Research Article
BibTex RIS Cite

AZ91 MAGNEZYUM ALAŞIMININ SAF Si TOZU ORTAMINDA KAPLANABİLİRLİĞİNİN İNCELENMESİ

Year 2023, Volume: 26 Issue: 1, 33 - 42, 15.03.2023
https://doi.org/10.17780/ksujes.1164867

Abstract

Bu çalışmada Mg alaşımlarının kullanım alanlarını desteklemek amacıyla yeni bir yöntem ile kaplama işlemi yapılmıştır. AZ91 Mg alaşımı ile hazırlanan numuneler saf Si tozu içerisinde farklı sıcaklıklarda bekletilmiştir. Mg-Si faz diyagramı esas alınarak sıcaklıklar 400°C, 450°C ve 500°C olarak belirlenmiştir. Numuneler belirlenen sıcaklıklarda 2, 4 ve 6 saat bekletilmiştir. Bu aşamada yüzeyde Mg-Si arasında yeni bir fazın oluşması sağlanmıştır. Yüzeyde oluşan kaplama SEM, EDX ve sertlik testleri ile incelenmiştir. Sonuç olarak AZ91 alaşımına uygulanan kaplama işlemi ile 500°C/6 saat şartlarında yaklaşık 20 µm bir kaplama tabakası oluşmuştur. EDX analizinde fazın ve geçiş bölgelerinin elementel durumları incelenmiştir. Sertlik testi Vickers türünde uygulanmıştır. AZ91 alaşımının kaplamasız numunesine göre sertlik yaklaşık %90 artış göstermiştir. Böylece Mg alaşımlarında yüzeyde fazların oluştuğu kaplama yöntemleri uygulanabilir sonucuna varılmıştır.

Supporting Institution

Tübitak

Project Number

1139B412100611

Thanks

Bu çalışma Tübitak 2209-B kapsamında desteklenmiştir (Proje No: 1139B412100611). Ayrıca 2209-B sanayi destekçisi olarak Hitit Üniversitesi Teknokent Ar-Ge firması 4D Makine ve Teknoloji firması tarafından destek sağlanmıştır.

