Research Article
BibTex RIS Cite

İki Farklı Kabuk Geometrisine Sahip Stadyum Modeli Etrafındaki Akış Alanlarının Sayısal İncelenmesi

Year 2020, Volume: 3 Issue: 1, 90 - 98, 30.06.2020

Abstract

Günümüzde stadyumlar, futbol müsabakalarının yanı sıra konser, şenlik ve konferans gibi etkinlikler için de yaygın olarak kullanılmaktadır. Stadyumlarda seyirci ve sporcu konforunu olumsuz yönde etkileyen en önemli faktörlerden biri stadyum etrafındaki rüzgar etkileridir. Farklı geometrilerdeki çatı sistemleri ile kapalı hale getirilen tribünler ile rüzgarın özellikle seyirci konforu üzerindeki olumsuz etkisi azaltılmaktadır. Stadyum çatılarındaki geometrik farklılık (kabuk geometrisindeki farklılık) yüzey basınç dağılımlarını önemli ölçüde etkilemektedir. Çatı yüzeylerinde akış ayrılmasına ve girdap bölgelerinin oluşumuna yol açacak geometrik düzenlemeler çatıları hasara uğratabilmektedir. Bu durum farklı geometrilere sahip stadyum çatıları üzerindeki akış alanlarının incelenmesini gerekli kılmaktadır. Bu çalışmada, düz geometrideki çatı sistemi ile üçgen prizmatik baklalı geometrik bileşenlere sahip çatı sistemi üzerindeki rüzgar etkileri karşılaştırma amaçlı sayısal incelenmektedir. İki farklı kabuk geometrisine sahip stadyum modeli etrafındaki akış alanlarının üç boyutlu olarak sürekli rejimde incelendiği çalışmada, ticari bir yazılım olan ANSYS – FLUENT paket programı bünyesindeki Realizable k-ε türbülans modeli kullanılmıştır. Farklı rüzgar geliş açıları için çeşitlendirilen çalışmada, kabuklar etrafındaki hız alanları ve kabuk yüzeylerindeki basınç dağılımları ayrıntılı olarak elde edilmiştir. Baklalı çatı sistemine sahip modelin rüzgar kaynaklı hasarlar açısından daha riskli olduğu görülmüştür.

References

  • [1] Culley P., Pascoe J., 2009. Sports facilities and technologies, 1st ed. Routledge, New York, USA.
  • [2] Szücs A., Perraudeau P., Allard F., 2006. Assessment of visual comfort of spectators in stadia, vol. II. Geneva, Switzerland: Proceedings of the 21st international conference of passive and low energy architecture (PLEA), Geneva,, Switzerland, 6-8 September, 609–612.
  • [3] Szucs A., Moreau S., Allard F., 2007. Spectators’ aerothermal comfort assessment method in stadia. Building and Environment, 42, 2227‒2240.
  • [4] Szucs A., Moreau S., Allard F., 2009. Aspects of stadium design for warm climates. Building and Environment, 44, 1206‒1214.
  • [5] Bouyer J., Vinet J., Delpech P., Carre S., 2007. Thermal comfort assessment in semi-outdoor environments: Application to comfort study in stadia. Journal of Wind Engineering and Industrial Aerodynamics, 95, 963‒976.
  • [6] van Hooff T., Blocken B., 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environmental Modelling & Software, 25(1), 51‒65.
  • [7] van Hooff T., Blocken B., van Harten M., 2011. 3D CFD simulations of wind flow and wind-driven rain shelter in sports stadia: Influence of stadium geometry. Building and Environment, 46(1), 22‒37
  • [8] van Hooff T., Blocken B., 2012. Full-scale measurements of indoor environmental conditions and natural ventilation in a large semi-enclosed stadium: Possibilities and limitations for CFD validation. Journal of Wind Engineering and Industrial Aerodynamics 104, 330‒341.
  • [9] Mei WJ., Qu M., 2016. Evaluation and Analysis of Wind Flow for a Football Stadium. International Conference on Sustainable Design, Engineering and Construction (ICSDEC), Arizona State Univ, Coll Avenue Commons, Tempe, AZ-USA, MAY 18-20, Vol:104, pp: 774‒781.
  • [10] Shi LG., An RR., 2017. An Optimization design Approach of Football Stadium Canopy Forms Based On Field Wind Environment Simulation. 9th International Conference on Sustainability and Energy in Buildings (SEB), Chania, GREECE, JUL 05-07, Vol:134, pp: 757‒767.
  • [11] Liu M., Li QS., Huang SH., Shi F., Chen FB., 2018. Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation. Journal of Wind Engineering and Industrial Aerodynamics, 179, 39‒57.
  • [12] Chen L., Li YLX., 2019. Effects of different auditorium forms on ventilation in a football stadium. Indoor and Built Environment, 1‒17.
  • [13] Zhong FL., Calautit JK., Hughes B., 2019. Analysis of the influence of cooling jets on the wind and thermal environment in football stadiums in hot climates. Building Services Engineering Research & Technology, 1‒25.
  • [14] Kim HU., Jong SI., 2020. Development of a system for evaluating the flow field around a massive stadium: Combining a microclimate model and a CFD model. Building and Environment, 172.
Year 2020, Volume: 3 Issue: 1, 90 - 98, 30.06.2020

