Research Article
BibTex RIS Cite

INVESTIGATION OF THE EFFECT OF NUMBER OF GUIDE VANES ON SEPARATION EFFICIENCY AND PRESSURE DROPS IN THE AXIAL FLOW CYCLONES

Year 2024, Volume: 27 Issue: 1, 40 - 48, 03.03.2024
https://doi.org/10.17780/ksujes.1331694

Abstract

In this study, the effect of the number of guide vanes on separation efficiency and pressure drops in the axial flow cyclones was investigated using the Computational Fluid Dynamics (HAD). Axial flow cyclones were compared with the tangential and reverse flow cyclone separators, which provide high particle collection efficiency and pressure drop. Axial flow cyclones were considered in this study by taking into account the similar studies in the literature. In the study, guide vane numbers ranging from 2 to 10 were examined for four different situations The particle separation efficiency and pressure drops in the proposed axial flow cyclone were computed by using numerical model. The HAD results of the axial flow cyclone are, for the four cases studied, the situation where the fixed vane angle and vane rotations are inversely proportional to the number of vanes, compared to the other three cases, it was observed that the performance increased as the number of vanes increased.

References

  • Arkouli, M., Ulke, A. G., Endlicher, W., Baumbach, G., Schultz, E., Vogt, U., … Scheffknecht, G. (2010). Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires. Atmospheric Pollution Research, 1(1), 1–8. https://doi.org/10.5094/APR.2010.001
  • Babaoğlu, N., Parvaz, F., Hosseini, S., & Elsayed, K. (2021). Giriş kesit şeklinin çok girişli bir gaz siklonun performansı üzerindeki etkisi. Powder Technology.
  • Babaoğlu, N. U., Hosseini, S. H., Ahmadi, G., & Elsayed, K. (2022). The effect of axial cyclone inlet velocity and geometrical dimensions on the flow pattern, performance, and acoustic noise. Powder Technology, 407(July). https://doi.org/10.1016/j.powtec.2022.117692
  • Babaoğlu, N. U., Parvaz, F., Hosseini, S. H., Elsayed, K., & Ahmadi, G. (2021). Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology, 384, 82–99. https://doi.org/10.1016/j.powtec.2021.02.008
  • Brar, L. S., & Elsayed, K. (2017). Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network. Powder Technology, 311, 465–483. https://doi.org/10.1016/j.powtec.2017.02.004
  • Brewer, R., & Belzer, W. (2001). Assessment of metal concentrations in atmospheric particles from Burnaby Lake, British Columbia, Canada. Atmospheric Environment, 35(30), 5223–5233. https://doi.org/10.1016/S1352-2310(01)00343-0
  • Canha, N., Almeida, S. M., Freitas, M. D. C., Trancoso, M., Sousa, A., Mouro, F., & Wolterbeek, H. T. (2014). Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmospheric Environment, 83, 21–34. https://doi.org/10.1016/j.atmosenv.2013.10.061
  • Cheng, Y. S. (2003). Aerosol deposition in the extrathoracic region. Aerosol Science and Technology, 37(8), 659–671. https://doi.org/10.1080/02786820300906
  • Demir, S., Karadeniz, A., Teknolojisi, M. A.-P., & 2016, U. (2016). Silindirik ve konik yüksekliklerin siklonlardaki basınç ve hız alanlarına etkileri. Elsevier.
  • Deng, Y., Yu, B., & Sun, D. (2020). Multi-objective optimization of guide vanes for axial flow cyclone using CFD, SVM, and NSGA II algorithm. Powder Technology, 373, 637–646. https://doi.org/10.1016/j.powtec.2020.06.078
  • Dockery, D., & Papa, B. (1996). Akut sağlık etkilerinin epidemiyolojisi : zaman serisi çalışmalarının özeti.
  • Elsayed, K., Parvaz, F., Hosseini, S. H., & Ahmadi, G. (2020). Influence of the dipleg and dustbin dimensions on performance of gas cyclones: An optimization study. Separation and Purification Technology, 239(September 2019). https://doi.org/10.1016/j.seppur.2020.116553
  • Hoffmannc, A. C. A., Santen, A. Van, Allen, R. W. K., Technology, R. C.-P., 1992, undefined, van Santen, A., … Clift, R. (1992). Effects of geometry and solid loading on the performance of gas cyclones. Powder Technology, 70(1), 83–91. https://doi.org/10.1016/0032-5910(92)85058-4
  • Hsiao, T. C., Chen, D., Greenberg, P. S., & Street, K. W. (2011). Effect of geometric configuration on the collection efficiency of axial flow cyclones. Journal of Aerosol Science, Vol. 42, pp. 78–86. https://doi.org/10.1016/j.jaerosci.2010.11.004
  • Karakaş, C. (2020). YÜKSEK VERİMLİ FARKLI GEOMETRİDEKİ MİNİ SİKLONLARIN PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ. Bursa Uludağ Üniversitesi.
  • Kreyling, W. G., Semmler-Behnke, M., & Möller, W. (2006). Health implications of nanoparticles. Journal of Nanoparticle Research, 8(5), 543–562. https://doi.org/10.1007/S11051-005-9068-Z/METRICS
  • Kuo, Kung-Yu, T. C.-J. (2001). Kuo AAQR2001. Aerosol and Air Quality Research, 1, 47–56. Morawska, L., Thomas, S., Gilbert, D., & Greenaway, C. (1999). Yoğun bir yola göre mikrometre altı parçacıkların yatay ve dikey profilinin incelenmesi. Atmosferik.
  • Oruç, E. (2020). EKSENEL SİKLON AYIRICILARIN PERFORMANS PARAMETRELERİNİN SAYISAL OLARAK İNCELENMESİ Emre ORUÇ. Bursa Uludağ Üniversitesi.
  • Parvaz, F., Hosseini, S. H., Elsayed, K., & Ahmadi, G. (2020). Influence of the dipleg shape on the performance of gas cyclones. Separation and Purification Technology, 233(May 2019), 116000. https://doi.org/10.1016/j.seppur.2019.116000
  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to FineParticulate Air Pollution. JAMA, 287(9), 1132–1141. https://doi.org/10.1001/JAMA.287.9.1132
  • US EPA. (1999). APTI 413: Control of Particulate Matter Emissions, fifth ed.
  • Wasilewski, M., & Brar, L. S. (2017). Optimization of the geometry of cyclone separators used in clinker burning process: A case study. Powder Technology, 313, 293–302. https://doi.org/10.1016/j.powtec.2017.03.025
  • Wilson, W. E., & Suh, H. H. (2012). Fine Particles and Coarse Particles: Concentration Relationships Relevant to Epidemiologic Studies. Http://Dx.Doi.Org/10.1080/10473289.1997.10464074, 47(12), 1238–1249. https://doi.org/10.1080/10473289.1997.10464074
  • Zhao, B., Su, Y., & Zhang, J. (2006). Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chemical Engineering Research and Design, 84(12 A), 1158–1165. https://doi.org/10.1205/cherd06040

