Research Article
BibTex RIS Cite

DOLGU MALZEMESİNİN MEKANİK ÖZELLİKLEİINİN YIĞMA KEMER KÖPRÜLERİN STATİK VE DİNAMİK DAVRANIŞI ÜZERİNDEKİ ETKİLERİ

Year 2024, Volume: 27 Issue: 4, 1248 - 1266, 03.12.2024
https://doi.org/10.17780/ksujes.1487116

Abstract

Bu çalışmada, dolgu malzemesinin mekanik özelliklerinin yığma kemer köprülerin sismik davranışı üzerindeki etkileri incelenmiştir. Bu amaçla mevcut olmayan bir köprü modeli seçilmiş ve bu köprü modeli kullanılarak farklı dolgu malzemesi özelliklerine sahip köprü modelleri SAP2000 bilgisayar programında oluşturulmuştur. Dolgu malzemesinin köprünün dinamik davranışı üzerindeki etkilerini görebilmek amacıyla bu modeller üzerinde zaman tanım alanında doğrusal analiz ve modal analizler yapılmıştır. Modal analiz sonucunda, kullanılan dolgu malzemesinin yoğunluğu arttıkça periyodun büyüdüğü, elastisite modülü arttıkça ise periyodun küçüldüğü tespit edilmiştir. Zaman tanım alanında yapılan doğrusal analizler sonucunda ise; dolgu malzemesinin yoğunluğu arttıkça yer değiştirme ve gerilmelerin büyüdüğü, elastisite modülü arttığında ise yer değiştirme ve gerilmelerin küçüldüğü tespit edilmiştir. Statik analizler sonucunda, dolgu malzemesinin yoğunluğu arttıkça yer değiştirme ve gerilme değerlerinin arttığı, elastisite modülü arttıkça ise bu değerlerin küçüldüğü tespit edilmiştir.

