951−19960.
  • Yuan, B., Bao, C., Song, L., Hong, N., Liew, K.M., Hu, Y.(2014). Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly ımproved thermal stability and studies on the crystallization behavior and mechanical properties. Chemical Engineering Journal, 237, 411-420.
  • Kim, H., Abdala, A.A., Macosko, C.W.(2010). Graphene/Polymer nanocomposites. Macromolecules, 43:16 6515–6530.
  • Menchaca-Campos, C., García-Pérez, C., Castañeda,I., García-Sánchez, M.A., Guardián, R., Uruchurtu,J. (2013). Nylon/Graphene oxide electrospun composite coating. Hindawi Publishing Corporation, International Journal of Polymer Science, Article ID 621618.
  • Marcano, D.C., Kosynkin, D.V., Berlin., J.M., Sinitskii, A., Sun,Z., Slesarev, A., Alemany, L.B., Lu,W., Tour, J.M. (2010) Improved synthesis of graphene oxide. Amercan Chemical Society ACS Nano, 4: 8, 4806-4814.
  • Arbuzov, A.A., Tarasov, B.P., Muradyan, V.E. (2012). Synthesis of few-layer graphene sheets via chemical and thermal reduction of graphite oxide. Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State University Publishing. Sumy, Ukraine,
  • Hu, X., Yu,Y., Wang,Y., Zhou,J., Song, L. (2015). Separating NanoGraphene Oxide From The Residual Strong-Acid Filtrate of The Modified Hummers Method With Alkaline Solution. Applied Surface Science, 329, 83-86.
  • Çallıoğlu, F. (2013).Silindirli Elektro Lif Çekim Yöntemi ile Nano Lif Üretimi, Journal of Textiles & Engineers/Tekstil ve Mühendis, 20, 91
  • Bhardwaj, N., Kundu,S. C. (2010). 19. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.
  • Andrady, A. L. (2008). Science and Technology of Polymer Nanofibers. ISBN: 978-0-471-79059-4. Wei,Y.P., Cheng,F., Li,H.P., Yu,J.G. (2004). Synthesis and properties of polyurethane resins based on liquefied wood. J. Appl. Polym. Sci., 92, 351–356.
  • Kishi, H., Fujita, A., Miyazaki, H., Matsuda, S., Murakami, A. (2006). Synthesis of wood based epoxy resins and therir mechanical and adhesive properties. J. Appl. Polym. Sci., 102, 2285-2291.
  • Lin,L., Yoshioka,M., Yao,Y., Shiraishi, N. (1994). Liquefaction of Wood in the Presence of Phenol Using Phosphoric Acid as a Catalyst and the Flow Properties of the Liquefied Wood. Journal of Applied Polymer Science, 52. 1629-1636.
  • Lin, L., Yoshioka,M., Yao, Y., Shiraishi,N. (1995). Preparation and properties of phenolated wood/phenol/formaldehyde co-condensed resin. J. Appl. Polym. Sci., 58, 1297-1304.
  • Alma, M.H., Maldas, D., Shiraishi, N. (1998). Liquefaction of several biomass wastes into phenol in the presence of various alkalis and metallic salts as catalysts, Journal of Polymer Engineering, 18, 162-177.
  • Kobayashi, M., Asano, T., Kajiyama, M., Tomita, B.J. (2004). Analysis on residue formation during wood liquefaction with polyhydric alcohol. Wood Sci., 50, 407-414.
  • Kunaver, M., Jasiukaityte, E., Cˇuk,N., Guthrie, J.T. (2010). Liquefaction of Wood, Synthesis and characterisation of Liquefied Wood Polyester Derivative. J. Appl. Polym. Sci., 115, 1265-1271.
  • Krzˇan, A., Kunaver, M., Tisˇler,V. (2005). Wood Liquefaction Using Dibasic Organic Acids and Glycols. Acta Chim. Slov., 52, 253-258.
  • Zhang, T., Zhou,Y., Liu,D., . Petrus, L. (2007).Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454-1459.
  • Yao,Y., Yoshioko,M., Shiraishi, N. (1996). Water-Absorbing Polyuerthane Foams From Liqufied Starch, J. Appl. Polym. Sci., 60, 1939-1949.
  • Lee,S.H., Teramoto, Y., Shiraishi, N. (2002). Biodegradable Polyurethane Foam from Liquefied Waste Paper and Its Thermal Stability, Biodegradability, and Genotoxicity. J. Appl. Polym. Sci., 83, 1482-1489.
  • Shiraishi,N., Kajita,H., Norimoto, M. (Eds), (1993). Recent Research on Wood and Wood-Based Materials. Elsevier Applied Science, London, ISBN: 978-1-4831-7821-9, 1-85861-004-4.
  • Alma, M.H., Yoshioka, M., Yao,Y., Shiraishi, N. (1995). Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials, Wood Sci. Technol., 30, 39-47. Alma, M.H., Shiraishi, N. (1997). Preparatıon Of Sulfurıc Acıd-Catalyzed Phenolated Wood Resın. J. Polym. Eng., 18, 179-196.
  • Alma, M.H., Yoshioka, M., Yao, Y., Shiraishi, N. (1996). The Preparation and Flow Properties of HC1 Catalyzed Phenolated Wood and its Blends with Commercial Novolak Resin. Holzforschung, 50, 85–90.
  • Lin, L. (1996). PhD Thesis, Kyoto University, Kyoto, Japan,
  • Alma, M.H., Maldas, D., Shiraishi, N. (1997). Lıquefactıon of Several Bıomass Wastes Into Phenol In The Presence Of Varıous Alkalıs And Metallıc Salts As Catalysts. J. Polym. Eng. 18, 161–178.
  • Emsley, A.M., Stevens, G.C. (1994). Kinetics and mechanisms of the low temperature degradation of cellulose. Cellulose, 1: 1, 26–56.
  • Shahriary, L., Athawale, A.A. (2014), Graphene oxide synthesized by using modified hummers approach. Intenational Journal of Renewable Energy and Environmental Engineering, 02: 01, 58-63.
  • Zhou Y., Bao Q., Tang,L.A.L., Zhong,Y., Loh, K.P. (2009). Hydrothermal dehydration for the “green” reduced of exfoliated grephene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 21: 13, 2950-2956.
  • Ryu,S.H., Shanmugharaj, A.M. (2014).Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isostatic polypropylene nanocomposites. Chemical Engineering Journal, 244, 552-560.
  • Ferrari, A.C. (2007), Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143: 1, 47-57.
  • Chen,W., Yan, L., Bangal,P.R. (2010). Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. The Journal of Physical Chemistry C, 114: 47, 19885-19890.
  • Karteri,İ., Karataş, Ş., Yakuphanoğlu, F. (2014).Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor. Applied Surface Science, 318, 74-78.
  • Song, J., Wang, X., Chang, C.T. (2014). Preparation and characterization of graphene oxide. Journal of Nanomaterials, Artical ID 276143, 6.
  • Loryuenyong,V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., Buasri, A. (2013).Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Hindawi-Advances In Materials Science and Engineering, Article ID 923403, 5.

Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu Polyvinyl pyrrolidone (PVP) Nanoyüzeylerin Elektrospinning Tekniği İle Elde Edilmesi Ve Karakterizasyonu

Year 2018, Volume: 21 Issue: 3, 184 - 194, 23.10.2018
https://doi.org/10.17780/ksujes.382282

Abstract

Bu
çalışmada, yüksek iletkenlik özelliğine sahip çok hafif ve çok mukavemetli bir
madde olan grafen, sıvılaştırılmış Fındık Kabuğu / Polyvinyl pyrrolidone
(PVP)  karışımına katılarak
Elektrospinning tekniği ile nano yüzeyler elde edilmiştir. Önce fındık kabuğu,
fenol (phenol) ve diğer kimyasallarla muamele edilerek sıvılaştırılmış
(Liquefied hazelnut shell, LHS), daha sonra etanol ile çözelti haline getirilen
PVP ile sıvılaştırılmış fındık kabuğu çözeltisi belli oranlarda grafen ile
katkılandırılarak  homojen karışım elde
edilmiştir. Elde edilen homojen karışımdan yarı endüstriyel elektrospinning
cihazında nanolifli yüzeyler (nano malzemeler) üretilmiştir. Üretilen nano
yüzeylerin yapısal, morfolojik, termal ve elektriksel özellikleri
incelenmiştir. Grafen oksit, grafen, grafen/fındık kabuğu, grafen pvp,
grafen/fındık kabuğu/PVP örnekleri SEM, EDX, FTIR, Zeta Potansiyeli ve Raman
analizleri ile karakterize edilmiştir.

