Research Article
BibTex RIS Cite

RELIABILITY ASSESSMENT OF BATTERY SYSTEMS USED IN AIRCRAFT PROPULSION SYSTEMS

Year 2023, Volume: 26 Issue: 2, 506 - 516, 03.06.2023
https://doi.org/10.17780/ksujes.1220974

Abstract

Safety and reliability of the energy storage devices as one of the most important components of Electric Aircraft and Hybrid Electric Aircraft is essential. Therefore, reliability evaluation of batteries is crucial for Electric Propulsion System design architecture. Li-ion battery reliability assessment is defined as calculating the faults or degradation occurrence probability and its impact on the obtainable capacity and power. Although failures of Li-ion battery cells involve both failures that cause safety issues (fire and explosion) and failures that reduce the ideal performance of the battery against the design intent, the focus of this study is on failures that lead to battery degradation. To estimate Electric Propulsion System reliability, it is critical to recognize the link between aging effects and battery performance. In this study, the lithium-ion battery systems to be used in aircraft were analyzed in terms of system, component and functional reliability from the aircraft design stages. In this study, reliability analysis of battery systems used in electric propulsion systems was performed, analysis results and current standards for certification were compared, and legal gaps in front of the industry's widespread and reliable use of electric propulsion systems were pointed out.

References

  • Bills, A., Sripad, S., Fredericks, W. L., Guttenberg, M., Charles, D., Frank, E., & Viswanathan, V. (2020). Universal Battery Performance and Degradation Model for Electric Aircraft. https://doi.org/10.26434/chemrxiv.12616169.v1
  • Can, S., Gül, C. G., Koruyucu, E., & Yildiz, M. (2022). Reliability Considerations of the Common Unit in Hybrid Electric Propulsion. IOP Conference Series: Materials Science and Engineering, 1226(1), 012076. https://doi.org/10.1088/1757-899x/1226/1/012076
  • Diao, W., Saxena, S., & Pecht, M. (2019). Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells. Journal of Power Sources, 435, 226830. https://doi.org/10.1016/j.jpowsour.2019.226830
  • DoD. (1998). Military Handbook Electronic Reliability Design Handbook. In DoD (MIL-HDBK-3, Issue 1 October).
  • Gandoman, F. H., Ahmadi, A., Bossche, P. Van den, Van Mierlo, J., Omar, N., Nezhad, A. E., Mavalizadeh, H., & Mayet, C. (2019). Status and future perspectives of reliability assessment for electric vehicles. Reliability Engineering and System Safety, 183, 1–16. https://doi.org/10.1016/j.ress.2018.11.013
  • Gandoman, F. H., Ahmed, E. M., Ali, Z. M., Berecibar, M., Zobaa, A. F., & Aleem, S. H. E. A. (2021). Reliability evaluation of lithium‐ion batteries for e‐mobility applications from practical and technical perspectives: A case study. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/SU132111688
  • Hendricks, C., Williard, N., Mathew, S., & Pecht, M. (2015). A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. Journal of Power Sources, 297, 113–120. https://doi.org/10.1016/j.jpowsour.2015.07.100
  • Hornung, M., & Sizmann, A. (2013). Battery Pack Modeling.
  • Hunt, G. (1996). Electrıc Vehıcle Battery Test Procedures Revision 2. Idaho National Engineering Laboratory (INEL), January, 1–40.
  • Ilie, G., & Ciocoiu, C. N. (2010). Applıcatıon Of Fıshbone Dıagram To Determıne The Rısk Of An Event Wıth Multıple Causes Management Research Applıcatıon Of Fıshbone Dıagram To Determıne The Rısk Of An Event Wıth Multıple Causes. Management Research and Practice, 2(1), 1–20. http://mrp.ase.ro/no21/f1.pdf
  • Juarez-Robles, D., Jeevarajan, J. A., & Mukherjee, P. P. (2020). Degradation-Safety Analytics in Lithium-Ion Cells: Part I. Aging under Charge/Discharge Cycling. Journal of The Electrochemical Society, 167(16), 160510. https://doi.org/10.1149/1945-7111/abc8c0
  • Larsson, F., & Mellander, B. (2017). Lithium-ion Batteries used in Electrified Vehicles – General Risk Assessment and Construction Guidelines from a Fire and Gas Release Perspective. Borås, 1–25. http://publications.lib.chalmers.se/records/fulltext/252355/252355.pdf
  • Shu, X., Yang, W., Guo, Y., Wei, K., Qin, B., & Zhu, G. (2020). A reliability study of electric vehicle battery from the perspective of power supply system. Journal of Power Sources, 451, 227805. https://doi.org/10.1016/j.jpowsour.2020.227805
  • Sripad, S., Bills, A., & Viswanathan, V. (2021). A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 46(5), 435–442. https://doi.org/10.1557/s43577-021-00097-1
  • Stephens, D., Shawcross, P., Stout, G., Sullivan, E., Saunders, J., Risser, S., & Sayre, J. (2017). Lithium-ion Battery Safety Issues for Electric and Plug-in Hybrid Vehicles. US DOT, October, chapter 2-page 7, 10. www.ntis.gov.
  • Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1–2), 269–281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  • Xu, Q., Xu, Y., Tu, P., & Zhao, T. (2019). Systematic Reliability Modeling and Evaluation for On-Board Power Systems of More Electric Aircrafts. IEEE Transactions on Power Systems 34(4), 3264–3273. https://doi.org/10.0.4.85/TPWRS.2019.2896454
  • Zio, E., Fan, M., Zeng, Z., & Kang, R. (2019). Application of reliability technologies in civil aviation : Lessons learnt and perspectives. Chinese Journal of Aeronautics, 32(1), 143–158. https://doi.org/10.1016/j.cja.2018.05.014