EKSENEL AKIŞLI SİKLONLARDA KANAT SAYISININ AYIRMA VERİMİ VE BASINÇ KAYIPLARINA OLAN ETKİSİNİN ARAŞTIRILMASI

Year 2024, Volume: 27 Issue: 1, 40 - 48, 03.03.2024
https://doi.org/10.17780/ksujes.1331694

Abstract

Bu çalışmada, eksenel akışlı siklonlarda kanat sayısının ayırma verimliliği ve basınç kayıpları üzerindeki etkisi Hesaplamalı Akışkanlar Dinamiği (HAD) kullanılarak incelenmiştir. Eksenel akışlı siklonlar, yüksek partikül ayırma verimliliği ve basınç düşüşü sağlayan teğetsel ve ters akışlı siklon ayırıcılar ile karşılaştırılmıştır. Literatürdeki benzer çalışmalar dikkate alınarak bu çalışmada eksenel akışlı siklonlar ele alınmıştır. Çalışmada 2 ile 10 arasında değişen kılavuz kanat sayıları dört farklı durum için incelenmiştir. Önerilen eksenel akış siklonundaki partikül ayırma verimi ve basınç kayıpları sayısal model kullanılarak hesaplanmıştır. İncelenen dört durum için, eksenel akışlı siklonun HAD sonuçları, sabit kanat açısı ve kanat dönüşünün kanat sayısı ile ters orantılı olduğu durumun diğer üç duruma kıyasla, kanat sayısı arttıkça performansın arttığı görülmüştür.