Abstract

References

  • [1] Culley P., Pascoe J., 2009. Sports facilities and technologies, 1st ed. Routledge, New York, USA.
  • [2] Szücs A., Perraudeau P., Allard F., 2006. Assessment of visual comfort of spectators in stadia, vol. II. Geneva, Switzerland: Proceedings of the 21st international conference of passive and low energy architecture (PLEA), Geneva,, Switzerland, 6-8 September, 609–612.
  • [3] Szucs A., Moreau S., Allard F., 2007. Spectators’ aerothermal comfort assessment method in stadia. Building and Environment, 42, 2227‒2240.
  • [4] Szucs A., Moreau S., Allard F., 2009. Aspects of stadium design for warm climates. Building and Environment, 44, 1206‒1214.
  • [5] Bouyer J., Vinet J., Delpech P., Carre S., 2007. Thermal comfort assessment in semi-outdoor environments: Application to comfort study in stadia. Journal of Wind Engineering and Industrial Aerodynamics, 95, 963‒976.
  • [6] van Hooff T., Blocken B., 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environmental Modelling & Software, 25(1), 51‒65.
  • [7] van Hooff T., Blocken B., van Harten M., 2011. 3D CFD simulations of wind flow and wind-driven rain shelter in sports stadia: Influence of stadium geometry. Building and Environment, 46(1), 22‒37
  • [8] van Hooff T., Blocken B., 2012. Full-scale measurements of indoor environmental conditions and natural ventilation in a large semi-enclosed stadium: Possibilities and limitations for CFD validation. Journal of Wind Engineering and Industrial Aerodynamics 104, 330‒341.
  • [9] Mei WJ., Qu M., 2016. Evaluation and Analysis of Wind Flow for a Football Stadium. International Conference on Sustainable Design, Engineering and Construction (ICSDEC), Arizona State Univ, Coll Avenue Commons, Tempe, AZ-USA, MAY 18-20, Vol:104, pp: 774‒781.
  • [10] Shi LG., An RR., 2017. An Optimization design Approach of Football Stadium Canopy Forms Based On Field Wind Environment Simulation. 9th International Conference on Sustainability and Energy in Buildings (SEB), Chania, GREECE, JUL 05-07, Vol:134, pp: 757‒767.
  • [11] Liu M., Li QS., Huang SH., Shi F., Chen FB., 2018. Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation. Journal of Wind Engineering and Industrial Aerodynamics, 179, 39‒57.
  • [12] Chen L., Li YLX., 2019. Effects of different auditorium forms on ventilation in a football stadium. Indoor and Built Environment, 1‒17.
  • [13] Zhong FL., Calautit JK., Hughes B., 2019. Analysis of the influence of cooling jets on the wind and thermal environment in football stadiums in hot climates. Building Services Engineering Research & Technology, 1‒25.
  • [14] Kim HU., Jong SI., 2020. Development of a system for evaluating the flow field around a massive stadium: Combining a microclimate model and a CFD model. Building and Environment, 172.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makaleler
Authors

Haluk Keleş 0000-0002-6562-8902

Yücel Özmen 0000-0003-1127-1060

Publication Date June 30, 2020
Acceptance Date May 23, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Keleş, H., & Özmen, Y. (2020). İki Farklı Kabuk Geometrisine Sahip Stadyum Modeli Etrafındaki Akış Alanlarının Sayısal İncelenmesi. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 3(1), 90-98.