References

  • Akbarzadeh, F. Z., Ghomi, E. R., & Ramakrishna, S. (2022). Improving the corrosion behavior of magnesium alloys with a focus on AZ91 Mg alloy intended for biomedical application by microstructure modification and coating. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 09544119221105705. doi:https://doi.org/10.1177/09544119221105705
  • Asadi, P., Givi, M., Rastgoo, A., Akbari, M., Zakeri, V., & Rasouli, S. (2012). Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. The International Journal of Advanced Manufacturing Technology, 63(9), 1095-1107. doi:https://doi.org/10.1007/s00170-012-3972-z
  • Atrens, A., Shi, Z., Mehreen, S. U., Johnston, S., Song, G.-L., Chen, X., & Pan, F. (2020). Review of Mg alloy corrosion rates. Journal of magnesium and alloys. doi:https://doi.org/10.1016/j.jma.2020.08.002
  • Bamberger, M., & Dehm, G. (2008). Trends in the development of new Mg alloys. Annu. Rev. Mater. Res., 38, 505-533. doi:https://doi.org/10.1146/annurev.matsci.020408.133717
  • Buchtík, M., Krystýnová, M., Másilko, J., & Wasserbauer, J. (2019). The effect of heat treatment on properties of Ni–P coatings deposited on a AZ91 magnesium alloy. Coatings, 9(7), 461. doi:https://doi.org/10.3390/coatings9070461
  • Cáceres, C., Griffiths, J., Pakdel, A., & Davidson, C. (2005). Microhardness mapping and the hardness-yield strength relationship in high-pressure diecast magnesium alloy AZ91. Materials Science and Engineering: A, 402(1-2), 258-268. doi:https://doi.org/10.1016/j.msea.2005.04.042
  • Çiçek, B., Ahlatçı, H., & Sun, Y. (2013). Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2 Si particles. Materials & Design, 50, 929-935. doi:https://doi.org/10.1016/j.matdes.2013.03.097
  • Çiçek, B., & Sun, Y. (2012). A study on the mechanical and corrosion properties of lead added magnesium alloys. MATER DESIGN, 37, 369-372. doi:https://doi.org/10.1016/j.matdes.2012.01.029
  • Elen, L., Türen, Y., & Koç, E. (2019). AZ91 Mg alaşımına farklı oranlarda Sb ilavesi ile katılaşma hızının mikroyapı ve mekanik özelliklere etkisi. International Journal of Engineering Research and Development, 11(2), 451-463. doi:https://doi.org/10.29137/umagd.507264
  • Faraji, G., Dastani, O., & Mousavi, S. (2011). Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. Journal of Materials Engineering and Performance, 20(9), 1583-1590. doi:https://doi.org/10.1007/s11665-010-9812-0
  • Froes, F., Eliezer, D., & Aghion, E. (1998). The science, technology, and applications of magnesium. The Journal of The Minerals, Metals & Materials Society (TMS), 50(9), 30-34. doi:https://doi.org/10.1007/s11837-998-0411-6
  • Guangyin, Y., Yangshan, S., & Wenjiang, D. (2001). Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering: A, 308(1-2), 38-44. doi:https://doi.org/10.1016/S0921-5093(00)02043-8
  • Kannan, M. B., Koc, E., & Unal, M. (2012). Biodegradability of β-Mg17Al12 phase in simulated body fluid. Materials letters, 82, 54-56. doi:https://doi.org/10.1016/j.matlet.2012.05.047
  • Lee, Y., Dahle, A., & St John, D. (2000). The role of solute in grain refinement of magnesium. Metallurgical and Materials transactions A, 31A(11), 2895-2906. doi:https://doi.org/10.1007/BF02830349
  • Li, Q., Zhao, Y.-Z., Luo, Q., Chen, S.-L., Zhang, J.-Y., & Chou, K.-C. (2010). Experimental study and phase diagram calculation in Al–Zn–Mg–Si quaternary system. Journal of alloys and compounds, 501(2), 282-290. doi:https://doi.org/10.1016/j.jallcom.2010.04.089
  • Mordike, B., & Ebert, T. (2001). Magnesium: properties-applications-potential. Mater Sci Eng A, 302(1), 37-45. doi:https://doi.org/10.1016/S0921-5093(00)01351-4
  • Nave, M., Dahle, A., & St John, D. (2000). The effect of solidification rate on the structure of magnesium-aluminium eutectic grains. International Journal of Cast Metals Research, 13(1), 1-7. doi:https://doi.org/10.1080/13640461.2000.11819383
  • Polmear, I. (1996). Recent developments in light alloys. Materials Transactions, 37(1), 12-31. doi:https://doi.org/10.2320/matertrans1989.37.12
  • Seth, P. P., Parkash, O., & Kumar, D. (2020). Structure and mechanical behavior of in situ developed Mg 2 Si phase in magnesium and aluminum alloys–a review. RSC advances, 10(61), 37327-37345. doi:https://doi.org/10.1039/D0RA02744H
  • Wei, C., Guangxin, W., & Jieyu, Z. (2021). Design and properties of Al-10Si-xZn-yMg alloy for hot dip coating. Surface and Coatings Technology, 416, 127134. doi:https://doi.org/10.1016/j.surfcoat.2021.127134
  • Zengin, H., Turen, Y., & Elen, L. (2019). A comparative study on microstructure, mechanical and tribological properties of A4, AE41, AS41 and AJ41 magnesium alloys. Journal of Materials Engineering and Performance, 28(8), 4647-4657. doi:https://doi.org/10.1007/s11665-019-04223-8
  • Zhao, M.-C., Liu, M., Song, G., & Atrens, A. (2008). Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 50(7), 1939-1953. doi:https://doi.org/10.1016/j.corsci.2008.04.010
  • Zhu, L., Qiu, F., Zou, Q., Han, X., Shu, S.-L., Yang, H.-Y., & Jiang, Q.-C. (2021). Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science and Engineering: A, 802, 140627. doi:https://doi.org/10.1016/j.msea.2020.140627

