Research Article
BibTex RIS Cite

Capacitive Micromachined Ultrasonic Transducer (CMUT): Analytical Evaluation of Membranes Performance Under Fabrication Related Stress

Year 2018, Volume: 21 Issue: 4, 280 - 285, 24.12.2018
https://doi.org/10.17780/ksujes.409395

Abstract

Kapasitif
Mikro İşlenmiş Ultrasonik Çevirgeç (kMUÇ)’in alıcı ve verici performansı gap
(kavite) yüksekliği, zar kalınlığı ve zar çapı gibi birçok parametreye
bağlıdır. Y
High power transmission from CMUT (capacitive micromachined ultrasonic transducer) surface depends on output pressure and membrane displacement. Moreover, fabrication process related stress on membrane should also be considered because it affects CMUT performance in terms of collapse voltage, resonance frequency and gap distance. Therefore, stress on membrane becomes important criteria for CMUT modelling and fabrication. Surface micromachining and wafer bonding technologies are widely used for CMUT fabrications. These fabrication processes include several depositions and etching steps that those induce stress on CMUT membrane. Fabrication process related stress are classified as compressive or tensile. In this study, three common CMUT membranes, Si3Ni4, Poly-Si and SiC, were selected for analytic calculations and displacement and output pressure of these CMUT membranes were evaluated under built in stress. It was shown that stress on membrane has significant effect on membrane deflection and pressure from device surface for three membranes. As a result, stress on vibrating membrane should be minimized and optimized for reliable and high performance device fabrication when considering wide range of CMUT applications.

References

  • [1] A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri‐Yakub, “Capacitive Micromachined Ultrasonic Transducers : Theory and Technology,” J. Aerosp. Eng., vol. 16, no. 2, pp. 76–84, 2003.[2] A. S. Ergun et al., “Capacitive micromachined ultrasonic transducers: fabrication technology,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 12, pp. 2242–2258, 2005.[3] D. M. Mills and L. S. Smith, “Real Time In-Vivo Imaging with Capacitive Micromachined Ultasonic Transducers (CMUT) Linear Arrays,” in IEEE Ulltrasonic Symposium, 2003, vol. 0, pp. 568–571.[4] S. Olcum, F. Y. Yamaner, A. Bozkurt, and A. Atalar, “Deep-collapse operation of capacitive micromachined ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 11, pp. 2475–2483, 2011.[5] F. Y. Yamaner, S. Olçum, H. K. Oǧuz, A. Bozkurt, H. Köymen, and A. Atalar, “High-power CMUTs: Design and experimental verification,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 6, pp. 1276–1284, 2012.[6] F. Yildiz, T. Matsunaga, and Y. Haga, “Capacitive micromachined ultrasonic transducer arrays incorporating anodically bondable low temperature co-fired ceramic for small diameter ultrasonic endoscope,” Micro Nano Lett., vol. 11, no. 10, pp. 627–631, 2016.[7] F. Yildiz, T. Matsunaga, and Y. Haga, “CMUT Arrays Incorporating Anodically Bondable LTCC for Small Diameter Ultrasonic Endoscope,” in Proceedings of the 11th IEEE Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2016, pp. 17–20.[8] J. P. Raskin, A. R. Brown, B. T. Khuri-Yakub, and G. M. Rebeiz, “Novel parametric-effect MEMS amplifier,” J. Microelectromechanical Syst., vol. 9, no. 4, pp. 528–537, 2000.[9] I. O. Wygant, M. Kupnik, and B. T. Khuri-yakub, “Analytically Calculating Membrane Displacement and the Equivalent Circuit Model of a Circular,” in IEEE International Reliability Physics Symposium Proceedings, 2008, no. 6, pp. 2111–2114.[10] S. Timoshenko and S. Woinowsky-Kreiger, “Theory of Plates and Shells, 2nd ed. New York: McGraw-Hill Higher Education, 1964.,” New York: McGraw-Hill Higher Education, 1964.[11] W. . Eaton, F. Bitsie, J. . Smith, and D. . Plummer, “A New Analytical Solution for Diaphragm Deflection and its Applications to a Surface-Micromachined Pressure Sensor,” in International Conference on Modelling and Simulation of Microsystems,MSM 99..[12] J. P. Laconte, J., Flandre, D. et Raskin, “Thin dielectric films stress extraction,” in Micromachined Thin-Film Sensors for Soi-Cmos Co-Integration, 2006, pp. 47–103.[13] J. K. Chen, X. Y. Cheng, C. C. Chen, P. C. Li, J. H. Liu, and Y. T. Cheng, “A capacitive micromachined ultrasonic transducer array for minimally invasive medical diagnosis,” J. Microelectromechanical Syst., vol. 17, no. 3, pp. 599–610, 2008.