References

  • KAYNAKLAR Sengupta R., Bhattacharya, M., Bandyopadhyay, S., Bhowmick, A.K. (2011). A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36: 5 638–670.
  • Topçu, A. A.( 2012). A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation. Master of Science, Koç University, Material Science and Engineering, İstanbul.
  • Karteri, İ., Karataş, Ş., Yakuphanoğlu, F. (2014). Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor, Applied Surface Science, 318, 74-78.
  • Karteri, İ., Karataş, Ş., Al-Ghamdi, A., Yakuphanoğlu, F. (2015). The electrical characteristics of thin film transistors with graphene oxide and organic ınsulators. Synthetic Metals, 199, 241–245.
  • Yazıcı M. (Yürütücü) (2017). Elektromanyetik Kalkanlama Amaçlı Grafen Katkılı Spunbond ve Meltblown Tekstil Yüzeylerinin Üretilmesi ve Grafenin Kalkanlanma Verimine Etkisinin Araştırılması, Tübitak Proje No: 114M527.
  • Song, J., Wang, X., Chang, C.T. (2014). Preparation and characterization of graphene oxide. Journal of Nanomaterials, Artical ID 276143. Park, S., Ruoff, R. (2009). Chemical methods for the production of graphene. Nature Nanotechnology, 4, 217-224.
  • Wang, Q., Du,Y., Feng, Q., Huang, F., Lu, K., Lui, J., Wei, Q. (2013). Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibres by electrospinning. Journal of Applied Polymer Science, 128,1152-1156.
  • Ji, X., Cui, L., Xu,Y., Liu, J. (2015). Non-covalent interactions for synthesis of new graphene based composites. Composites Science And Technology, 106, 25-31.
  • Song, N., Yang, J., Ding, P., Tang, S., Liu,Y., Shi, L. (2014). Effect of covalent-functionalized graphene oxide with polymer and reactive compatibilization on thermal properties of maleic anhydride grafted polypropylene. Industrial & Engineering Chemistry Research, 53:51, 19951−19960.
  • Yuan, B., Bao, C., Song, L., Hong, N., Liew, K.M., Hu, Y.(2014). Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly ımproved thermal stability and studies on the crystallization behavior and mechanical properties. Chemical Engineering Journal, 237, 411-420.
  • Kim, H., Abdala, A.A., Macosko, C.W.(2010). Graphene/Polymer nanocomposites. Macromolecules, 43:16 6515–6530.
  • Menchaca-Campos, C., García-Pérez, C., Castañeda,I., García-Sánchez, M.A., Guardián, R., Uruchurtu,J. (2013). Nylon/Graphene oxide electrospun composite coating. Hindawi Publishing Corporation, International Journal of Polymer Science, Article ID 621618.
  • Marcano, D.C., Kosynkin, D.V., Berlin., J.M., Sinitskii, A., Sun,Z., Slesarev, A., Alemany, L.B., Lu,W., Tour, J.M. (2010) Improved synthesis of graphene oxide. Amercan Chemical Society ACS Nano, 4: 8, 4806-4814.
  • Arbuzov, A.A., Tarasov, B.P., Muradyan, V.E. (2012). Synthesis of few-layer graphene sheets via chemical and thermal reduction of graphite oxide. Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State University Publishing. Sumy, Ukraine,
  • Hu, X., Yu,Y., Wang,Y., Zhou,J., Song, L. (2015). Separating NanoGraphene Oxide From The Residual Strong-Acid Filtrate of The Modified Hummers Method With Alkaline Solution. Applied Surface Science, 329, 83-86.
  • Çallıoğlu, F. (2013).Silindirli Elektro Lif Çekim Yöntemi ile Nano Lif Üretimi, Journal of Textiles & Engineers/Tekstil ve Mühendis, 20, 91
  • Bhardwaj, N., Kundu,S. C. (2010). 19. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.
  • Andrady, A. L. (2008). Science and Technology of Polymer Nanofibers. ISBN: 978-0-471-79059-4. Wei,Y.P., Cheng,F., Li,H.P., Yu,J.G. (2004). Synthesis and properties of polyurethane resins based on liquefied wood. J. Appl. Polym. Sci., 92, 351–356.
  • Kishi, H., Fujita, A., Miyazaki, H., Matsuda, S., Murakami, A. (2006). Synthesis of wood based epoxy resins and therir mechanical and adhesive properties. J. Appl. Polym. Sci., 102, 2285-2291.
  • Lin,L., Yoshioka,M., Yao,Y., Shiraishi, N. (1994). Liquefaction of Wood in the Presence of Phenol Using Phosphoric Acid as a Catalyst and the Flow Properties of the Liquefied Wood. Journal of Applied Polymer Science, 52. 1629-1636.
  • Lin, L., Yoshioka,M., Yao, Y., Shiraishi,N. (1995). Preparation and properties of phenolated wood/phenol/formaldehyde co-condensed resin. J. Appl. Polym. Sci., 58, 1297-1304.
