Research Article
BibTex RIS Cite

3-APTMS TAKVİYELİ KİTOSAN-POLİVİNİL ALKOL HARMAN FİLMLERİNİN FİZİKSEL VE ANTİBAKTERİYEL AKTİVİTELERİ

Year 2023, Volume: 26 Issue: 1, 154 - 165, 15.03.2023
https://doi.org/10.17780/ksujes.1187738

Abstract

Bu çalışmada kitosan (KT) ve polivinil alkol (PA) karışımına %0, %0.5, %1 ve %2 oranlarında 3-(aminopropil) trimetoksi silan (3-APTMS) ilave edilerek dökme metoduyla filmler hazırlanmıştır. Hazırlanan filmlerin FTIR, SEM, su buharı geçirgenliği, çözünürlük, opaklık ve renk özellikleri incelenmiştir. KT/PA, KT/PA-0.5, KT/PA-1 ve KT/PA-2 filmlerinin su buharı geçirgenliği sırasıyla 3.82×10-6 g m-1 s-1 Pa-1, 3.14×10-6 g m-1 s-1 Pa-1, 2.08×10-6 g m-1 s-1 Pa-1 ve 1.59×10-6 g m-1 s-1 Pa-1 olarak gerçekleşti. Filmleri su içinde çözünürlüğü azaldı. Artan 3-APTMS içeriği ile filmler daha opak oldu ve UV ışık bariyer özellik gösterdi. Renk özellikleri ise a* değeri artarken b* değeri ise azalarak filmler sarımsı-yeşil oldu. Ayrıca filmlerin Gram negatif (E. coli ) ve gram pozitif (S. aureus subsp. aureus) bakterilere karşı antimikrobiyal aktiviteleri değerlendirildi. Elde edilen KT/PA tek başına S. aureus subsp. aureus (ATCC 25923) ve E. coli (ATCC 25922) ye karşı herhangi bir antimikrobiyal aktiviteyi göstermedi. Dikkat çeken nokta KT/PA'ya eklenen %2 3-APTMS antibakteriyel aktivitenin standart olarak kullanılan ampisilin ile aynı olmasıdır.