INVESTIGATION OF COATABLE OF AZ91 MAGNESIUM ALLOY IN PURE SI POWDER

Year 2023, Volume: 26 Issue: 1, 33 - 42, 15.03.2023
https://doi.org/10.17780/ksujes.1164867

Abstract

In this study, a new method of coating was carried out in order to support the usage areas of Mg alloys. Samples prepared with AZ91 Mg alloy were kept in pure Si powder at different temperatures. Based on the Mg-Si phase diagram, temperatures were determined as 400°C, 450°C and 500°C. The samples were kept at the determined temperatures for 2, 4 and 6 hours. At this stage, a new phase was formed between Mg-Si on the surface. The coating formed on the surface was examined by SEM, EDX and hardness tests. As a result, with the coating process applied to the AZ91 alloy, a coating layer of approximately 20 µm was formed at 500°C/6 hours. Elemental states of the phase and transition zones were investigated in EDX analysis. Hardness test was applied in Vickers type. Compared to the uncoated sample of the AZ91 alloy, the hardness increased by about 90%. Thus, it was concluded that coating methods in which phases form on the surface can be applied in Mg alloys.

Project Number

1139B412100611

References

  • Akbarzadeh, F. Z., Ghomi, E. R., & Ramakrishna, S. (2022). Improving the corrosion behavior of magnesium alloys with a focus on AZ91 Mg alloy intended for biomedical application by microstructure modification and coating. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 09544119221105705. doi:https://doi.org/10.1177/09544119221105705
  • Asadi, P., Givi, M., Rastgoo, A., Akbari, M., Zakeri, V., & Rasouli, S. (2012). Predicting the grain size and hardness of AZ91/SiC nanocomposite by artificial neural networks. The International Journal of Advanced Manufacturing Technology, 63(9), 1095-1107. doi:https://doi.org/10.1007/s00170-012-3972-z
  • Atrens, A., Shi, Z., Mehreen, S. U., Johnston, S., Song, G.-L., Chen, X., & Pan, F. (2020). Review of Mg alloy corrosion rates. Journal of magnesium and alloys. doi:https://doi.org/10.1016/j.jma.2020.08.002
  • Bamberger, M., & Dehm, G. (2008). Trends in the development of new Mg alloys. Annu. Rev. Mater. Res., 38, 505-533. doi:https://doi.org/10.1146/annurev.matsci.020408.133717
  • Buchtík, M., Krystýnová, M., Másilko, J., & Wasserbauer, J. (2019). The effect of heat treatment on properties of Ni–P coatings deposited on a AZ91 magnesium alloy. Coatings, 9(7), 461. doi:https://doi.org/10.3390/coatings9070461
  • Cáceres, C., Griffiths, J., Pakdel, A., & Davidson, C. (2005). Microhardness mapping and the hardness-yield strength relationship in high-pressure diecast magnesium alloy AZ91. Materials Science and Engineering: A, 402(1-2), 258-268. doi:https://doi.org/10.1016/j.msea.2005.04.042
  • Çiçek, B., Ahlatçı, H., & Sun, Y. (2013). Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2 Si particles. Materials & Design, 50, 929-935. doi:https://doi.org/10.1016/j.matdes.2013.03.097
  • Çiçek, B., & Sun, Y. (2012). A study on the mechanical and corrosion properties of lead added magnesium alloys. MATER DESIGN, 37, 369-372. doi:https://doi.org/10.1016/j.matdes.2012.01.029
  • Elen, L., Türen, Y., & Koç, E. (2019). AZ91 Mg alaşımına farklı oranlarda Sb ilavesi ile katılaşma hızının mikroyapı ve mekanik özelliklere etkisi. International Journal of Engineering Research and Development, 11(2), 451-463. doi:https://doi.org/10.29137/umagd.507264
  • Faraji, G., Dastani, O., & Mousavi, S. (2011). Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. Journal of Materials Engineering and Performance, 20(9), 1583-1590. doi:https://doi.org/10.1007/s11665-010-9812-0
