Research Article
BibTex RIS Cite

THE RELATIONSHIP BETWEEN ELASTIC UNDRAINED MODULUS-UNDRAINED SHEAR STRENGTH FOR BENTONITE SAND MIXTURES

Year 2024, Volume: 27 Issue: 2, 589 - 600, 03.06.2024
https://doi.org/10.17780/ksujes.1411389

Abstract

One of the main parameters for determining the engineering properties of soils is the stress-strain behavior. The stress-strain properties of soils can be determined by unconfined compression and triaxial tests in the laboratory. Bentonite sand mixtures were used in this study. Eleven mixtures were obtained, starting from 100% Bentonite to 100% sand by adding 10% sand. Unconfined compression tests were performed at 3 different water contents: optimum water content, optimum +2 and optimum-2 water contents. The highest unconfined compression strength was obtained as 303.207 kPa at optimum water content in 100% bentonite. The lowest unconfined compression strength was found 30.09 kPa at optimum-2 water content, 20%bentonite-80% sand mixture. The unconfined compression strength of bentonite-sand mixtures decreased with increasing sand content at all three water contents. The undrained secant modulus of the mixtures increased with increasing bentonite content. The highest undrained secant modulus values were obtained at optimum water contents. For all three water contents, a linear relationship was obtained between undrained secant modulus and unconfined compression strength. The variation of energy absorption capacity with bentonite content was calculated for three different water contents. A smooth increase or decrease relationship between bentonite content and energy absorption capacity cannot be obtained.

