Research Article
BibTex RIS Cite

THE EFFECT OF WORKPIECE THICKNESS ON VIBRATION-INDUCED PRODUCTION ERRORS IN LASER CUTTING MACHINES: AN EXPERIMENTAL STUDY

Year 2024, Volume: 27 Issue: 2, 470 - 480, 03.06.2024
https://doi.org/10.17780/ksujes.1393274

Abstract

In laser cutting, especially in producing small parts with complex lines and tight tolerances, vibrations can cause defects on the cut edges, negatively affecting product quality. Micro deviations in the relative position of the laser cutting head and the workpiece relative to each other are the sources of errors in the laser cutting process. Limiting the acceleration of the moving masses carrying the laser cutting head can increase cutting accuracy by reducing body vibrations, but this measure minimizes the production speed. This study analyzes vibrations in a laser cutting machine under extreme operating conditions representing high cutting speeds. For this purpose, a very economical vibration measurement device has been developed, although its measurement sensitivity and data collection speed are high. With the help of this device, vibrations occurring in the machine body and workpieces of different thicknesses were detected. The results show that as the workpiece thickness decreases, the effect of machine body vibrations on the workpiece tends to increase significantly, which can cause cutting defects.

Project Number

TÜBİTAK Projesi (119C115)

References

  • Analog Devices, (2010). Small, Low Power, 3-Axis ±3g Accelerometer (ADXL335) Data Sheet https://www.analog.com/media/en/technical-documentation/data-sheets/adxl335.pdf 25.10.2023
  • Berninger, T. F. C., Slimak, T., Weber, T., & Rixen, D. J. (2020). An external stabilization unit for high-precision applications of robot manipulators. Içinde IEEE International Conference on Intelligent Robots and Systems (ss. 4276-4282). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IROS45743.2020.9341454
  • Chen, Y.-X. (2016). Modal Analysis of Three Dimensional Numerical Control Laser Cutting Machine Based on Finite Element Method. Proceedings of the 3rd International Conference on Material Engineering and Application. https://doi.org/10.2991/icmea-16.2016.40
  • Çelenk, O. (2018). Kompozit-Alüminyum Hibrit Yapının Lazer Kesim Tezgâhı Y-Eksenine Uygulanması, Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Bursa 127s.
  • Denkena, B., Eckl, M., & Lepper, T. (2015). Advanced control strategies for active vibration suppression in laser cutting machines. International Journal of Automation Technology, 9(4), 425-435. https://doi.org/10.20965/ijat.2015.p0425
  • Ghany, K. A., Rafea, H. A., & Newishy, M. (2006). Using a Nd:YAG laser and six axes robot to cut zinc-coated steel. International Journal of Advanced Manufacturing Technology, 28(11-12), 1111-1117. https://doi.org/10.1007/s00170-004-2468-x
  • Girdu, C. C., & Gheorghe, C. (2023). Study of the Relationship between Entropy and Hardness in Laser Cutting of Hardox Steel. Materials, 16(13). https://doi.org/10.3390/ma16134540
  • Hace, A., Jezernik, K., & Terbuc, M. (1999). VSS motion control for a laser-cutting machine. Control Engineering Practice, 9(1), 66-67. https://doi.org/10.1016/S0967-0661(00)00089-7.
  • Hashemzadeh, M., Voisey, K. T., & Kazerooni, M. (2012). The effects of low-frequency workpiece vibration on low-power CO 2 laser cutting of PMMA: An experimental investigation. International Journal of Advanced Manufacturing Technology, 63(1-4), 33-40. https://doi.org/10.1007/s00170-011-3881-6
  • Kusuma, A. I., & Huang, Y. M. (2023). Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network. Journal of Intelligent Manufacturing, 34(4), 1683-1699. https://doi.org/10.1007/s10845-021-01881-1
  • Mohd Ghazali, M. H., & Rahiman, W. (2021). Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review. Shock and Vibration. Hindawi Limited. https://doi.org/10.1155/2021/9469318
  • Schedlinski, C., & Lüscher, M. (2002). Application of Classical and Output-Only Modal Analysis to a Laser Cutting Machine. Proc.
  • Struckmeier, F., Zhao, J., & León, F. P. (2020). Measuring the supporting slats of laser cutting machines using laser triangulation. International Journal of Advanced Manufacturing Technology, 108(11-12), 3819-3833. https://doi.org/10.1007/s00170-020-05640-z
  • Tonoli, A., Bonfitto, A., Silvagni, M., D., L., & Zenerino, E. (2011). Active Isolation and Damping of Vibrations for High Precision Laser Cutting Machine. Içinde Vibration Analysis and Control - New Trends and Developments. InTech. https://doi.org/10.5772/25092
  • Troncossi, M., Troiani, E., & Rivola, A. (2008). Desıgn Optımızatıon Of A Laser Cuttıng Machıne By Elastodynamıc Modelıng, Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis.
  • Venkata Rao, K., Suvarna Raju, L., Suresh, G., Ranganayakulu, J., & Krishna, J. (2024). Modelling of kerf width and surface roughness using vibration signals in laser beam machining of stainless steel using design of experiments. Optics and Laser Technology, 169. https://doi.org/10.1016/j.optlastec.2023.110146
  • Vieira, D. G. P., Meireles, J. F., Nunes, J. P., & Da Silva, L. F. M. (2012). Substituting conventional steel alloys by carbon fibre composites in structural parts of an existing laser cutting equipment. Materialwissenschaft und Werkstofftechnik (C. 43, ss. 468-478). https://doi.org/10.1002/mawe.201200983
  • Wijker, Jaap J. (2009). Random Vibrations in Spacecraft Structures Design: Theory and Applications, Springer Dordrecht.
  • Zhang, Q. P., Wang, Z. R., & Wang, Y. F. (2014). Dynamic analysis and experimental research of laser cutting machines. Içinde Advanced Materials Research (C. 915-916, ss. 31-34). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMR.915-916.31