References

  • Atay, H. Y. (2019). Antibacterial activity of chitosan-based systems. Functional chitosan, 457. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
  • Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. J. E. J. O. P. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European journal of pharmaceutics and biopharmaceutics, 57(1), 19-34.
  • Bonilla, J., Fortunati, E. L. E. N. A., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 35, 463-470.
  • Boonsuk, P., Sukolrat, A., Kaewtatip, K., Chantarak, S., Kelarakis, A., & Chaibundit, C. (2020). Modified cassava starch/poly (vinyl alcohol) blend films plasticized by glycerol: Structure and properties. Journal of Applied Polymer Science, 137(26), 48848.
  • Bui, T. H., Lee, W., Jeon, S. B., Kim, K. W., & Lee, Y. (2020). Enhanced Gold (III) adsorption using glutaraldehyde-crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Separation and Purification Technology, 248, 116989.
  • Cazón, P., Vázquez, M., & Velazquez, G. (2018). Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties. International Journal of Biological Macromolecules, 117, 235-246.
  • Chung YC, Su CC, Chen Y, Jia G, Wang JCG, Wu H, Lin JG (2004) Relationship between antibacterial activity of chitosan and surfacecharacteristics of cell wall. Acta Pharmacol Sin 25, 932–936.
  • Costa-Júnior, E. S., Barbosa-Stancioli, E. F., Mansur, A. A., Vasconcelos, W. L., & Mansur, H. S. (2009). Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers, 76(3), 472-481.
  • Ebrahimzadeh, S., Bari, M. R., Hamishehkar, H., Kafil, H. S., & Lim, L. T. (2021). Essential oils-loaded electrospun chitosan-poly (vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. Lwt, 144, 111217.
  • EUCAST (2019) Disk Diffusion Method for Antimicrobial Susceptibility Testing. Version 7.0 (January 2019). González, A., Gastelú, G., Barrera, G. N., Ribotta, P. D., & Igarzabal, C. I. Á. (2019). Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids, 89, 758-764.
  • Gürler, N. (2020a). Sitrik Asit ile Modifiye Edilmiş Mısır Nişastası/Mikrokristalin Selüloz Filmlerin Fiziksel ve Mekanik Özellikleri. Int. J. Pure Appl. Sci, 6(2), 179-185.
  • Gürler, N., & Torğut, G. (2022a). Physicomechanical, thermal and dielectric properties of eco‐friendly starch‐microcrystalline cellulose‐clay nanocomposite films for food packaging and electrical applications. Packaging Technology and Science, 35(6), 473-483.
  • Gürler, N., Paşa, S., & Temel, H. (2021a). Silane doped biodegradable starch-PLA bilayer films for food packaging applications: Mechanical, thermal, barrier and biodegradability properties. Journal of the Taiwan Institute of Chemical Engineers, 123, 261-271.
  • Gürler, N., Paşa, S., Alma, M. H., & Temel, H. (2020b). The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: synthesis, characterization, mechanical and physical properties. European Polymer Journal, 127, 109588.
  • Gürler, N., Paşa, S., Erdoğan, Ö., & Cevik, O. (2021b). Physicochemical properties for food packaging and toxicity behaviors against healthy cells of environmentally friendly biocompatible starch/citric acid/polyvinyl alcohol biocomposite films. Starch‐Stärke, 2100074.
  • Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., & Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research, 23(15), 15310-15320.
  • Hernandez-Lauzardo, A. N., Bautista-Baños, S., Velazquez-Del Valle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Perez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydrate Polymers, 73(4), 541-547.
  • Heydari, M., Moheb, A., Ghiaci, M., & Masoomi, M. (2013). Effect of cross‐linking time on the thermal and mechanical properties and pervaporation performance of poly (vinyl alcohol) membrane cross‐linked with fumaric acid used for dehydration of isopropanol. Journal of applied polymer science, 128(3), 1640-1651.
  • Hiremani, V. D., Goudar, N., Gasti, T., Khanapure, S., Vanjeri, V. N., Sataraddi, S., ... & Chougale, R. B. (2022). Exploration of multifunctional properties of piper betel leaves extract incorporated polyvinyl alcohol-oxidized maize starch blend films for active packaging applications. Journal of Polymers and the Environment, 30(4), 1314-1329.
  • Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal Of Food Science and Technology, 52(10), 6095-6111.
  • Izadi-Vasafi, H., Ghayoumi, F., Karbasizadeh-Esfahani, S., & Ghafghazi, M. (2020). Comparing the Effect of Sodium-Based and Calcium-Based Crosslinkers on the Swelling, Mechanical and Rheological Properties of Chitosan/Gelatin/Starch Films. Journal of Macromolecular Science, Part B, 59(5), 331-343.