References

  • Aslan, Y. (2022). Stabilizasyonda Kireç ve Tüflerin Birlikte Kullanımının Bentonitin Dayanımına Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 356-369. https://doi.org/10.17780/ksujes.1118925.
  • ASTM D 2166-00. (2003). Standard test method for unconfined compressive strength of cohesive soil. In: Annual book ASTM standards, West Conshohocken, vol. 04.08; 2003. p. 201–6.
  • Atkinson J., (2007). The mechanics of soils and foundations, CRC Press, 2007.
  • Bjerrum L., (1973). Problems of soil mechanics and construction on soft clays, State of the art report, Session 4, Proc. VIII ICSMFE, Moscow, 1973, Vol. 3.
  • Bjerrum L. (1972). Embankments on soft ground. In: Proceedings of the ASCE special conf on performance of earth and earth-supported structures, vol. II. Purdue University; 1972. p. 81–118.
  • Burland J.B., (1990). On the compressibility and shear strength of natural clays, Géotechnique, 1990, 40(3), 329–378.
  • Cabalar A.F., & Alosman, S. O., (2021). Influence of rock powder on the behaviour of an organic soil. Bulletin of Engineering Geology and the Environment. 80:8665–8676. https://doi.org/10.1007/s10064-021-02457-2
  • Davies TG, Budhu M. (1986). Non-linear analysis of laterally loaded piles in heavily over consolidated clays. Geotechnique 1986;36(4):527–38.
  • Güven, B., Günek, Ş., & Kurt Albayrak, Z. N. (2023). Kilin Mukavemeti Ve Donma-Çözülme Sonrası Mukavemeti Üzerinde Biyopolimer Ve Lif Katkısının Ortak Etkisinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 951-961. https://doi.org/10.17780/ksujes.1328845
  • Head K.H., (1986). Manual of soil laboratory testing, Pentech Press, (Vol. 3), London.
  • Houlsby G.T., Wroth C.P., (1991). The variation of shear modulus of a clay with pressure and overconsolidation ratio, Soils and Foundations, 1991, 31(3), 138–143.
  • Holtz RD, Kovacs WD. (1981). An Introduction to geotechnical engineering. New Jersey: Prentice Hall; 1981. p. 733.
  • Jamiolkowski M., Lancellotta R., Wolski W. (1983). Precompression and Speeding-up Consolidation. S.O.A. and General Report, VIII ECSMFE, Helsinki.
  • Jardine R.J., Symes M.J., Burland J.B., (1984). The measurement of soil stiffness in the triaxial apparatus, Géotechnique, 1984, 34(3), 323–340.
  • Karakan, E. (2023). Flow index-liquid limit relationship by fall-cone tests in clay-sand mixtures. Engineering Science and Technology, an International Journal, 41, 101405.
  • Karakan, E. (2023). Influence of clay mineralogy on undrained shear strength using Fall cone test. Građevinar, 75(07.), 641-652.
  • Karakan, E. (2022). Relationships among plasticity, clay fraction and activity of clay–sand mixtures. Arabian Journal of Geosciences, 15(4), 334
  • Karakan, E., & Demir, S. (2020). Observations and findings on mechanical and plasticity behavior of sand-clay mixtures. Arabian Journal of Geosciences, 13, 1-20.
  • Karakan, E., Shimobe, S., & Sezer, A. (2020). Effect of clay fraction and mineralogy on fall cone results of clay–sand mixtures. Engineering Geology, 279, 105887.
  • Karakan, E. (2018). Factors effecting the shear strength of geotextile reinforced compacted clays. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20(60), 725-742.
  • Karakan, E., & Demir, S. (2018). Effect of fines content and plasticity on undrained shear strength of quartz-clay mixtures. Arabian Journal of Geosciences, 11, 1-12.
  • Kenney TC. (1976). Formation and geotechnical characteristics of glacial-lake varved soils. Bjerrum memorial volume, Norwegian Geotechnical Institute, Oslo; 1976. p. 15–39.
  • Ladd C.C., Foott R., (1974). New design procedure for stability of soft clays, Journal of the Geotechnical Engineering Division, 1974, 100(7), 763–786.
  • Leonards GA. (1962). Foundation engineering. New York: McGraw-Hill Book Company; 1962. p. 1136.
  • Lunne T., Berre T., Andersen K.H., Strandvik S., Sjursen H., (2006). Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays, Can. Geotechnical J., 2006, 43, 726–750.
  • Masaki, K., & Terashi, M. (2013). The deep mixing method, CRC Press.
  • Osterman J. (1960). Notes on the shearing resistance of soft clays. ACTA Polytech Scand 1960; 2:1–22.
  • PKN-CEN ISO/TS 17892:2009. Geotechnical investigation and testing. Laboratory testing of soil. Roscoe K., Burland J.B., (1968). On the generalized stress-strain behaviour of wet clay, Cambridge University Press, 1968, 535–609.
  • Sezer, A., Tanrınian, N., & Adamcıl, Y. E. (2017). Mechanıcal Behavıor Of Fly Ash Or Cement Stabılızed Sand-Bentonıte Mıxtures Exposed To Freeze-Thaw Actıon. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(5), 1008-1017. https://doi.org/10.18038/aubtda.332155
  • Shimobe, S., Karakan, E., & Sezer, A. (2021). Improved dataset for establishing novel relationships between compaction characteristics and physical properties of soils. Bulletin of Engineering Geology and the Environment, 80(11), 8633-8663.
  • Skempton AW, Bjerrum LA. (1957). Contribution to the settlement analysis of foundations on clay. Geotechnique 1957;7:168–78.
  • Stróżyk J., Tankıewıcz M., (2014). The Undrained Shear Strength of Overconsolidated Clays, Procedia Engineering, 2014, 91,317–321.
  • Terzaghi K, Peck RB, Mesri G. (1996). Soil mechanics in engineering practice. 3d ed. New York: John Wiley and Sons; 1996. p. 512.
  • Whittle A.J., Kavvadas M.J., (1994). Formulation of MIT-E3 constitutive model for overconsolidated clays, Journal of Geotechnical Engineering, 1994, 120(1), 173–198.

BENTONİT KUM KARIŞIMLARINDA ELASTİK DRENAJSIZ MODUL-SERBEST BASINÇ MUKAVEMETİ İLİŞKİSİ

Year 2024, Volume: 27 Issue: 2, 589 - 600, 03.06.2024
https://doi.org/10.17780/ksujes.1411389