References

  • Afet ve Acil Durum Yönetimi Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 2018.
  • Afet ve Acil Durum Yönetimi Başkanlığı. “Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması” https://tdth.afad.gov.tr/TDTH/main.xhtml (20.03.2023).
  • Altunışık, A.C., Kanbur, B., Genc, A.F., (2015). The effect of arch geometry on the structural behavior of masonry bridges. Smart Struct. Syst, 16(6), 1069-1089. https://doi.org/10.12989/sss.2015.16.6.1069
  • Altunisik, A. C., Bayraktar, A., & Genc, A. F. (2015). Determination of the restoration effect on the structural behavior of masonry arch bridges. Smart Struct. Syst, 16(1), 101-139. http://dx.doi.org/10.12989/sss.2015.16.1.101
  • ANSYS, 2008. Swanson Analysis System, US.
  • ATC-40, (1996), Seismic Evaluation and Retrofit of Concrete Buildings-Vol.1, Applied Technology Council, Redwood City, CA
  • Bayraktar, A., Altunısık, A. C., Türker, T., & Sevim, B. (2007). The effect of finite element model updating on earthquake behaviour of historical bridges. In Sixth National Conference on Earthquake Engineering, Istanbul, Turkey, October (pp. 16-20).
  • Bayraktar, A., & Hökelekli, E. (2021). Nonlinear soil deformability effects on the seismic damage mechanisms of brick and stone masonry arch bridges. International Journal of Damage Mechanics, 30(3), 431-452. https://doi.org/10.1177/1056789520974423
  • Brencich, A. and Sabia, D., (2008). Experimental identification of a multi-span masonry bridge: The Tanaro Bridge. Construction and Building Materials, 22(10), 2087-2099. https://doi.org/10.1016/j.conbuildmat.2007.07.031
  • Çubuk E.G., Sayın E., and Özmen, A., (2022). Dynamic Analysis of Historical Masonry Arch Bridges under Different Earthquakes: The Case of Murat Bey Bridge. Turkish Journal of Science & Technology, 17(2). https://doi.org/10.55525/tjst.1105998
  • Evci, P. U., Sever, A. E., & Şakalak, E. (2024). Investigation of Seismic Behavior of the Historical Yeşiltepe Bridge. Prevention and Treatment of Natural Disasters, 3(2). https://doi.org/10.54963/ptnd.v3i2.291
  • Frunzio, G., Monaco, M., & Gesualdo, A. (2001). 3D FEM analysis of a Roman arch bridge. Historical constructions, 591-598.
  • Harapin, A., Smilović, M., Grgić, N., Glibić, M., Radnić, J., (2013). Static and dynamic analysis of the old stone bridge in Mostar. Gradevinar 64, 655-655. https://doi.org/10.14256/JCE.715.2012
  • Kader, A., Sayın, E. and Özmen, A., (2021). Farklı Sönüm Tipleri Altında Tarihi Yığma Köprülerin Sismik Tepkilerinin Değerlendirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 45-59. https://doi.org/10.35234/fumbd.940435
  • Karaton, M., Aksoy, H. S., Sayın, E., & Calayır, Y. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79, 408-421. https://doi.org/10.1016/j.engfailanal.2017.05.017
  • Kumbasaroglu, A., Celik, A., Demir, O., Turan, A. & Yalciner, H., (2019). An Assessment of the Seismic Performance of the Historic Tigris Bridge. Open Journal of Civil Engineering, 9(03), 230. https://doi.org/10.4236/ojce.2019.93016
  • Laterza, M., D’Amato, M., & Casamassima, V.M., (2017). Seismic performance evaluation of multi-span existing masonry arch bridge. In AIP Conference Proceedings (Vol. 1863, No. 1, p. 450010). AIP Publishing LLC. https://doi.org/10.1063/1.4992619
  • Lourenco, P.B., (1996). Computational strategy for masonry structures. Delft University of Technology and DIANA Research.
  • Nemutlu, Ö. F., Güzel, İ., Balun, B., Öztürk, M., & Sarı, A. (2023). Nonlinear Seismic Assessment of Historical Masonry Karaz Bridge Under Different Ground Motion Records. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(1), 247-260. https://doi.org/10.17798/bitlisfen.1232008
  • Onat, O., & Sayın, E. (2015). Tarihi Tağar Köprüsünün doğrusal olmayan sismik analizi. 5. Tarihi Eserlerin Güçlendirilmesi ve Geleceğe Güvenle Devredilmesi Sempozyumu, 1-3.
  • Özmen, A. and Sayın, E., (2018). Seismic assessment of a historical masonry arch bridge. Journal of Structural Engineering & Applied Mechanics, 1(2), 95-104, 2018. https://doi.org/10.31462/jseam.2018.01095104
  • Özmen, A. and Sayın, E., (2020). Tarihi yığma bir köprünün deprem davranışının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 956-965. https://doi.org/10.28948/ngumuh.715121
  • Özmen, A., & Sayın, E. (2023). 3D soil structure interaction effects on the seismic behavior of single span historical masonry bridge. Geotechnical and Geological Engineering, 41(3), 2023-2041. https://doi.org/10.1007/s10706-023-02389-6
  • Pela, L., Aprile, A., Benedetti, A., (2009). Seismic assessment of masonry arch bridges. Engineering Structures, 31: 1777- 1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  • Pelà, L., Aprile, A., & Benedetti, A. (2013). Comparison of seismic assessment procedures for masonry arch bridges. Construction and Building Materials, 38, 381-394. https://doi.org/10.1016/j.conbuildmat.2012.08.046
  • Sakcalı, G.B., Gönül, A. and Yüksel, İ., (2019). Seismic behavior of historical masonry bridges: The case study of Irgandi Bridge. International Journal, 6, 25. https://doi.org/10.15377/2409-9821.2019.06.4
  • SAP2000. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual. Berkeley, California, Computer and Structres Inc.
  • Saygılı, Ö., & Lemos, J. V. (2021, October). Seismic vulnerability assessment of masonry arch bridges. In Structures (Vol. 33, pp. 3311-3323). Elsevier. https://doi.org/10.1016/j.istruc.2021.06.057
  • Seismosoft. (2023). SeismoMatch 2023-A Computer Program for Spectrum Matching of Earthquake Records.
  • Sözen, Ş., & Doğangün, A. (2023). Evaluation of the effect of change in support conditions on the seismic behavior of a historical masonry bridge. ACM Journal on Computing and Cultural Heritage, 16(4), 1-19. https://doi.org/10.1145/3590957
  • Sevim, B., Bayraktar, A., Altunişik, A. C., Atamtürktür, S., & Birinci, F. (2011). Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations. Nonlinear Dynamics, 63, 755-770. https://doi.org/10.1007/s11071-010-9835-y
  • Sözen, Ş. and Çavuş, M., (2020). Tek açıklıklı tarihi taş köprülerde form değişikliğinin köprünün sismik davranışına etkisinin değerlendirilmesi: Niksar Yılanlı (Leylekli) Köprü Örneği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(1), 48-59. https://doi.org/10.29130/dubited.589223
  • Usta, P., Sever, A. E., Şakalak, E., & Ünveren, C. (2024). Examination of the Seismic Behavior of The Historical Yeşildere Bridge. Konya Journal of Engineering Sciences, 12(2), 432-450. https://doi.org/10.36306/konjes.1427898
  • Zampieri, P., Zanini, M. A., & Modena, C. (2015). Simplified seismic assessment of multi-span masonry arch bridges. Bulletin of Earthquake Engineering, 13, 2629-2646. https://doi.org/10.1007/s10518-015-9733-2