UÇAK İTKİ SİSTEMLERİNDE KULLANILAN BATARYA SİSTEMLERİNİN GÜVENİLİRLİK ANALİZİ

Year 2023, Volume: 26 Issue: 2, 506 - 516, 03.06.2023
https://doi.org/10.17780/ksujes.1220974

Abstract

Elektrikli Uçak ve Hibrit Elektrikli Uçağın en önemli bileşenlerinden biri olan enerji depolama cihazlarının güvenliği ve güvenilirliği esastır. Bu nedenle, bataryaların güvenilirlik değerlendirmesi bilhassa elektrikli itki sistemlerinin tasarım mimarisi için çok önemlidir. Li-ion batarya sistemlerinin güvenilirlik değerlendirmesi, arızaların veya bozulma olasılığının batarya kapasitesi ve çekilebilir güç üzerindeki etkisinin hesaplanması olarak tanımlanır. Li-ion batarya hücrelerinin arızaları hem güvenlik sorunlarına (yangın ve patlama) neden olan arızaları hem de tasarım amacına göre bataryanın ideal performansını azaltan arızaları içerse de bu çalışmanın ana odak noktası batarya performans kaybına yol açan arızalardır. Elektrikli itki sistemlerinin güvenilirliğini tahmin etmek için, yaşlanma etkileri ile batarya performansı arasındaki bağlantıyı tanımak çok önemlidir. Bu çalışmada, uçaklarda kullanılacak lityum-iyon batarya sistemlerinin, uçak tasarım aşamalarından itibaren sistem, bileşen ve işlev güvenilirlikleri açısından analizleri gerçekleştirilmiştir. Bu çalışmada elektrikli itki sistemlerinde kullanılan batarya sistemlerinin güvenilirlik analizi gerçekleştirilerek, analiz sonucu ile sertifikasyonuna yönelik mevcut standartlar karşılaştırılmış ve sektörün elektrikli tahrik sistemlerini yaygın ve güvenilir olarak kullanmasının önündeki yasal boşluklara dikkat çekilmiştir.