Abstract

Zeminlerin mühendislik özelliklerinin belirlenmesi için temel parametrelerden biri de gerilme şekil değiştirme davranışıdır. Zeminlerin gerilme şekil değiştirme özellikleri laboratuvarda serbest basınç ve statik üç eksenli deneyler ile bulunabilir. Bu çalışmada yüksek plastisiteye sahip Bentonit kili ile kum karışımları kullanılmıştır. Karışımlar %100Bentonit kilinden başlayıp, %10kum ilave edilerek %100 kuma kadar, 11 karışım oluşturulmuştur. Serbest basınç deneyleri optimum su içeriği, optimum +2 su içeriği ve optimum-2 su içeriği olmak üzere 3 farklı su içeriklerinde gerçekleştirilmiştir. Deney sonuçları incelendiğinde, en yüksek serbest basınç mukavemeti %100 bentonit kilinde optimum su içeriğinde ve 303.207 kPa olarak elde edilmiştir. En düşük serbest basınç mukavemeti ise optimum-2 su içeriğinde, %20bentonit-%80kum karışımında ve 30.09 kPa olarak bulunmuştur. Bentonit-kum karışımlarının artan kum içeriği ile birlikte her üç su içeriğinde de serbest basınç mukavemetleri azalmıştır. Artan bentonit içeriği ile birlikte karışımların drenajsız sekant modülü artmıştır. En yüksek drenajsız sekant modülü değerleri optimum su içeriklerinde elde edilmiştir. Her üç su içeriği için, drenajsız sekant modülü ile serbest basınç mukavemeti arasında doğrusal bir ilişki elde edilmiştir. Üç farklı su içeriği için, bentonit içeriği ile enerji sönümleme kapasitesinin değişimi hesaplanmıştır. Elde edilen sonuçlar bentonit içeriği ile enerji sönümleme kapasitesi arasında düzgün bir artış ya da azalış ilişkisinin elde edilemediğini göstermektedir.

