Research Article
BibTex RIS Cite

FARKLI BOYUTLARDA CAM LİFİ TAKVİYELİ ALÇI ESASLI KOMPOZİT HARÇLARIN MEKANİK VE TERMAL PERFORMANSLARININ KARŞILAŞTIRILMASI ÜZERİNE TEKNİK BİR İRDELEME

Year 2024, Volume: 27 Issue: 4, 1267 - 1284, 03.12.2024
https://doi.org/10.17780/ksujes.1488877

Abstract

Alçı esaslı kompozit harçlar, yapı endüstrisinde yaygın olarak kullanılan ve çeşitli inşaat uygulamalarında tercih edilen önemli bir yapı malzemesidir. Bu harçlar, alçı matris içerisine farklı takviye maddelerinin katılmasıyla geliştirilmiş, dayanıklılığı ve mukavemeti artırılmış kompozit malzemelerdir. Antik medeniyetlerden günümüze kadar uzanan bir geçmişe sahip olan alçı, modern inşaat teknikleriyle daha da yaygınlaşmış ve günümüzde kompozit harçlar olarak kullanımı yaygınlaşmıştır. Ancak, bu malzemeler bazı mekanik özelliklerde sınırlamalar getirmektedir eğilme dayanımı, basınç dayanımı veya ısı iletimi konularında bazı problemler ile karşılaşılabilmektedir. Bu çalışma farklı cam lifi takviyelerinin alçı esaslı kompozit harçların performansı üzerindeki etkilerini incelemektedir. Mikronize cam lifi, taraklanmış cam lifi, 6 mm ve 12 mm cam lifi gibi farklı cam lifi türlerinin kullanıldığı deneyler, harcın mekanik özellikleri ve sıcaklık etkileri üzerinde kapsamlı analizler sunmaktadır. Bu analizler, alçı esaslı kompozit harçların tasarımını ve kullanımını daha etkili hale getirmek için önemli bilgiler sağlamaktadır.