  • Froes, F., Eliezer, D., & Aghion, E. (1998). The science, technology, and applications of magnesium. The Journal of The Minerals, Metals & Materials Society (TMS), 50(9), 30-34. doi:https://doi.org/10.1007/s11837-998-0411-6
  • Guangyin, Y., Yangshan, S., & Wenjiang, D. (2001). Effects of bismuth and antimony additions on the microstructure and mechanical properties of AZ91 magnesium alloy. Materials Science and Engineering: A, 308(1-2), 38-44. doi:https://doi.org/10.1016/S0921-5093(00)02043-8
  • Kannan, M. B., Koc, E., & Unal, M. (2012). Biodegradability of β-Mg17Al12 phase in simulated body fluid. Materials letters, 82, 54-56. doi:https://doi.org/10.1016/j.matlet.2012.05.047
  • Lee, Y., Dahle, A., & St John, D. (2000). The role of solute in grain refinement of magnesium. Metallurgical and Materials transactions A, 31A(11), 2895-2906. doi:https://doi.org/10.1007/BF02830349
  • Li, Q., Zhao, Y.-Z., Luo, Q., Chen, S.-L., Zhang, J.-Y., & Chou, K.-C. (2010). Experimental study and phase diagram calculation in Al–Zn–Mg–Si quaternary system. Journal of alloys and compounds, 501(2), 282-290. doi:https://doi.org/10.1016/j.jallcom.2010.04.089
  • Mordike, B., & Ebert, T. (2001). Magnesium: properties-applications-potential. Mater Sci Eng A, 302(1), 37-45. doi:https://doi.org/10.1016/S0921-5093(00)01351-4
  • Nave, M., Dahle, A., & St John, D. (2000). The effect of solidification rate on the structure of magnesium-aluminium eutectic grains. International Journal of Cast Metals Research, 13(1), 1-7. doi:https://doi.org/10.1080/13640461.2000.11819383
  • Polmear, I. (1996). Recent developments in light alloys. Materials Transactions, 37(1), 12-31. doi:https://doi.org/10.2320/matertrans1989.37.12
  • Seth, P. P., Parkash, O., & Kumar, D. (2020). Structure and mechanical behavior of in situ developed Mg 2 Si phase in magnesium and aluminum alloys–a review. RSC advances, 10(61), 37327-37345. doi:https://doi.org/10.1039/D0RA02744H
  • Wei, C., Guangxin, W., & Jieyu, Z. (2021). Design and properties of Al-10Si-xZn-yMg alloy for hot dip coating. Surface and Coatings Technology, 416, 127134. doi:https://doi.org/10.1016/j.surfcoat.2021.127134
  • Zengin, H., Turen, Y., & Elen, L. (2019). A comparative study on microstructure, mechanical and tribological properties of A4, AE41, AS41 and AJ41 magnesium alloys. Journal of Materials Engineering and Performance, 28(8), 4647-4657. doi:https://doi.org/10.1007/s11665-019-04223-8
  • Zhao, M.-C., Liu, M., Song, G., & Atrens, A. (2008). Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 50(7), 1939-1953. doi:https://doi.org/10.1016/j.corsci.2008.04.010
  • Zhu, L., Qiu, F., Zou, Q., Han, X., Shu, S.-L., Yang, H.-Y., & Jiang, Q.-C. (2021). Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science and Engineering: A, 802, 140627. doi:https://doi.org/10.1016/j.msea.2020.140627
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials Science and Engineering
Authors

Onur Avcı 0000-0003-1046-4354

Tunahan Karaca 0000-0001-9088-4417

Tuna Aydoğmuş 0000-0002-8736-2949

Bünyamin Çiçek 0000-0002-6603-7178

Project Number 1139B412100611
Publication Date March 15, 2023
Submission Date August 22, 2022
Published in Issue Year 2023Volume: 26 Issue: 1

Cite

APA Avcı, O., Karaca, T., Aydoğmuş, T., Çiçek, B. (2023). AZ91 MAGNEZYUM ALAŞIMININ SAF Si TOZU ORTAMINDA KAPLANABİLİRLİĞİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 33-42. https://doi.org/10.17780/ksujes.1164867