References

  • Aslan, Y. (2022). Stabilizasyonda Kireç ve Tüflerin Birlikte Kullanımının Bentonitin Dayanımına Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 356-369. https://doi.org/10.17780/ksujes.1118925.
  • ASTM D 2166-00. (2003). Standard test method for unconfined compressive strength of cohesive soil. In: Annual book ASTM standards, West Conshohocken, vol. 04.08; 2003. p. 201–6.
  • Atkinson J., (2007). The mechanics of soils and foundations, CRC Press, 2007.
  • Bjerrum L., (1973). Problems of soil mechanics and construction on soft clays, State of the art report, Session 4, Proc. VIII ICSMFE, Moscow, 1973, Vol. 3.
  • Bjerrum L. (1972). Embankments on soft ground. In: Proceedings of the ASCE special conf on performance of earth and earth-supported structures, vol. II. Purdue University; 1972. p. 81–118.
  • Burland J.B., (1990). On the compressibility and shear strength of natural clays, Géotechnique, 1990, 40(3), 329–378.
  • Cabalar A.F., & Alosman, S. O., (2021). Influence of rock powder on the behaviour of an organic soil. Bulletin of Engineering Geology and the Environment. 80:8665–8676. https://doi.org/10.1007/s10064-021-02457-2
  • Davies TG, Budhu M. (1986). Non-linear analysis of laterally loaded piles in heavily over consolidated clays. Geotechnique 1986;36(4):527–38.
  • Güven, B., Günek, Ş., & Kurt Albayrak, Z. N. (2023). Kilin Mukavemeti Ve Donma-Çözülme Sonrası Mukavemeti Üzerinde Biyopolimer Ve Lif Katkısının Ortak Etkisinin Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 951-961. https://doi.org/10.17780/ksujes.1328845
  • Head K.H., (1986). Manual of soil laboratory testing, Pentech Press, (Vol. 3), London.
  • Houlsby G.T., Wroth C.P., (1991). The variation of shear modulus of a clay with pressure and overconsolidation ratio, Soils and Foundations, 1991, 31(3), 138–143.
  • Holtz RD, Kovacs WD. (1981). An Introduction to geotechnical engineering. New Jersey: Prentice Hall; 1981. p. 733.
  • Jamiolkowski M., Lancellotta R., Wolski W. (1983). Precompression and Speeding-up Consolidation. S.O.A. and General Report, VIII ECSMFE, Helsinki.
  • Jardine R.J., Symes M.J., Burland J.B., (1984). The measurement of soil stiffness in the triaxial apparatus, Géotechnique, 1984, 34(3), 323–340.
  • Karakan, E. (2023). Flow index-liquid limit relationship by fall-cone tests in clay-sand mixtures. Engineering Science and Technology, an International Journal, 41, 101405.
  • Karakan, E. (2023). Influence of clay mineralogy on undrained shear strength using Fall cone test. Građevinar, 75(07.), 641-652.
  • Karakan, E. (2022). Relationships among plasticity, clay fraction and activity of clay–sand mixtures. Arabian Journal of Geosciences, 15(4), 334
  • Karakan, E., & Demir, S. (2020). Observations and findings on mechanical and plasticity behavior of sand-clay mixtures. Arabian Journal of Geosciences, 13, 1-20.
  • Karakan, E., Shimobe, S., & Sezer, A. (2020). Effect of clay fraction and mineralogy on fall cone results of clay–sand mixtures. Engineering Geology, 279, 105887.
  • Karakan, E. (2018). Factors effecting the shear strength of geotextile reinforced compacted clays. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20(60), 725-742.
  • Karakan, E., & Demir, S. (2018). Effect of fines content and plasticity on undrained shear strength of quartz-clay mixtures. Arabian Journal of Geosciences, 11, 1-12.
  • Kenney TC. (1976). Formation and geotechnical characteristics of glacial-lake varved soils. Bjerrum memorial volume, Norwegian Geotechnical Institute, Oslo; 1976. p. 15–39.
  • Ladd C.C., Foott R., (1974). New design procedure for stability of soft clays, Journal of the Geotechnical Engineering Division, 1974, 100(7), 763–786.
  • Leonards GA. (1962). Foundation engineering. New York: McGraw-Hill Book Company; 1962. p. 1136.
  • Lunne T., Berre T., Andersen K.H., Strandvik S., Sjursen H., (2006). Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays, Can. Geotechnical J., 2006, 43, 726–750.
  • Masaki, K., & Terashi, M. (2013). The deep mixing method, CRC Press.
  • Osterman J. (1960). Notes on the shearing resistance of soft clays. ACTA Polytech Scand 1960; 2:1–22.
  • PKN-CEN ISO/TS 17892:2009. Geotechnical investigation and testing. Laboratory testing of soil. Roscoe K., Burland J.B., (1968). On the generalized stress-strain behaviour of wet clay, Cambridge University Press, 1968, 535–609.
  • Sezer, A., Tanrınian, N., & Adamcıl, Y. E. (2017). Mechanıcal Behavıor Of Fly Ash Or Cement Stabılızed Sand-Bentonıte Mıxtures Exposed To Freeze-Thaw Actıon. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(5), 1008-1017. https://doi.org/10.18038/aubtda.332155
  • Shimobe, S., Karakan, E., & Sezer, A. (2021). Improved dataset for establishing novel relationships between compaction characteristics and physical properties of soils. Bulletin of Engineering Geology and the Environment, 80(11), 8633-8663.
  • Skempton AW, Bjerrum LA. (1957). Contribution to the settlement analysis of foundations on clay. Geotechnique 1957;7:168–78.
  • Stróżyk J., Tankıewıcz M., (2014). The Undrained Shear Strength of Overconsolidated Clays, Procedia Engineering, 2014, 91,317–321.
  • Terzaghi K, Peck RB, Mesri G. (1996). Soil mechanics in engineering practice. 3d ed. New York: John Wiley and Sons; 1996. p. 512.
  • Whittle A.J., Kavvadas M.J., (1994). Formulation of MIT-E3 constitutive model for overconsolidated clays, Journal of Geotechnical Engineering, 1994, 120(1), 173–198.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Civil Engineering
Authors

Eyyüb Karakan 0000-0003-2133-6796

Publication Date June 3, 2024
Submission Date December 28, 2023
Acceptance Date February 7, 2024
Published in Issue Year 2024Volume: 27 Issue: 2

Cite

APA Karakan, E. (2024). BENTONİT KUM KARIŞIMLARINDA ELASTİK DRENAJSIZ MODUL-SERBEST BASINÇ MUKAVEMETİ İLİŞKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 589-600. https://doi.org/10.17780/ksujes.1411389