References

  • ALL ALÇI, (2024), Kartonpiyer Alçısı, Etknik Özellikler, https://www.allalci.com/urun/kartonpiyer-alcisi#pd-download
  • ASTM C20, (2022), Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, Designation: C20 − 00 (Reapproved 2022), ASTM International, United States.
  • AL-Ridha A.S.D., Abbood A.A., Hussein H.H., (2017), Improvement of Gypsum Properties Using S.F.Additive, International Journal of Science and Research (IJSR), ISSN (Online): 2319-7064, Volume 6 Issue 8, August 2017, www.ijsr.net, Paper ID: ART20175774, p504-509, DOI: 10.21275/ART20175774
  • Biçer, A. (2020). Thermal Properties of Gypsum Plaster with Fly Ash. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 2(1), 120-133.
  • Bouzit, S., Laasri, S., Taha, M., Laghzizil, A., Hajjaji, A., Merli, F., & Buratti, C. (2019). Characterization of natural gypsum materials and their composites for building applications. Applied Sciences, 9(12), 2443. https://doi.org/10.3390/app9122443
  • Chernysheva, N., Lesovik, V., Fediuk, R., & Vatin, N. (2020). Improvement of performances of the gypsum-cement fiber reinforced composite (GCFRC). Materials, 13(17), 3847. https://doi.org/10.3390/ma13173847
  • Devrek, O., Sevinç, A. H., Durgun, M. Y., Uras, Y. (2022). Alçı Esaslı Karışımlarda Mikronize Cam Küreciklerinin Değelendirilmesi, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 591-601. https://doi.org/10.17780/ksujes.1142101
  • Doleželová, M., Krejsová, J., Scheinherrová, L., Keppert, M., & Vimmrová, A. (2022). Investigation of environmentally friendly gypsum based composites with improved water resistance. Journal of Cleaner Production, 370, 133278. https://doi.org/10.1016/j.jclepro.2022.133278
  • Demir, İ. (2019). Bazı selülozik esaslı sekonder lifsel hammaddeler katılarak üretilmiş alçı esaslı kompozitlerin teknolojik özelliklerinin araştırılması (Master's thesis, Lisansüstü Eğitim Enstitüsü).
  • Esan, M. T. (2024). Review of gypsum reinforced composites as building materials. Discover Civil Engineering, 1(1), 1-25. DOI: 10.1007/s44290-024-00005-x
  • Fantilli, A. P., Jóźwiak-Niedźwiedzka, D., & Denis, P. (2021). Bio-fibres as a reinforcement of gypsum composites. Materials, 14(17), 4830. https://doi.org/10.3390/ma14174830
  • Gonçalves, R. M., Martinho, A., & Oliveira, J. P. (2022). Evaluating the potential use of recycled glass fibers for the development of gypsum-based composites. Construction and Building Materials, 321, 126320. https://doi.org/10.1016/j.conbuildmat.2022.126320
  • Gencel, O., Hekimoglu, G., Sarı, A., Ustaoglu, A., subası, s., marasli, m., . . . Memon, S. (2022). Glass fiber reinforced gypsum composites with microencapsulated PCM as. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2022.127788
  • Jia, R., Wang, Q., & Feng, P. (2021). A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field. Composites Part B: Engineering, 205, 108540. https://doi.org/10.1016/j.compositesb.2020.108540
  • Khamidov, A., Akhmedov, I., Kholmirzayev, S., Yusupov, S., Kazadayev, A., & Sharopov, B. (2022). Application of heat-insulating composite gypsum for energy efficient constructio. Science and innovation, 1(A8), 1058-1064. DOI: 10.5281/zenodo.7447953
  • Kuqo, A., & Mai, C. (2021). Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Construction and Building Materials, 282, 122714. https://doi.org/10.1016/j.conbuildmat.2021.122714
  • Li, Z., Wu, Z., Wang, X., Liu, J., Yan, W., Ding, L., & Huang , H. (2022). Physical and mechanical properties of gypsum-based composites. Journal of Building Engine. DOI: 10.1016/j.conbuildmat.2017.12.168
  • Padevět P., Tesárek P., Plachý T., (2011), Evolution of mechanical properties of gypsum in time, INTERNATIONAL JOURNAL OF MECHANICS, Issue 1, Volume 5, 2011
  • Ren, K., Cui, N., Zhao, S., Zheng, K., Ji, X., Feng, L., ... & Xie, N. (2021). Low-carbon sustainable composites from waste phosphogypsum and their environmental impacts. Crystals, 11(7), 719. https://doi.org/10.3390/cryst11070719
  • S. Korkmazi, F. Birinci, Increasing the Tensile Strength of Fiber Reinforced Self-Compacting-Concrete, and Effects of Fiber Type and Orientation, Romanian Journal of Materials, 2017, 47(3), 361.
  • Şahin, H., & Demir, İ. (2019). Gypsum-Based Boards Made from Mixtures of Waste Cellulosic Sources: Part 1. Physical and Mechanical Properties. Avrupa Bilim Ve Teknoloji Dergisi(16), 567-576. https://doi.org/10.31590/ejosat.565240
  • TS EN 1015-10, (2001), Kâgir harcı-Deney metotları- Bölüm 10: Sertleşmiş harcın boşluklu kuru birim hacim kütlesinin tayini, TÜRK STANDARDLARI ENSTİTÜSÜ, İnşaat İhtisas Grubu, s5, Ankara
  • TS EN 1015-11, (2020), Kagir harcı - Deney yöntemleri - Bölüm 11: Sertleşmiş harcın eğilmede çekme ve basınç dayanımının tayin, TÜRK STANDARDLARI ENSTİTÜSÜ, Teknik Kurul, s18, Ankara
  • Vitti, P. (2021). Mortars and masonry—structural lime and gypsum mortars in Antiquity and Middle Ages. Archaeological and anthropological sciences, 13(10), 164. DOI: 10.1007/s12520-021-01408-y
  • Wu, T., Yue, K., Wang, S., Liang, B., Wu, P., Lu, W., ... & Sun, K. (2024). Experimental investigation on mechanical properties and fire performance of innovative wheat straw-gypsum composites as building sheathing panels. Industrial Crops and Products, 208, 117897. DOI: 10.1016/j.indcrop.2023.117897
  • Yildizel, S. A. (2020). Material properties of basalt-fiber-reinforced gypsum-based composites made with metakaolin and silica sand. Mechanics of Composite Materials, 56, 379-388. https://doi.org/10.1007/s11029-020-09889-z
  • Zhu, C., Zhang, J., Peng, J., Cao, W., & Liu, J. (2018). Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Construction and Building Materials, 163, 695-705. DOI: 10.1016/j.conbuildmat.2017.12.168

A TECHNICAL EVALUATION ON THE COMPARISION OF THE MECHANICAL AND THERMAL PERFORMANCES OF DIFFERENT SIZE GLASS FIBERS REINFORCED GYPSUM BASED COMPOSITE MORTARS

