Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 2, 33 - 39, 31.08.2021

Abstract

References

  • O. Özbek, Ö. Işıldak, C. Berkel, The use of porphyrins in potentiometric sensors as ionophores, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 98(1-2), (2020) 1–9.
  • Ö. Işıldak, O. Özbek, M. B. Gürdere, Development of chromium (III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC matrix and its applications, Journal of Analysis and Testing, 4(4), (2020) 273–280.
  • Ö. Işıldak, O. Özbek, K. M. Yigit, A bromide-selective PVC membrane potentiometric sensor, Bulgarian Chemical Communications, 52(4), (2020) 448–452.
  • Ö. Işıldak, N. Deligönül, O. Özbek, A novel silver(I)-selective PVC membrane sensor and its potentiometric applications, Turkish Journal of Chemistry, 43(4), (2019) 1149–1158.
  • Ö. Işıldak, O. Özbek, K. M. Yigit, Zinc (II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples, International Journal of Environmental Analytical Chemistry, (2019) 1–11.
  • Ö. Işıldak, O. Özbek, Application of potentiometric sensors in real samples, Critical Reviews in Analytical Chemistry, (2020) 1–14.
  • O. Özbek, C. Berkel, Ö. Işıldak, Applications of potentiometric sensors for the determination of drug molecules in biological samples, Critical Reviews in Analytical Chemistry, (2020) 1–12.
  • O. Özbek, Ö. Işıldak, K. M. Yigit, A. Çetin, The use of potentiometric sensors in wastewater analysis, Turkish Journal of Science and Health, 1(2), (2020) 70–78.
  • O. R. Shehab, A. M. Mansour, New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: Experimental and theoretical studies, Biosensors and Bioelectronics, 57, (2014) 77–84.
  • M. M. Ardakani, M. Jamshidpour, H. Naeimi, L. Moradi, Thiocyanate ion-selective PVC membrane electrode based on N, N′-ethylene-bis (4-methylsalicylidineiminato) nickel (II), Analytical Sciences, 22(9), (2006) 1221–1226.
  • H. H. Deng, C. L. Wu, A. L. Liu, G. W. Li, W. Chen, X. H. Lin, Colorimetric sensor for thiocyanate based on anti-aggregation of citrate-capped gold nanoparticles, Sensors and Actuators B: Chemical, 191, (2014) 479–484.
  • A. K. Singh, U. P. Singh, S. Mehtab, V. Aggarwal, Thiocyanate selective sensor based on tripodal zinc complex for direct determination of thiocyanate in biological samples, Sensors and Actuators B: Chemical, 125(2), (2007) 453–461.
  • M. Arvand, M. A. Zanjanchi, L. Heydari, Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore, Sensors and Actuators B: Chemical, 122(1), (2007) 301–308.
  • X. Cui, T. Wei, M. Hao, Q. Qi, H. Wang, Z. Dai, Highly sensitive and selective colorimetric sensor for thiocyanate based on electrochemical oxidation-assisted complexation reaction with Gold nano stars etching, Journal of Hazardous Materials, 391, (2020) 122217.
  • S. Chattaraj, A. K. Das, Indirect determination of thiocyanate in biological fluids using atomic absorption spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, 47(5), (1992) 675–680.
  • Z. M. Fu, S. H. Ni, Z. H. Pang, Kinetic determination of thiocyanate on the basis of its catalytic effect on the oxidation of methylene blue, Fenxi Shiyanshi 12 (1993) 85–89.
  • Y. Feng, R. Mo, L. Wang, C. Zhou, P. Hong, C. Li, Surface-enhanced Raman spectroscopy detection of sodium thiocyanate in milk based on the aggregation of Ag nanoparticles, Sensors, 19(6), (2019) 1363.
  • J. Hovinen, M. Lahti, J. Vilpo, Spectrophotometric determination of thiocyanate in human saliva, Journal of Chemical Education, 76(9), (1999) 1281.
  • D. Li, F. Xie, J. Zhang, Voltammetric behaviors and determination of thiocyanate on multiwalled carbon nanotubes‐cetyltrimethylammonium bromide modified electrode, Electroanalysis, 30(10), (2018) 2413–2420.
  • Ö. Işıldak, O. Özbek, Silver (I)-selective PVC membrane potentiometric sensor based on 5, 10, 15, 20-tetra(4-pyridyl)-21H,23H-porphine and potentiometric applications, Journal of Chemical Sciences, 132(1), (2020) 1–8.
  • O. Özbek, Ö. Işıldak, M. B. Gürdere, C. Berkel, Cadmium (II)-selective potentiometric sensor based on synthesised (E)-2-benzylidenehydrazinecarbothioamide for the determination of Cd2+ in different environmental samples, International Journal of Environmental Analytical Chemistry, (2020) 1–16.
  • R. P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry, 66, (1994) 2527–2536.
  • IUPAC, Commission on analytical nomenclature recommendations for nomenclature of ion-selective sensors, Pure and Applied Chemistry, 48, (1972) 127.
  • O. Özbek, Ö. Işıldak, Polymer-based cadmium (II)-selective potentiometric sensors for the analysis of Cd2+ in different environmental samples, International Journal of Environmental Analytical Chemistry, (2021) 1–14.