EFFECT OF MECHANICAL PROPERTIES OF FILLING MATERIAL ON STATIC AND DYNAMIC BEHAVIOR OF MASONRY ARCH BRIDGES

Year 2024, Volume: 27 Issue: 4, 1248 - 1266, 03.12.2024
https://doi.org/10.17780/ksujes.1487116

Abstract

The present study examined the impacts of the mechanical properties of the filling material on the seismic behaviour of masonry arch bridges (MAB). A bridge model that did not exist was selected to achieve this objective. Using this model, bridge models with different filling material properties were created in the SAP2000 computer program. Modal analysis and linear time history analysis (THA) were conducted on the aforementioned models to ascertain the filling material's influence on the bridge's dynamic behavior. The findings of the modal analysis indicated that an increase in the density of the filling material increased in the period, while an increase in the elasticity modulus led to a decrease in the period. As a result of linear THA, it was determined that as the density of the filling material increases, the displacements and stresses increase, and as the elastic modulus increases, the displacements and stresses decrease. As a result of static analysis, it was determined that as the density of the filling material increases, the displacement and stress values increase, and as the elastic modulus increases, these values decrease.

References

  • Afet ve Acil Durum Yönetimi Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 2018.
  • Afet ve Acil Durum Yönetimi Başkanlığı. “Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması” https://tdth.afad.gov.tr/TDTH/main.xhtml (20.03.2023).
  • Altunışık, A.C., Kanbur, B., Genc, A.F., (2015). The effect of arch geometry on the structural behavior of masonry bridges. Smart Struct. Syst, 16(6), 1069-1089. https://doi.org/10.12989/sss.2015.16.6.1069
  • Altunisik, A. C., Bayraktar, A., & Genc, A. F. (2015). Determination of the restoration effect on the structural behavior of masonry arch bridges. Smart Struct. Syst, 16(1), 101-139. http://dx.doi.org/10.12989/sss.2015.16.1.101
  • ANSYS, 2008. Swanson Analysis System, US.
  • ATC-40, (1996), Seismic Evaluation and Retrofit of Concrete Buildings-Vol.1, Applied Technology Council, Redwood City, CA
  • Bayraktar, A., Altunısık, A. C., Türker, T., & Sevim, B. (2007). The effect of finite element model updating on earthquake behaviour of historical bridges. In Sixth National Conference on Earthquake Engineering, Istanbul, Turkey, October (pp. 16-20).
  • Bayraktar, A., & Hökelekli, E. (2021). Nonlinear soil deformability effects on the seismic damage mechanisms of brick and stone masonry arch bridges. International Journal of Damage Mechanics, 30(3), 431-452. https://doi.org/10.1177/1056789520974423
  • Brencich, A. and Sabia, D., (2008). Experimental identification of a multi-span masonry bridge: The Tanaro Bridge. Construction and Building Materials, 22(10), 2087-2099. https://doi.org/10.1016/j.conbuildmat.2007.07.031
  • Çubuk E.G., Sayın E., and Özmen, A., (2022). Dynamic Analysis of Historical Masonry Arch Bridges under Different Earthquakes: The Case of Murat Bey Bridge. Turkish Journal of Science & Technology, 17(2). https://doi.org/10.55525/tjst.1105998
  • Evci, P. U., Sever, A. E., & Şakalak, E. (2024). Investigation of Seismic Behavior of the Historical Yeşiltepe Bridge. Prevention and Treatment of Natural Disasters, 3(2). https://doi.org/10.54963/ptnd.v3i2.291
  • Frunzio, G., Monaco, M., & Gesualdo, A. (2001). 3D FEM analysis of a Roman arch bridge. Historical constructions, 591-598.
  • Harapin, A., Smilović, M., Grgić, N., Glibić, M., Radnić, J., (2013). Static and dynamic analysis of the old stone bridge in Mostar. Gradevinar 64, 655-655. https://doi.org/10.14256/JCE.715.2012
  • Kader, A., Sayın, E. and Özmen, A., (2021). Farklı Sönüm Tipleri Altında Tarihi Yığma Köprülerin Sismik Tepkilerinin Değerlendirilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(1), 45-59. https://doi.org/10.35234/fumbd.940435
  • Karaton, M., Aksoy, H. S., Sayın, E., & Calayır, Y. (2017). Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis, 79, 408-421. https://doi.org/10.1016/j.engfailanal.2017.05.017
  • Kumbasaroglu, A., Celik, A., Demir, O., Turan, A. & Yalciner, H., (2019). An Assessment of the Seismic Performance of the Historic Tigris Bridge. Open Journal of Civil Engineering, 9(03), 230. https://doi.org/10.4236/ojce.2019.93016