  • Jafarzadeh, S., Salehabadi, A., Nafchi, A. M., Oladzadabbasabadi, N., & Jafari, S. M. (2021). Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends in Food Science & Technology, 116, 218-231.
  • Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, 115303.
  • Kasai, D., Chougale, R., Masti, S., Chalannavar, R., Malabadi, R. B., Gani, R., & Gouripur, G. (2019). An investigation into the influence of filler Piper nigrum leaves extract on physicochemical and antimicrobial properties of chitosan/poly (vinyl alcohol) blend films. Journal of Polymers and the Environment, 27(3), 472-488.
  • Khan, B. A., Khan, A., Khan, M. K., & Braga, V. A. (2021). Preparation and properties of High sheared Poly (Vinyl Alcohol)/Chitosan blended Hydrogels films with Lawsonia inermis extract as wound dressing. Journal of Drug Delivery Science and Technology, 61, 102227.
  • Lim, M., Kwon, H., Kim, D., Seo, J., Han, H., & Khan, S. B. (2015). Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly (vinyl alcohol) hybrid films for packaging applications. Progress in Organic Coatings, 85, 68-75.
  • Massarelli, E., Silva, D., Pimenta, A. F. R., Fernandes, A. I., Mata, J. L. G., Armês, H., ... & Serro, A. P. (2021). Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. International Journal of Pharmaceutics, 593, 120110.
  • Muzzarelli, R. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 77(1), 1-9.
  • Pan, C., Qian, J., Zhao, C., Yang, H., Zhao, X., & Guo, H. (2020). Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydrate Polymers, 241, 116349.
  • Parida, U. K., Nayak, A. K., Binhani, B. K., & Nayak, P. L. (2011). Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. Journal of Biomaterials and Nanobiotechnology, 2(04), 414.
  • Peidayesh, H., Ahmadi, Z., Khonakdar, H. A., Abdouss, M., & Chodák, I. (2020). Baked hydrogel from corn starch and chitosan blends cross‐linked by citric acid: Preparation and properties. Polymers for Advanced Technologies, 31(6), 1256-1269.
  • Perez, C. (1990). Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp, 15, 113-115. Pinzon, M. I., Garcia, O. R., & Villa, C. C. (2018). The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch‐chitosan edible films. Journal of the Science of Food and Agriculture, 98(11), 4042-4049.
  • Prashanth, K. V. H., & Tharanathan, R. N. (2006). Crosslinked chitosan—preparation and characterization. Carbohydrate research, 341(1), 169-173.
  • Qin, Z., Jia, X., Liu, Q., Kong, B., & Wang, H. (2020). Enhancing physical properties of chitosan/pullulan electrospinning nanofibers via green crosslinking strategies. Carbohydrate Polymers, 247, 116734.
  • Ravishankar, K., & Dhamodharan, R. (2020). Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. Reactive and Functional Polymers, 149, 104517.
  • Ren, L., Yan, X., Zhou, J., Tong, J., & Su, X. (2017). Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. International Journal of Biological Macromolecules, 105, 1636-1643.
  • Roy, S., Zhai, L., Kim, H. C., Pham, D. H., Alrobei, H., & Kim, J. (2021). Tannic-acid-cross-linked and TiO2-nanoparticle-reinforced chitosan-based nanocomposite film. Polymers, 13(2), 228.
  • Russo D, Bonomo MG, Salzano G, Martelli G, Milella L. (2012). Nutraceutical properties of Citrus clementina juices. Pharmacologyonline. 1, 84–93.
  • Sedaghat, E., Rostami, A. A., Ghaemy, M., & Rostami, A. (2019). Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite. Journal of Thermal Analysis and Calorimetry, 136(2), 759-769.
  • Siralertmukul, K., Yuenyaw, N., Watcharamul, S., & Nuisin, R. (2021). Facile Fabrication of Chitosan/Starch Composite Films with Fumed Silica as an Additive. Engineering Journal, 25(9), 45-53.
  • Sonker, A. K., Rathore, K., Nagarale, R. K., & Verma, V. (2018). Crosslinking of polyvinyl alcohol (PVA) and effect of crosslinker shape (aliphatic and aromatic) thereof. Journal of Polymers and the Environment, 26(5), 1782-1794.
  • Torğut, G., Yazdıç, F. C., & Gürler, N. (2022b). Synthesis, characterization, pH‐sensitive swelling and antimicrobial activities of chitosan–graft‐poly (hydroxyethyl methacrylate) hydrogel composites for biomedical applications. Polymer Engineering & Science, 62(8), 2552-2559.
  • Vakili, M., Deng, S., Li, T., Wang, W., Wang, W., & Yu, G. (2018). Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chemical Engineering Journal, 347, 782-790.
  • Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., ... & Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97, 105208.