All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode

Year 2021, Volume: 10 Issue: 2, 33 - 39, 31.08.2021

Abstract

A novel all-solid-state contact poly (vinyl chloride) (PVC) membrane–containing thiocyanate-selective electrode has been prepared. The electrode exhibits the best performance with a membrane composition of PVC:BEHS:ionophore:KTpClPB of 33.0:64.0:2.0:1.0 (%, w/w). The thiocyanate–selective electrode displays a linear response in the concentration range of 1.0 × 10−4 – 1.0 × 10−1 M. The proposed electrode shows good reusability. The thiocyanate–selective electrode shows a better selective response towards thiocyanate compared to different anions. The electrode has a fast response time of the 20s and can be used in a pH range of 5.0–9.0.

References

  • O. Özbek, Ö. Işıldak, C. Berkel, The use of porphyrins in potentiometric sensors as ionophores, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 98(1-2), (2020) 1–9.
  • Ö. Işıldak, O. Özbek, M. B. Gürdere, Development of chromium (III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC matrix and its applications, Journal of Analysis and Testing, 4(4), (2020) 273–280.
  • Ö. Işıldak, O. Özbek, K. M. Yigit, A bromide-selective PVC membrane potentiometric sensor, Bulgarian Chemical Communications, 52(4), (2020) 448–452.
  • Ö. Işıldak, N. Deligönül, O. Özbek, A novel silver(I)-selective PVC membrane sensor and its potentiometric applications, Turkish Journal of Chemistry, 43(4), (2019) 1149–1158.
  • Ö. Işıldak, O. Özbek, K. M. Yigit, Zinc (II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples, International Journal of Environmental Analytical Chemistry, (2019) 1–11.
  • Ö. Işıldak, O. Özbek, Application of potentiometric sensors in real samples, Critical Reviews in Analytical Chemistry, (2020) 1–14.
  • O. Özbek, C. Berkel, Ö. Işıldak, Applications of potentiometric sensors for the determination of drug molecules in biological samples, Critical Reviews in Analytical Chemistry, (2020) 1–12.
  • O. Özbek, Ö. Işıldak, K. M. Yigit, A. Çetin, The use of potentiometric sensors in wastewater analysis, Turkish Journal of Science and Health, 1(2), (2020) 70–78.
  • O. R. Shehab, A. M. Mansour, New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: Experimental and theoretical studies, Biosensors and Bioelectronics, 57, (2014) 77–84.
  • M. M. Ardakani, M. Jamshidpour, H. Naeimi, L. Moradi, Thiocyanate ion-selective PVC membrane electrode based on N, N′-ethylene-bis (4-methylsalicylidineiminato) nickel (II), Analytical Sciences, 22(9), (2006) 1221–1226.
  • H. H. Deng, C. L. Wu, A. L. Liu, G. W. Li, W. Chen, X. H. Lin, Colorimetric sensor for thiocyanate based on anti-aggregation of citrate-capped gold nanoparticles, Sensors and Actuators B: Chemical, 191, (2014) 479–484.
  • A. K. Singh, U. P. Singh, S. Mehtab, V. Aggarwal, Thiocyanate selective sensor based on tripodal zinc complex for direct determination of thiocyanate in biological samples, Sensors and Actuators B: Chemical, 125(2), (2007) 453–461.
  • M. Arvand, M. A. Zanjanchi, L. Heydari, Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore, Sensors and Actuators B: Chemical, 122(1), (2007) 301–308.
  • X. Cui, T. Wei, M. Hao, Q. Qi, H. Wang, Z. Dai, Highly sensitive and selective colorimetric sensor for thiocyanate based on electrochemical oxidation-assisted complexation reaction with Gold nano stars etching, Journal of Hazardous Materials, 391, (2020) 122217.
  • S. Chattaraj, A. K. Das, Indirect determination of thiocyanate in biological fluids using atomic absorption spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy, 47(5), (1992) 675–680.
  • Z. M. Fu, S. H. Ni, Z. H. Pang, Kinetic determination of thiocyanate on the basis of its catalytic effect on the oxidation of methylene blue, Fenxi Shiyanshi 12 (1993) 85–89.
  • Y. Feng, R. Mo, L. Wang, C. Zhou, P. Hong, C. Li, Surface-enhanced Raman spectroscopy detection of sodium thiocyanate in milk based on the aggregation of Ag nanoparticles, Sensors, 19(6), (2019) 1363.
  • J. Hovinen, M. Lahti, J. Vilpo, Spectrophotometric determination of thiocyanate in human saliva, Journal of Chemical Education, 76(9), (1999) 1281.
  • D. Li, F. Xie, J. Zhang, Voltammetric behaviors and determination of thiocyanate on multiwalled carbon nanotubes‐cetyltrimethylammonium bromide modified electrode, Electroanalysis, 30(10), (2018) 2413–2420.
  • Ö. Işıldak, O. Özbek, Silver (I)-selective PVC membrane potentiometric sensor based on 5, 10, 15, 20-tetra(4-pyridyl)-21H,23H-porphine and potentiometric applications, Journal of Chemical Sciences, 132(1), (2020) 1–8.
  • O. Özbek, Ö. Işıldak, M. B. Gürdere, C. Berkel, Cadmium (II)-selective potentiometric sensor based on synthesised (E)-2-benzylidenehydrazinecarbothioamide for the determination of Cd2+ in different environmental samples, International Journal of Environmental Analytical Chemistry, (2020) 1–16.
  • R. P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry, 66, (1994) 2527–2536.
  • IUPAC, Commission on analytical nomenclature recommendations for nomenclature of ion-selective sensors, Pure and Applied Chemistry, 48, (1972) 127.
  • O. Özbek, Ö. Işıldak, Polymer-based cadmium (II)-selective potentiometric sensors for the analysis of Cd2+ in different environmental samples, International Journal of Environmental Analytical Chemistry, (2021) 1–14.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Oğuz Özbek 0000-0001-5185-9681

