Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 4, 2945 - 2957, 01.12.2023
https://doi.org/10.21597/jist.1313391

Abstract

References

  • Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • Agarwal, R., Bohner, M., O'Regan, D., & Peterson, A. (2002). Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.
  • Anderson, D. R., & Georgiev, S. G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and Hall/CRC.
  • Anderson, D. R., & Ulness, D. J. (2015). Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, 10(2), 109-137.
  • Aulbach, B., & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, Amsterdam.
  • Benkhettou, N., Brito da Cruz, A. M. C., & Torres, D. F. M. (2015). A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237.
  • Benkhettou, N., Hassani, S., & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time scales. Journal of King Saud University (Science), 28(1), 93-98.
  • Bohner, M., & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. Boston, MA: Birkhauser.
  • Bohner, M., & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.
  • Bohner, M., & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Springer.
  • Gulsen, T., Yilmaz, E., & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications, 2017(1), 161.
  • Gülşen, T., Yilmaz, E., & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360.
  • Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results in mathematics, 18(1).
  • Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2.
  • Khalil, R., Horani, M. Al., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 57–66.
  • Li, Y., Ang, K. H., Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • Ortigueira, M. D., & Machado, J. T. (2015). What is a fractional derivative?. Journal of computational Physics, 293, 4-13.
  • Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference Equations, 2019 (1), 1-16.
  • Yilmaz, E., Gulsen, T., & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System on Time Scales in Quantum Physics, Applied and Computational Mathematics an International Journal, 21(3), 279-291.

Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative

Year 2023, Volume: 13 Issue: 4, 2945 - 2957, 01.12.2023
https://doi.org/10.21597/jist.1313391

Abstract

The concept of a conformable derivative on time scales is a relatively new development in the field of fractional calculus. Traditional fractional calculus deals with derivatives and integrals of non-integer order on continuous time domains. However, time scale calculus extends these concepts to more general time domains that include both continuous and discrete points. The conformable derivative on time scales has several properties that make it advantageous in certain applications. For example, it satisfies a chain rule and has a simple relationship with the conformable integral, which facilitates the development of differential equations involving fractional order dynamics. It also allows for the analysis of systems with both continuous and discrete data points, making it suitable for modeling and control applications in various fields, including physics, engineering, and finance. In this study, the Sturm-Liouville problem and its properties are examined on an arbitrary time scale using the proportional derivative, a more general form of the fractional derivative. Important spectral properties such as self-adjointness, Green formula, Lagrange identity, Abel formula, and orthogonality of eigenfunctions for this problem are expressed in proportional derivatives on an arbitrary time scale.

References

  • Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • Agarwal, R., Bohner, M., O'Regan, D., & Peterson, A. (2002). Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.
  • Anderson, D. R., & Georgiev, S. G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and Hall/CRC.
  • Anderson, D. R., & Ulness, D. J. (2015). Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, 10(2), 109-137.
  • Aulbach, B., & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, Amsterdam.
  • Benkhettou, N., Brito da Cruz, A. M. C., & Torres, D. F. M. (2015). A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237.
  • Benkhettou, N., Hassani, S., & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time scales. Journal of King Saud University (Science), 28(1), 93-98.
  • Bohner, M., & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. Boston, MA: Birkhauser.
  • Bohner, M., & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.
  • Bohner, M., & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Springer.
  • Gulsen, T., Yilmaz, E., & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications, 2017(1), 161.
  • Gülşen, T., Yilmaz, E., & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360.
  • Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results in mathematics, 18(1).
  • Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2.
  • Khalil, R., Horani, M. Al., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 57–66.
  • Li, Y., Ang, K. H., Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • Ortigueira, M. D., & Machado, J. T. (2015). What is a fractional derivative?. Journal of computational Physics, 293, 4-13.
  • Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference Equations, 2019 (1), 1-16.
  • Yilmaz, E., Gulsen, T., & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System on Time Scales in Quantum Physics, Applied and Computational Mathematics an International Journal, 21(3), 279-291.
There are 19 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Matematik / Mathematics
Authors

Tuba Gülşen 0000-0002-2288-8050

Mehmet Acar This is me 0000-0003-1280-8034

Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date June 12, 2023
Acceptance Date August 10, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Gülşen, T., & Acar, M. (2023). Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Journal of the Institute of Science and Technology, 13(4), 2945-2957. https://doi.org/10.21597/jist.1313391
AMA Gülşen T, Acar M. Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. J. Inst. Sci. and Tech. December 2023;13(4):2945-2957. doi:10.21597/jist.1313391
Chicago Gülşen, Tuba, and Mehmet Acar. “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2945-57. https://doi.org/10.21597/jist.1313391.
EndNote Gülşen T, Acar M (December 1, 2023) Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Journal of the Institute of Science and Technology 13 4 2945–2957.
IEEE T. Gülşen and M. Acar, “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2945–2957, 2023, doi: 10.21597/jist.1313391.
ISNAD Gülşen, Tuba - Acar, Mehmet. “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2945-2957. https://doi.org/10.21597/jist.1313391.
JAMA Gülşen T, Acar M. Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. J. Inst. Sci. and Tech. 2023;13:2945–2957.
MLA Gülşen, Tuba and Mehmet Acar. “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2945-57, doi:10.21597/jist.1313391.
Vancouver Gülşen T, Acar M. Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. J. Inst. Sci. and Tech. 2023;13(4):2945-57.