Year 2024, Volume: 27 Issue: 4, 1267 - 1284, 03.12.2024
https://doi.org/10.17780/ksujes.1488877

Abstract

Gypsum-based composite mortars are widely used in the construction industry and preferred in various construction applications. These mortars are composite materials improved by adding different reinforcing materials to the gypsum matrix, enhancing their durability and strength. Gypsum, which has a long history from ancient civilizations to the present, has become more widespread with modern construction techniques, and its use in composite mortars has increased today. However, there are some limitations in the physical and mechanical properties of these materials. For instance, compared to cement-bonded mortar combinations, significant differences can be observed in technical properties such as flexural strength, compressive strength and thermal conductivity. This study examines the effect of different sizes of glass fiber reinforcements on the performance of gypsum-based composite mortars. Test samples were prepared using micronized, combed, 6 mm and 12 mm glass fibers, the analysis results on unit weight change, water absorption, apparent porosity, mechanical properties and thermal effects are presented comparatively in the context of fiber size effect. It was observed that sample 12 mm fibers performed better than those with other fiber sizes. The findings aim to improve design and usage conditions of gypsum-based composite mortar products.

References

  • ALL ALÇI, (2024), Kartonpiyer Alçısı, Etknik Özellikler, https://www.allalci.com/urun/kartonpiyer-alcisi#pd-download
  • ASTM C20, (2022), Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, Designation: C20 − 00 (Reapproved 2022), ASTM International, United States.
  • AL-Ridha A.S.D., Abbood A.A., Hussein H.H., (2017), Improvement of Gypsum Properties Using S.F.Additive, International Journal of Science and Research (IJSR), ISSN (Online): 2319-7064, Volume 6 Issue 8, August 2017, www.ijsr.net, Paper ID: ART20175774, p504-509, DOI: 10.21275/ART20175774
  • Biçer, A. (2020). Thermal Properties of Gypsum Plaster with Fly Ash. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 2(1), 120-133.
  • Bouzit, S., Laasri, S., Taha, M., Laghzizil, A., Hajjaji, A., Merli, F., & Buratti, C. (2019). Characterization of natural gypsum materials and their composites for building applications. Applied Sciences, 9(12), 2443. https://doi.org/10.3390/app9122443
  • Chernysheva, N., Lesovik, V., Fediuk, R., & Vatin, N. (2020). Improvement of performances of the gypsum-cement fiber reinforced composite (GCFRC). Materials, 13(17), 3847. https://doi.org/10.3390/ma13173847
  • Devrek, O., Sevinç, A. H., Durgun, M. Y., Uras, Y. (2022). Alçı Esaslı Karışımlarda Mikronize Cam Küreciklerinin Değelendirilmesi, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 591-601. https://doi.org/10.17780/ksujes.1142101
  • Doleželová, M., Krejsová, J., Scheinherrová, L., Keppert, M., & Vimmrová, A. (2022). Investigation of environmentally friendly gypsum based composites with improved water resistance. Journal of Cleaner Production, 370, 133278. https://doi.org/10.1016/j.jclepro.2022.133278
  • Demir, İ. (2019). Bazı selülozik esaslı sekonder lifsel hammaddeler katılarak üretilmiş alçı esaslı kompozitlerin teknolojik özelliklerinin araştırılması (Master's thesis, Lisansüstü Eğitim Enstitüsü).
  • Esan, M. T. (2024). Review of gypsum reinforced composites as building materials. Discover Civil Engineering, 1(1), 1-25. DOI: 10.1007/s44290-024-00005-x
  • Fantilli, A. P., Jóźwiak-Niedźwiedzka, D., & Denis, P. (2021). Bio-fibres as a reinforcement of gypsum composites. Materials, 14(17), 4830. https://doi.org/10.3390/ma14174830
  • Gonçalves, R. M., Martinho, A., & Oliveira, J. P. (2022). Evaluating the potential use of recycled glass fibers for the development of gypsum-based composites. Construction and Building Materials, 321, 126320. https://doi.org/10.1016/j.conbuildmat.2022.126320