Ömer Işıldak 0000-0003-4690-4323

Publication Date August 31, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Özbek, O., & Işıldak, Ö. (2021). All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode. Journal of New Results in Science, 10(2), 33-39.
AMA Özbek O, Işıldak Ö. All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode. JNRS. August 2021;10(2):33-39.
Chicago Özbek, Oğuz, and Ömer Işıldak. “All-Solid-State Poly (vinyl Chloride) Membrane thiocyanate–selective Potentiometric Electrode”. Journal of New Results in Science 10, no. 2 (August 2021): 33-39.
EndNote Özbek O, Işıldak Ö (August 1, 2021) All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode. Journal of New Results in Science 10 2 33–39.
IEEE O. Özbek and Ö. Işıldak, “All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode”, JNRS, vol. 10, no. 2, pp. 33–39, 2021.
ISNAD Özbek, Oğuz - Işıldak, Ömer. “All-Solid-State Poly (vinyl Chloride) Membrane thiocyanate–selective Potentiometric Electrode”. Journal of New Results in Science 10/2 (August 2021), 33-39.
JAMA Özbek O, Işıldak Ö. All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode. JNRS. 2021;10:33–39.
MLA Özbek, Oğuz and Ömer Işıldak. “All-Solid-State Poly (vinyl Chloride) Membrane thiocyanate–selective Potentiometric Electrode”. Journal of New Results in Science, vol. 10, no. 2, 2021, pp. 33-39.
Vancouver Özbek O, Işıldak Ö. All-solid-state poly (vinyl chloride) membrane thiocyanate–selective potentiometric electrode. JNRS. 2021;10(2):33-9.


EBSCO 30456

Electronic Journals Library EZB   30356

 DOAJ   30355                                             

WorldCat  30357                                             303573035530355

Academindex   30358

SOBİAD   30359

Scilit   30360


29388 As of 2021, JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).