  • Alma, M.H., Maldas, D., Shiraishi, N. (1998). Liquefaction of several biomass wastes into phenol in the presence of various alkalis and metallic salts as catalysts, Journal of Polymer Engineering, 18, 162-177.
  • Kobayashi, M., Asano, T., Kajiyama, M., Tomita, B.J. (2004). Analysis on residue formation during wood liquefaction with polyhydric alcohol. Wood Sci., 50, 407-414.
  • Kunaver, M., Jasiukaityte, E., Cˇuk,N., Guthrie, J.T. (2010). Liquefaction of Wood, Synthesis and characterisation of Liquefied Wood Polyester Derivative. J. Appl. Polym. Sci., 115, 1265-1271.
  • Krzˇan, A., Kunaver, M., Tisˇler,V. (2005). Wood Liquefaction Using Dibasic Organic Acids and Glycols. Acta Chim. Slov., 52, 253-258.
  • Zhang, T., Zhou,Y., Liu,D., . Petrus, L. (2007).Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresource Technology, 98, 1454-1459.
  • Yao,Y., Yoshioko,M., Shiraishi, N. (1996). Water-Absorbing Polyuerthane Foams From Liqufied Starch, J. Appl. Polym. Sci., 60, 1939-1949.
  • Lee,S.H., Teramoto, Y., Shiraishi, N. (2002). Biodegradable Polyurethane Foam from Liquefied Waste Paper and Its Thermal Stability, Biodegradability, and Genotoxicity. J. Appl. Polym. Sci., 83, 1482-1489.
  • Shiraishi,N., Kajita,H., Norimoto, M. (Eds), (1993). Recent Research on Wood and Wood-Based Materials. Elsevier Applied Science, London, ISBN: 978-1-4831-7821-9, 1-85861-004-4.
  • Alma, M.H., Yoshioka, M., Yao,Y., Shiraishi, N. (1995). Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials, Wood Sci. Technol., 30, 39-47. Alma, M.H., Shiraishi, N. (1997). Preparatıon Of Sulfurıc Acıd-Catalyzed Phenolated Wood Resın. J. Polym. Eng., 18, 179-196.
  • Alma, M.H., Yoshioka, M., Yao, Y., Shiraishi, N. (1996). The Preparation and Flow Properties of HC1 Catalyzed Phenolated Wood and its Blends with Commercial Novolak Resin. Holzforschung, 50, 85–90.
  • Lin, L. (1996). PhD Thesis, Kyoto University, Kyoto, Japan,
  • Alma, M.H., Maldas, D., Shiraishi, N. (1997). Lıquefactıon of Several Bıomass Wastes Into Phenol In The Presence Of Varıous Alkalıs And Metallıc Salts As Catalysts. J. Polym. Eng. 18, 161–178.
  • Emsley, A.M., Stevens, G.C. (1994). Kinetics and mechanisms of the low temperature degradation of cellulose. Cellulose, 1: 1, 26–56.
  • Shahriary, L., Athawale, A.A. (2014), Graphene oxide synthesized by using modified hummers approach. Intenational Journal of Renewable Energy and Environmental Engineering, 02: 01, 58-63.
  • Zhou Y., Bao Q., Tang,L.A.L., Zhong,Y., Loh, K.P. (2009). Hydrothermal dehydration for the “green” reduced of exfoliated grephene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 21: 13, 2950-2956.
  • Ryu,S.H., Shanmugharaj, A.M. (2014).Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isostatic polypropylene nanocomposites. Chemical Engineering Journal, 244, 552-560.
  • Ferrari, A.C. (2007), Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143: 1, 47-57.
  • Chen,W., Yan, L., Bangal,P.R. (2010). Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. The Journal of Physical Chemistry C, 114: 47, 19885-19890.
  • Karteri,İ., Karataş, Ş., Yakuphanoğlu, F. (2014).Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor. Applied Surface Science, 318, 74-78.
  • Song, J., Wang, X., Chang, C.T. (2014). Preparation and characterization of graphene oxide. Journal of Nanomaterials, Artical ID 276143, 6.
  • Loryuenyong,V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., Buasri, A. (2013).Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Hindawi-Advances In Materials Science and Engineering, Article ID 923403, 5.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering, Mechanical Engineering, Wearable Materials
Journal Section Research Articles
Authors

Mustafa Yazıcı 0000-0003-1071-0316

Ömer Önal 0000-0002-2409-1037

Oğuzhan Konuş 0000-0002-3826-6950

Publication Date October 23, 2018
Submission Date January 22, 2018
Published in Issue Year 2018Volume: 21 Issue: 3

Cite

APA Yazıcı, M., Önal, Ö., & Konuş, O. (2018). Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu Polyvinyl pyrrolidone (PVP) Nanoyüzeylerin Elektrospinning Tekniği İle Elde Edilmesi Ve Karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(3), 184-194. https://doi.org/10.17780/ksujes.382282