  • Gencel, O., Hekimoglu, G., Sarı, A., Ustaoglu, A., subası, s., marasli, m., . . . Memon, S. (2022). Glass fiber reinforced gypsum composites with microencapsulated PCM as. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2022.127788
  • Jia, R., Wang, Q., & Feng, P. (2021). A comprehensive overview of fibre-reinforced gypsum-based composites (FRGCs) in the construction field. Composites Part B: Engineering, 205, 108540. https://doi.org/10.1016/j.compositesb.2020.108540
  • Khamidov, A., Akhmedov, I., Kholmirzayev, S., Yusupov, S., Kazadayev, A., & Sharopov, B. (2022). Application of heat-insulating composite gypsum for energy efficient constructio. Science and innovation, 1(A8), 1058-1064. DOI: 10.5281/zenodo.7447953
  • Kuqo, A., & Mai, C. (2021). Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Construction and Building Materials, 282, 122714. https://doi.org/10.1016/j.conbuildmat.2021.122714
  • Li, Z., Wu, Z., Wang, X., Liu, J., Yan, W., Ding, L., & Huang , H. (2022). Physical and mechanical properties of gypsum-based composites. Journal of Building Engine. DOI: 10.1016/j.conbuildmat.2017.12.168
  • Padevět P., Tesárek P., Plachý T., (2011), Evolution of mechanical properties of gypsum in time, INTERNATIONAL JOURNAL OF MECHANICS, Issue 1, Volume 5, 2011
  • Ren, K., Cui, N., Zhao, S., Zheng, K., Ji, X., Feng, L., ... & Xie, N. (2021). Low-carbon sustainable composites from waste phosphogypsum and their environmental impacts. Crystals, 11(7), 719. https://doi.org/10.3390/cryst11070719
  • S. Korkmazi, F. Birinci, Increasing the Tensile Strength of Fiber Reinforced Self-Compacting-Concrete, and Effects of Fiber Type and Orientation, Romanian Journal of Materials, 2017, 47(3), 361.
  • Şahin, H., & Demir, İ. (2019). Gypsum-Based Boards Made from Mixtures of Waste Cellulosic Sources: Part 1. Physical and Mechanical Properties. Avrupa Bilim Ve Teknoloji Dergisi(16), 567-576. https://doi.org/10.31590/ejosat.565240
  • TS EN 1015-10, (2001), Kâgir harcı-Deney metotları- Bölüm 10: Sertleşmiş harcın boşluklu kuru birim hacim kütlesinin tayini, TÜRK STANDARDLARI ENSTİTÜSÜ, İnşaat İhtisas Grubu, s5, Ankara
  • TS EN 1015-11, (2020), Kagir harcı - Deney yöntemleri - Bölüm 11: Sertleşmiş harcın eğilmede çekme ve basınç dayanımının tayin, TÜRK STANDARDLARI ENSTİTÜSÜ, Teknik Kurul, s18, Ankara
  • Vitti, P. (2021). Mortars and masonry—structural lime and gypsum mortars in Antiquity and Middle Ages. Archaeological and anthropological sciences, 13(10), 164. DOI: 10.1007/s12520-021-01408-y
  • Wu, T., Yue, K., Wang, S., Liang, B., Wu, P., Lu, W., ... & Sun, K. (2024). Experimental investigation on mechanical properties and fire performance of innovative wheat straw-gypsum composites as building sheathing panels. Industrial Crops and Products, 208, 117897. DOI: 10.1016/j.indcrop.2023.117897
  • Yildizel, S. A. (2020). Material properties of basalt-fiber-reinforced gypsum-based composites made with metakaolin and silica sand. Mechanics of Composite Materials, 56, 379-388. https://doi.org/10.1007/s11029-020-09889-z
  • Zhu, C., Zhang, J., Peng, J., Cao, W., & Liu, J. (2018). Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Construction and Building Materials, 163, 695-705. DOI: 10.1016/j.conbuildmat.2017.12.168
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section Civil Engineering
Authors

Ali Kaya 0009-0008-3347-900X

Lütfullah Gündüz 0000-0003-2487-467X

Publication Date December 3, 2024
Submission Date May 23, 2024
Acceptance Date September 4, 2024
Published in Issue Year 2024Volume: 27 Issue: 4

Cite

APA Kaya, A., & Gündüz, L. (2024). FARKLI BOYUTLARDA CAM LİFİ TAKVİYELİ ALÇI ESASLI KOMPOZİT HARÇLARIN MEKANİK VE TERMAL PERFORMANSLARININ KARŞILAŞTIRILMASI ÜZERİNE TEKNİK BİR İRDELEME. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1267-1284. https://doi.org/10.17780/ksujes.1488877