PHYSICAL AND ANTIBACTERIAL ACTIVITIES OF 3-APTMS REINFORCED CHITOSAN-POLYVINYL ALCOHOL BLEND FILMS

Year 2023, Volume: 26 Issue: 1, 154 - 165, 15.03.2023
https://doi.org/10.17780/ksujes.1187738

Abstract

In this study, films were prepared by casting method by adding 3-(aminopropyl) trimethoxy silane (3-APTMS) at 0%, 0.5%, 1% and 2% ratios to the mixture of chitosan (KT) and polyvinyl alcohol (PA). FTIR, SEM, water vapour permeability, solubility, opacity, and colour properties of the prepared films were examined. The water vapor permeability of KT/PA, KT/PA-0.5, KT/PA-1 and KT/PA-2 films are 3.82×10-6 gm-1s-1Pa-1, 3.14×10-6 gm-1s-1Pa-1, 2.08×10-6 gm-1s-1Pa-1 and 1.59×10-6 gm-1s-1Pa-1, respectively. The films have decreased solubility in water. With increasing 3-APTMS content, the films became more opaque and showed UV light barrier properties. On the other hand, the a* value increased and the b* value decreased, making the films yellowish-green. In addition, the antimicrobial activities of the films against Gram-negative (E. coli ) and gram-positive (S. aureus subsp. aureus) bacteria were evaluated. KT/PA alone did not show any antimicrobial activity against S. aureus subsp. aureus (ATCC 25923) and E. coli (ATCC 25922). The remarkable point is that the 2% 3-APTMS antibacterial activity added to KT/PA is the same as that of standard ampicillin.