LAZER KESİM MAKİNELERİNDE İŞ PARÇASI KALINLIĞININ TİTREŞİM KAYNAKLI ÜRETİM HATALARINA ETKİSİ: DENEYSEL BİR İNCELEME

Year 2024, Volume: 27 Issue: 2, 470 - 480, 03.06.2024
https://doi.org/10.17780/ksujes.1393274

Abstract

Lazer kesimde, özellikle karmaşık hatlara ve dar toleranslara sahip küçük parçaların üretiminde titreşimler, kesim kenarlarında kusurlara neden olarak ürün kalitesini olumsuz etkileyebilmektedir. Lazer kesim kafasının ve iş parçasının birbirine göre göreceli konumundaki mikro sapmalar, lazer kesim işlemindeki hataların kaynağını oluşturmaktadır. Lazer kesim kafasını taşıyan hareketli kütlelerin ivmesinin sınırlandırılması, gövde titreşimlerini azaltarak kesim doğruluğunu artırabilmekte ancak bu önlem, üretim hızını düşmesine neden olmaktadır. Bu çalışma, yüksek kesme hızlarını temsil eden aşırı çalışma koşulları altında bir lazer kesme makinesindeki titreşimleri analiz etmektedir. Bu amaçla ölçüm hassasiyeti ve veri toplama hızı yüksek olmasına rağmen oldukça ekonomik bir titreşim ölçüm cihazı geliştirilmiştir. Bu cihaz yardımıyla makine gövdesinde ve farklı kalınlıktaki iş parçalarında meydana gelen titreşimler tespit edilmiştir. Sonuçlar, iş parçası kalınlığı azaldıkça makine gövdesi titreşimlerinin iş parçası üzerindeki etkisinin önemli ölçüde artma eğiliminde olduğunu ve bu durumun parça üzerinde kesme kusurlarına neden olabileceğini göstermektedir.

Ethical Statement

Bu çalışma, orijinal bir araştırma makalesidir ve daha önce başka bir dergide yayınlanmamıştır. Aynı zamanda, bu makale üzerinde herhangi bir çıkar çatışması olmadığını beyan ederiz.

Supporting Institution

Durmazlar Makina San. ve Tic. A.Ş., TÜBİTAK

Project Number

TÜBİTAK Projesi (119C115)

Thanks

Bu çalışma Durmazlar Makina San. ve Tic. A.Ş. ve TÜBİTAK BİDEB tarafından, TÜBİTAK 2244 Sanayi Doktora Programı kapsamında desteklenmiştir (Proje No: 119C115). Teşekkürlerimizi sunarız.