Capacitive Micromachined Ultrasonic Transducer (CMUT) Analytical Evaluation of Membranes Performance Under Fabrication Related Stress

Year 2018, Volume: 21 Issue: 4, 280 - 285, 24.12.2018
https://doi.org/10.17780/ksujes.409395

Abstract

Kapasitif Mikro İşlenmiş Ultrasonik Çevirgeç (KMUÇ)’in yüzeyinden yük güç çıkışı elde edilmesi çıkış basıncı ve diyaframın yerdeğiştirmesine bağlıdır. Buna ek olarak, üretimden dolayı diyaframda oluşan stres de göz önünde bulundurulmalıdır. Çünkü diyaframda oluşan stres, çöküş voltajı, rezonans frekansı ve kavite derinliği açısından KMUÇ’ın performansını etkilemektedir Bu yüzden diyaframdaki stres, KMUÇ modellenmesi ve üretimi için önemli bir kriterdir. Yüzey işleme veya wafer bonding teknolojileri KMUÇ üretiminde sıkça kullanılan teknolojilerdir. Bu üretim teknolojileri, KMUÇ’ın diyaframı üzerinde strese neden olan birçok kaplama ve dağlama sürecinden oluşmaktadır. Diyaframda oluşan bu stresler sıkıştırma veya gerilme stresi olarak adlandırılır. Bu çalışmada, analitik hesaplamalar için KMUÇ üretiminde yaygın olarak kullanılan Si3Ni4,Poly-Si ve SiC diyaframları seçilmiştir ve stresin diyaframların yerdeğiştirmesi ve çıkış basıncı üzerindeki etkileri değerlendirilmiştir. Üretim sırasında diyaframda oluşan stresin diyaframların yerdeğiştirmesini ve dolayısıyla da diyaframın çıkış basıncını önemli ölçüde etkilediği gösterilmiştir. Sonuç olarak, yüksek performansta ve daha güvenilir KMUÇ üretilmesi için ve ayrıca geniş çaplı KMUÇ uygulamaları göz önünde bulundurulduğunda üretim kaynaklı stres minimize ve optimize edilmelidir.

References

  • [1] A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri‐Yakub, “Capacitive Micromachined Ultrasonic Transducers : Theory and Technology,” J. Aerosp. Eng., vol. 16, no. 2, pp. 76–84, 2003.[2] A. S. Ergun et al., “Capacitive micromachined ultrasonic transducers: fabrication technology,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 12, pp. 2242–2258, 2005.[3] D. M. Mills and L. S. Smith, “Real Time In-Vivo Imaging with Capacitive Micromachined Ultasonic Transducers (CMUT) Linear Arrays,” in IEEE Ulltrasonic Symposium, 2003, vol. 0, pp. 568–571.[4] S. Olcum, F. Y. Yamaner, A. Bozkurt, and A. Atalar, “Deep-collapse operation of capacitive micromachined ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 11, pp. 2475–2483, 2011.[5] F. Y. Yamaner, S. Olçum, H. K. Oǧuz, A. Bozkurt, H. Köymen, and A. Atalar, “High-power CMUTs: Design and experimental verification,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 6, pp. 1276–1284, 2012.[6] F. Yildiz, T. Matsunaga, and Y. Haga, “Capacitive micromachined ultrasonic transducer arrays incorporating anodically bondable low temperature co-fired ceramic for small diameter ultrasonic endoscope,” Micro Nano Lett., vol. 11, no. 10, pp. 627–631, 2016.[7] F. Yildiz, T. Matsunaga, and Y. Haga, “CMUT Arrays Incorporating Anodically Bondable LTCC for Small Diameter Ultrasonic Endoscope,” in Proceedings of the 11th IEEE Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2016, pp. 17–20.[8] J. P. Raskin, A. R. Brown, B. T. Khuri-Yakub, and G. M. Rebeiz, “Novel parametric-effect MEMS amplifier,” J. Microelectromechanical Syst., vol. 9, no. 4, pp. 528–537, 2000.[9] I. O. Wygant, M. Kupnik, and B. T. Khuri-yakub, “Analytically Calculating Membrane Displacement and the Equivalent Circuit Model of a Circular,” in IEEE International Reliability Physics Symposium Proceedings, 2008, no. 6, pp. 2111–2114.[10] S. Timoshenko and S. Woinowsky-Kreiger, “Theory of Plates and Shells, 2nd ed. New York: McGraw-Hill Higher Education, 1964.,” New York: McGraw-Hill Higher Education, 1964.[11] W. . Eaton, F. Bitsie, J. . Smith, and D. . Plummer, “A New Analytical Solution for Diaphragm Deflection and its Applications to a Surface-Micromachined Pressure Sensor,” in International Conference on Modelling and Simulation of Microsystems,MSM 99..[12] J. P. Laconte, J., Flandre, D. et Raskin, “Thin dielectric films stress extraction,” in Micromachined Thin-Film Sensors for Soi-Cmos Co-Integration, 2006, pp. 47–103.[13] J. K. Chen, X. Y. Cheng, C. C. Chen, P. C. Li, J. H. Liu, and Y. T. Cheng, “A capacitive micromachined ultrasonic transducer array for minimally invasive medical diagnosis,” J. Microelectromechanical Syst., vol. 17, no. 3, pp. 599–610, 2008.
There are 1 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Fikret Yıldız 0000-0003-4846-3998

Publication Date December 24, 2018
Submission Date March 25, 2018
Published in Issue Year 2018Volume: 21 Issue: 4

Cite

APA Yıldız, F. (2018). Capacitive Micromachined Ultrasonic Transducer (CMUT): Analytical Evaluation of Membranes Performance Under Fabrication Related Stress. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(4), 280-285. https://doi.org/10.17780/ksujes.409395