References

  • Atay, H. Y. (2019). Antibacterial activity of chitosan-based systems. Functional chitosan, 457. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.
  • Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. J. E. J. O. P. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European journal of pharmaceutics and biopharmaceutics, 57(1), 19-34.
  • Bonilla, J., Fortunati, E. L. E. N. A., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 35, 463-470.
  • Boonsuk, P., Sukolrat, A., Kaewtatip, K., Chantarak, S., Kelarakis, A., & Chaibundit, C. (2020). Modified cassava starch/poly (vinyl alcohol) blend films plasticized by glycerol: Structure and properties. Journal of Applied Polymer Science, 137(26), 48848.
  • Bui, T. H., Lee, W., Jeon, S. B., Kim, K. W., & Lee, Y. (2020). Enhanced Gold (III) adsorption using glutaraldehyde-crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Separation and Purification Technology, 248, 116989.
  • Cazón, P., Vázquez, M., & Velazquez, G. (2018). Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties. International Journal of Biological Macromolecules, 117, 235-246.
  • Chung YC, Su CC, Chen Y, Jia G, Wang JCG, Wu H, Lin JG (2004) Relationship between antibacterial activity of chitosan and surfacecharacteristics of cell wall. Acta Pharmacol Sin 25, 932–936.
  • Costa-Júnior, E. S., Barbosa-Stancioli, E. F., Mansur, A. A., Vasconcelos, W. L., & Mansur, H. S. (2009). Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers, 76(3), 472-481.
  • Ebrahimzadeh, S., Bari, M. R., Hamishehkar, H., Kafil, H. S., & Lim, L. T. (2021). Essential oils-loaded electrospun chitosan-poly (vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. Lwt, 144, 111217.
  • EUCAST (2019) Disk Diffusion Method for Antimicrobial Susceptibility Testing. Version 7.0 (January 2019). González, A., Gastelú, G., Barrera, G. N., Ribotta, P. D., & Igarzabal, C. I. Á. (2019). Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids, 89, 758-764.
  • Gürler, N. (2020a). Sitrik Asit ile Modifiye Edilmiş Mısır Nişastası/Mikrokristalin Selüloz Filmlerin Fiziksel ve Mekanik Özellikleri. Int. J. Pure Appl. Sci, 6(2), 179-185.
  • Gürler, N., & Torğut, G. (2022a). Physicomechanical, thermal and dielectric properties of eco‐friendly starch‐microcrystalline cellulose‐clay nanocomposite films for food packaging and electrical applications. Packaging Technology and Science, 35(6), 473-483.
  • Gürler, N., Paşa, S., & Temel, H. (2021a). Silane doped biodegradable starch-PLA bilayer films for food packaging applications: Mechanical, thermal, barrier and biodegradability properties. Journal of the Taiwan Institute of Chemical Engineers, 123, 261-271.
  • Gürler, N., Paşa, S., Alma, M. H., & Temel, H. (2020b). The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: synthesis, characterization, mechanical and physical properties. European Polymer Journal, 127, 109588.
  • Gürler, N., Paşa, S., Erdoğan, Ö., & Cevik, O. (2021b). Physicochemical properties for food packaging and toxicity behaviors against healthy cells of environmentally friendly biocompatible starch/citric acid/polyvinyl alcohol biocomposite films. Starch‐Stärke, 2100074.
  • Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., & Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research, 23(15), 15310-15320.
  • Hernandez-Lauzardo, A. N., Bautista-Baños, S., Velazquez-Del Valle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Perez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydrate Polymers, 73(4), 541-547.
  • Heydari, M., Moheb, A., Ghiaci, M., & Masoomi, M. (2013). Effect of cross‐linking time on the thermal and mechanical properties and pervaporation performance of poly (vinyl alcohol) membrane cross‐linked with fumaric acid used for dehydration of isopropanol. Journal of applied polymer science, 128(3), 1640-1651.
  • Hiremani, V. D., Goudar, N., Gasti, T., Khanapure, S., Vanjeri, V. N., Sataraddi, S., ... & Chougale, R. B. (2022). Exploration of multifunctional properties of piper betel leaves extract incorporated polyvinyl alcohol-oxidized maize starch blend films for active packaging applications. Journal of Polymers and the Environment, 30(4), 1314-1329.
  • Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal Of Food Science and Technology, 52(10), 6095-6111.
  • Izadi-Vasafi, H., Ghayoumi, F., Karbasizadeh-Esfahani, S., & Ghafghazi, M. (2020). Comparing the Effect of Sodium-Based and Calcium-Based Crosslinkers on the Swelling, Mechanical and Rheological Properties of Chitosan/Gelatin/Starch Films. Journal of Macromolecular Science, Part B, 59(5), 331-343.
  • Jafarzadeh, S., Salehabadi, A., Nafchi, A. M., Oladzadabbasabadi, N., & Jafari, S. M. (2021). Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends in Food Science & Technology, 116, 218-231.
  • Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, 115303.
  • Kasai, D., Chougale, R., Masti, S., Chalannavar, R., Malabadi, R. B., Gani, R., & Gouripur, G. (2019). An investigation into the influence of filler Piper nigrum leaves extract on physicochemical and antimicrobial properties of chitosan/poly (vinyl alcohol) blend films. Journal of Polymers and the Environment, 27(3), 472-488.
  • Khan, B. A., Khan, A., Khan, M. K., & Braga, V. A. (2021). Preparation and properties of High sheared Poly (Vinyl Alcohol)/Chitosan blended Hydrogels films with Lawsonia inermis extract as wound dressing. Journal of Drug Delivery Science and Technology, 61, 102227.
  • Lim, M., Kwon, H., Kim, D., Seo, J., Han, H., & Khan, S. B. (2015). Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly (vinyl alcohol) hybrid films for packaging applications. Progress in Organic Coatings, 85, 68-75.
  • Massarelli, E., Silva, D., Pimenta, A. F. R., Fernandes, A. I., Mata, J. L. G., Armês, H., ... & Serro, A. P. (2021). Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. International Journal of Pharmaceutics, 593, 120110.
  • Muzzarelli, R. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 77(1), 1-9.
  • Pan, C., Qian, J., Zhao, C., Yang, H., Zhao, X., & Guo, H. (2020). Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydrate Polymers, 241, 116349.
  • Parida, U. K., Nayak, A. K., Binhani, B. K., & Nayak, P. L. (2011). Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. Journal of Biomaterials and Nanobiotechnology, 2(04), 414.
  • Peidayesh, H., Ahmadi, Z., Khonakdar, H. A., Abdouss, M., & Chodák, I. (2020). Baked hydrogel from corn starch and chitosan blends cross‐linked by citric acid: Preparation and properties. Polymers for Advanced Technologies, 31(6), 1256-1269.
  • Perez, C. (1990). Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp, 15, 113-115. Pinzon, M. I., Garcia, O. R., & Villa, C. C. (2018). The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch‐chitosan edible films. Journal of the Science of Food and Agriculture, 98(11), 4042-4049.
  • Prashanth, K. V. H., & Tharanathan, R. N. (2006). Crosslinked chitosan—preparation and characterization. Carbohydrate research, 341(1), 169-173.
  • Qin, Z., Jia, X., Liu, Q., Kong, B., & Wang, H. (2020). Enhancing physical properties of chitosan/pullulan electrospinning nanofibers via green crosslinking strategies. Carbohydrate Polymers, 247, 116734.
  • Ravishankar, K., & Dhamodharan, R. (2020). Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. Reactive and Functional Polymers, 149, 104517.
  • Ren, L., Yan, X., Zhou, J., Tong, J., & Su, X. (2017). Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. International Journal of Biological Macromolecules, 105, 1636-1643.
  • Roy, S., Zhai, L., Kim, H. C., Pham, D. H., Alrobei, H., & Kim, J. (2021). Tannic-acid-cross-linked and TiO2-nanoparticle-reinforced chitosan-based nanocomposite film. Polymers, 13(2), 228.
  • Russo D, Bonomo MG, Salzano G, Martelli G, Milella L. (2012). Nutraceutical properties of Citrus clementina juices. Pharmacologyonline. 1, 84–93.
  • Sedaghat, E., Rostami, A. A., Ghaemy, M., & Rostami, A. (2019). Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite. Journal of Thermal Analysis and Calorimetry, 136(2), 759-769.
  • Siralertmukul, K., Yuenyaw, N., Watcharamul, S., & Nuisin, R. (2021). Facile Fabrication of Chitosan/Starch Composite Films with Fumed Silica as an Additive. Engineering Journal, 25(9), 45-53.
  • Sonker, A. K., Rathore, K., Nagarale, R. K., & Verma, V. (2018). Crosslinking of polyvinyl alcohol (PVA) and effect of crosslinker shape (aliphatic and aromatic) thereof. Journal of Polymers and the Environment, 26(5), 1782-1794.
  • Torğut, G., Yazdıç, F. C., & Gürler, N. (2022b). Synthesis, characterization, pH‐sensitive swelling and antimicrobial activities of chitosan–graft‐poly (hydroxyethyl methacrylate) hydrogel composites for biomedical applications. Polymer Engineering & Science, 62(8), 2552-2559.
  • Vakili, M., Deng, S., Li, T., Wang, W., Wang, W., & Yu, G. (2018). Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chemical Engineering Journal, 347, 782-790.
  • Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., ... & Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97, 105208.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Chemical Engineering
Authors

Nedim Gürler 0000-0001-5637-8262

Ferit Can Yazdıç 0000-0002-2762-3027

Publication Date March 15, 2023
Submission Date October 12, 2022
Published in Issue Year 2023Volume: 26 Issue: 1

Cite

APA Gürler, N., & Yazdıç, F. C. (2023). 3-APTMS TAKVİYELİ KİTOSAN-POLİVİNİL ALKOL HARMAN FİLMLERİNİN FİZİKSEL VE ANTİBAKTERİYEL AKTİVİTELERİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 154-165. https://doi.org/10.17780/ksujes.1187738