References

  • Analog Devices, (2010). Small, Low Power, 3-Axis ±3g Accelerometer (ADXL335) Data Sheet https://www.analog.com/media/en/technical-documentation/data-sheets/adxl335.pdf 25.10.2023
  • Berninger, T. F. C., Slimak, T., Weber, T., & Rixen, D. J. (2020). An external stabilization unit for high-precision applications of robot manipulators. Içinde IEEE International Conference on Intelligent Robots and Systems (ss. 4276-4282). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IROS45743.2020.9341454
  • Chen, Y.-X. (2016). Modal Analysis of Three Dimensional Numerical Control Laser Cutting Machine Based on Finite Element Method. Proceedings of the 3rd International Conference on Material Engineering and Application. https://doi.org/10.2991/icmea-16.2016.40
  • Çelenk, O. (2018). Kompozit-Alüminyum Hibrit Yapının Lazer Kesim Tezgâhı Y-Eksenine Uygulanması, Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Bursa 127s.
  • Denkena, B., Eckl, M., & Lepper, T. (2015). Advanced control strategies for active vibration suppression in laser cutting machines. International Journal of Automation Technology, 9(4), 425-435. https://doi.org/10.20965/ijat.2015.p0425
  • Ghany, K. A., Rafea, H. A., & Newishy, M. (2006). Using a Nd:YAG laser and six axes robot to cut zinc-coated steel. International Journal of Advanced Manufacturing Technology, 28(11-12), 1111-1117. https://doi.org/10.1007/s00170-004-2468-x
  • Girdu, C. C., & Gheorghe, C. (2023). Study of the Relationship between Entropy and Hardness in Laser Cutting of Hardox Steel. Materials, 16(13). https://doi.org/10.3390/ma16134540
  • Hace, A., Jezernik, K., & Terbuc, M. (1999). VSS motion control for a laser-cutting machine. Control Engineering Practice, 9(1), 66-67. https://doi.org/10.1016/S0967-0661(00)00089-7.
  • Hashemzadeh, M., Voisey, K. T., & Kazerooni, M. (2012). The effects of low-frequency workpiece vibration on low-power CO 2 laser cutting of PMMA: An experimental investigation. International Journal of Advanced Manufacturing Technology, 63(1-4), 33-40. https://doi.org/10.1007/s00170-011-3881-6
  • Kusuma, A. I., & Huang, Y. M. (2023). Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network. Journal of Intelligent Manufacturing, 34(4), 1683-1699. https://doi.org/10.1007/s10845-021-01881-1
  • Mohd Ghazali, M. H., & Rahiman, W. (2021). Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review. Shock and Vibration. Hindawi Limited. https://doi.org/10.1155/2021/9469318
  • Schedlinski, C., & Lüscher, M. (2002). Application of Classical and Output-Only Modal Analysis to a Laser Cutting Machine. Proc.
  • Struckmeier, F., Zhao, J., & León, F. P. (2020). Measuring the supporting slats of laser cutting machines using laser triangulation. International Journal of Advanced Manufacturing Technology, 108(11-12), 3819-3833. https://doi.org/10.1007/s00170-020-05640-z
  • Tonoli, A., Bonfitto, A., Silvagni, M., D., L., & Zenerino, E. (2011). Active Isolation and Damping of Vibrations for High Precision Laser Cutting Machine. Içinde Vibration Analysis and Control - New Trends and Developments. InTech. https://doi.org/10.5772/25092
  • Troncossi, M., Troiani, E., & Rivola, A. (2008). Desıgn Optımızatıon Of A Laser Cuttıng Machıne By Elastodynamıc Modelıng, Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis.
  • Venkata Rao, K., Suvarna Raju, L., Suresh, G., Ranganayakulu, J., & Krishna, J. (2024). Modelling of kerf width and surface roughness using vibration signals in laser beam machining of stainless steel using design of experiments. Optics and Laser Technology, 169. https://doi.org/10.1016/j.optlastec.2023.110146
  • Vieira, D. G. P., Meireles, J. F., Nunes, J. P., & Da Silva, L. F. M. (2012). Substituting conventional steel alloys by carbon fibre composites in structural parts of an existing laser cutting equipment. Materialwissenschaft und Werkstofftechnik (C. 43, ss. 468-478). https://doi.org/10.1002/mawe.201200983
  • Wijker, Jaap J. (2009). Random Vibrations in Spacecraft Structures Design: Theory and Applications, Springer Dordrecht.
  • Zhang, Q. P., Wang, Z. R., & Wang, Y. F. (2014). Dynamic analysis and experimental research of laser cutting machines. Içinde Advanced Materials Research (C. 915-916, ss. 31-34). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMR.915-916.31
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Dynamics, Vibration and Vibration Control, Machine Theory and Dynamics, Material Production Technologies
Journal Section Mechanical Engineering
Authors

Deniz Kaya 0000-0001-6926-8206

Derya Mert 0000-0003-2208-6848

Ahmet Kahraman 0009-0008-1684-5848

Murat Reis 0000-0001-5853-488X

Project Number TÜBİTAK Projesi (119C115)
Publication Date June 3, 2024
Submission Date November 21, 2023
Acceptance Date May 20, 2024
Published in Issue Year 2024Volume: 27 Issue: 2

Cite

APA Kaya, D., Mert, D., Kahraman, A., Reis, M. (2024). LAZER KESİM MAKİNELERİNDE İŞ PARÇASI KALINLIĞININ TİTREŞİM KAYNAKLI ÜRETİM HATALARINA ETKİSİ: DENEYSEL BİR İNCELEME. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 470-480. https://doi.org/10.17780/ksujes.1393274