  • Laterza, M., D’Amato, M., & Casamassima, V.M., (2017). Seismic performance evaluation of multi-span existing masonry arch bridge. In AIP Conference Proceedings (Vol. 1863, No. 1, p. 450010). AIP Publishing LLC. https://doi.org/10.1063/1.4992619
  • Lourenco, P.B., (1996). Computational strategy for masonry structures. Delft University of Technology and DIANA Research.
  • Nemutlu, Ö. F., Güzel, İ., Balun, B., Öztürk, M., & Sarı, A. (2023). Nonlinear Seismic Assessment of Historical Masonry Karaz Bridge Under Different Ground Motion Records. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(1), 247-260. https://doi.org/10.17798/bitlisfen.1232008
  • Onat, O., & Sayın, E. (2015). Tarihi Tağar Köprüsünün doğrusal olmayan sismik analizi. 5. Tarihi Eserlerin Güçlendirilmesi ve Geleceğe Güvenle Devredilmesi Sempozyumu, 1-3.
  • Özmen, A. and Sayın, E., (2018). Seismic assessment of a historical masonry arch bridge. Journal of Structural Engineering & Applied Mechanics, 1(2), 95-104, 2018. https://doi.org/10.31462/jseam.2018.01095104
  • Özmen, A. and Sayın, E., (2020). Tarihi yığma bir köprünün deprem davranışının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 956-965. https://doi.org/10.28948/ngumuh.715121
  • Özmen, A., & Sayın, E. (2023). 3D soil structure interaction effects on the seismic behavior of single span historical masonry bridge. Geotechnical and Geological Engineering, 41(3), 2023-2041. https://doi.org/10.1007/s10706-023-02389-6
  • Pela, L., Aprile, A., Benedetti, A., (2009). Seismic assessment of masonry arch bridges. Engineering Structures, 31: 1777- 1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  • Pelà, L., Aprile, A., & Benedetti, A. (2013). Comparison of seismic assessment procedures for masonry arch bridges. Construction and Building Materials, 38, 381-394. https://doi.org/10.1016/j.conbuildmat.2012.08.046
  • Sakcalı, G.B., Gönül, A. and Yüksel, İ., (2019). Seismic behavior of historical masonry bridges: The case study of Irgandi Bridge. International Journal, 6, 25. https://doi.org/10.15377/2409-9821.2019.06.4
  • SAP2000. Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual. Berkeley, California, Computer and Structres Inc.
  • Saygılı, Ö., & Lemos, J. V. (2021, October). Seismic vulnerability assessment of masonry arch bridges. In Structures (Vol. 33, pp. 3311-3323). Elsevier. https://doi.org/10.1016/j.istruc.2021.06.057
  • Seismosoft. (2023). SeismoMatch 2023-A Computer Program for Spectrum Matching of Earthquake Records.
  • Sözen, Ş., & Doğangün, A. (2023). Evaluation of the effect of change in support conditions on the seismic behavior of a historical masonry bridge. ACM Journal on Computing and Cultural Heritage, 16(4), 1-19. https://doi.org/10.1145/3590957
  • Sevim, B., Bayraktar, A., Altunişik, A. C., Atamtürktür, S., & Birinci, F. (2011). Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations. Nonlinear Dynamics, 63, 755-770. https://doi.org/10.1007/s11071-010-9835-y
  • Sözen, Ş. and Çavuş, M., (2020). Tek açıklıklı tarihi taş köprülerde form değişikliğinin köprünün sismik davranışına etkisinin değerlendirilmesi: Niksar Yılanlı (Leylekli) Köprü Örneği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(1), 48-59. https://doi.org/10.29130/dubited.589223
  • Usta, P., Sever, A. E., Şakalak, E., & Ünveren, C. (2024). Examination of the Seismic Behavior of The Historical Yeşildere Bridge. Konya Journal of Engineering Sciences, 12(2), 432-450. https://doi.org/10.36306/konjes.1427898
  • Zampieri, P., Zanini, M. A., & Modena, C. (2015). Simplified seismic assessment of multi-span masonry arch bridges. Bulletin of Earthquake Engineering, 13, 2629-2646. https://doi.org/10.1007/s10518-015-9733-2
There are 34 citations in total.

Details

Primary Language English
Subjects Earthquake Engineering
Journal Section Civil Engineering
Authors

Ali Ekber Sever 0000-0001-5314-5287

Publication Date December 3, 2024
Submission Date May 20, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2024Volume: 27 Issue: 4

Cite

APA Sever, A. E. (2024). EFFECT OF MECHANICAL PROPERTIES OF FILLING MATERIAL ON STATIC AND DYNAMIC BEHAVIOR OF MASONRY ARCH BRIDGES. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1248-1266. https://doi.org/10.17780/ksujes.1487116