References

  • Bills, A., Sripad, S., Fredericks, W. L., Guttenberg, M., Charles, D., Frank, E., & Viswanathan, V. (2020). Universal Battery Performance and Degradation Model for Electric Aircraft. https://doi.org/10.26434/chemrxiv.12616169.v1
  • Can, S., Gül, C. G., Koruyucu, E., & Yildiz, M. (2022). Reliability Considerations of the Common Unit in Hybrid Electric Propulsion. IOP Conference Series: Materials Science and Engineering, 1226(1), 012076. https://doi.org/10.1088/1757-899x/1226/1/012076
  • Diao, W., Saxena, S., & Pecht, M. (2019). Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells. Journal of Power Sources, 435, 226830. https://doi.org/10.1016/j.jpowsour.2019.226830
  • DoD. (1998). Military Handbook Electronic Reliability Design Handbook. In DoD (MIL-HDBK-3, Issue 1 October).
  • Gandoman, F. H., Ahmadi, A., Bossche, P. Van den, Van Mierlo, J., Omar, N., Nezhad, A. E., Mavalizadeh, H., & Mayet, C. (2019). Status and future perspectives of reliability assessment for electric vehicles. Reliability Engineering and System Safety, 183, 1–16. https://doi.org/10.1016/j.ress.2018.11.013
  • Gandoman, F. H., Ahmed, E. M., Ali, Z. M., Berecibar, M., Zobaa, A. F., & Aleem, S. H. E. A. (2021). Reliability evaluation of lithium‐ion batteries for e‐mobility applications from practical and technical perspectives: A case study. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/SU132111688
  • Hendricks, C., Williard, N., Mathew, S., & Pecht, M. (2015). A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. Journal of Power Sources, 297, 113–120. https://doi.org/10.1016/j.jpowsour.2015.07.100
  • Hornung, M., & Sizmann, A. (2013). Battery Pack Modeling.
  • Hunt, G. (1996). Electrıc Vehıcle Battery Test Procedures Revision 2. Idaho National Engineering Laboratory (INEL), January, 1–40.
  • Ilie, G., & Ciocoiu, C. N. (2010). Applıcatıon Of Fıshbone Dıagram To Determıne The Rısk Of An Event Wıth Multıple Causes Management Research Applıcatıon Of Fıshbone Dıagram To Determıne The Rısk Of An Event Wıth Multıple Causes. Management Research and Practice, 2(1), 1–20. http://mrp.ase.ro/no21/f1.pdf
  • Juarez-Robles, D., Jeevarajan, J. A., & Mukherjee, P. P. (2020). Degradation-Safety Analytics in Lithium-Ion Cells: Part I. Aging under Charge/Discharge Cycling. Journal of The Electrochemical Society, 167(16), 160510. https://doi.org/10.1149/1945-7111/abc8c0
  • Larsson, F., & Mellander, B. (2017). Lithium-ion Batteries used in Electrified Vehicles – General Risk Assessment and Construction Guidelines from a Fire and Gas Release Perspective. Borås, 1–25. http://publications.lib.chalmers.se/records/fulltext/252355/252355.pdf
  • Shu, X., Yang, W., Guo, Y., Wei, K., Qin, B., & Zhu, G. (2020). A reliability study of electric vehicle battery from the perspective of power supply system. Journal of Power Sources, 451, 227805. https://doi.org/10.1016/j.jpowsour.2020.227805
  • Sripad, S., Bills, A., & Viswanathan, V. (2021). A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 46(5), 435–442. https://doi.org/10.1557/s43577-021-00097-1
  • Stephens, D., Shawcross, P., Stout, G., Sullivan, E., Saunders, J., Risser, S., & Sayre, J. (2017). Lithium-ion Battery Safety Issues for Electric and Plug-in Hybrid Vehicles. US DOT, October, chapter 2-page 7, 10. www.ntis.gov.
  • Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1–2), 269–281. https://doi.org/10.1016/j.jpowsour.2005.01.006
  • Xu, Q., Xu, Y., Tu, P., & Zhao, T. (2019). Systematic Reliability Modeling and Evaluation for On-Board Power Systems of More Electric Aircrafts. IEEE Transactions on Power Systems 34(4), 3264–3273. https://doi.org/10.0.4.85/TPWRS.2019.2896454
  • Zio, E., Fan, M., Zeng, Z., & Kang, R. (2019). Application of reliability technologies in civil aviation : Lessons learnt and perspectives. Chinese Journal of Aeronautics, 32(1), 143–158. https://doi.org/10.1016/j.cja.2018.05.014
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Electrical and Electronics Engineering
Authors

Tahmineh Raoofı 0000-0002-7988-1853

Melih Yıldız 0000-0002-7546-4462

Publication Date June 3, 2023
Submission Date December 19, 2022
Published in Issue Year 2023Volume: 26 Issue: 2

Cite

APA Raoofı, T., & Yıldız, M. (2023). UÇAK İTKİ SİSTEMLERİNDE KULLANILAN BATARYA SİSTEMLERİNİN GÜVENİLİRLİK ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(2), 506-516. https://doi.org/10.17780/ksujes.1220974