References

  • Arkouli, M., Ulke, A. G., Endlicher, W., Baumbach, G., Schultz, E., Vogt, U., … Scheffknecht, G. (2010). Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires. Atmospheric Pollution Research, 1(1), 1–8. https://doi.org/10.5094/APR.2010.001
  • Babaoğlu, N., Parvaz, F., Hosseini, S., & Elsayed, K. (2021). Giriş kesit şeklinin çok girişli bir gaz siklonun performansı üzerindeki etkisi. Powder Technology.
  • Babaoğlu, N. U., Hosseini, S. H., Ahmadi, G., & Elsayed, K. (2022). The effect of axial cyclone inlet velocity and geometrical dimensions on the flow pattern, performance, and acoustic noise. Powder Technology, 407(July). https://doi.org/10.1016/j.powtec.2022.117692
  • Babaoğlu, N. U., Parvaz, F., Hosseini, S. H., Elsayed, K., & Ahmadi, G. (2021). Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone. Powder Technology, 384, 82–99. https://doi.org/10.1016/j.powtec.2021.02.008
  • Brar, L. S., & Elsayed, K. (2017). Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network. Powder Technology, 311, 465–483. https://doi.org/10.1016/j.powtec.2017.02.004
  • Brewer, R., & Belzer, W. (2001). Assessment of metal concentrations in atmospheric particles from Burnaby Lake, British Columbia, Canada. Atmospheric Environment, 35(30), 5223–5233. https://doi.org/10.1016/S1352-2310(01)00343-0
  • Canha, N., Almeida, S. M., Freitas, M. D. C., Trancoso, M., Sousa, A., Mouro, F., & Wolterbeek, H. T. (2014). Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology. Atmospheric Environment, 83, 21–34. https://doi.org/10.1016/j.atmosenv.2013.10.061
  • Cheng, Y. S. (2003). Aerosol deposition in the extrathoracic region. Aerosol Science and Technology, 37(8), 659–671. https://doi.org/10.1080/02786820300906
  • Demir, S., Karadeniz, A., Teknolojisi, M. A.-P., & 2016, U. (2016). Silindirik ve konik yüksekliklerin siklonlardaki basınç ve hız alanlarına etkileri. Elsevier.
  • Deng, Y., Yu, B., & Sun, D. (2020). Multi-objective optimization of guide vanes for axial flow cyclone using CFD, SVM, and NSGA II algorithm. Powder Technology, 373, 637–646. https://doi.org/10.1016/j.powtec.2020.06.078
  • Dockery, D., & Papa, B. (1996). Akut sağlık etkilerinin epidemiyolojisi : zaman serisi çalışmalarının özeti.
  • Elsayed, K., Parvaz, F., Hosseini, S. H., & Ahmadi, G. (2020). Influence of the dipleg and dustbin dimensions on performance of gas cyclones: An optimization study. Separation and Purification Technology, 239(September 2019). https://doi.org/10.1016/j.seppur.2020.116553
  • Hoffmannc, A. C. A., Santen, A. Van, Allen, R. W. K., Technology, R. C.-P., 1992, undefined, van Santen, A., … Clift, R. (1992). Effects of geometry and solid loading on the performance of gas cyclones. Powder Technology, 70(1), 83–91. https://doi.org/10.1016/0032-5910(92)85058-4
  • Hsiao, T. C., Chen, D., Greenberg, P. S., & Street, K. W. (2011). Effect of geometric configuration on the collection efficiency of axial flow cyclones. Journal of Aerosol Science, Vol. 42, pp. 78–86. https://doi.org/10.1016/j.jaerosci.2010.11.004
  • Karakaş, C. (2020). YÜKSEK VERİMLİ FARKLI GEOMETRİDEKİ MİNİ SİKLONLARIN PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ. Bursa Uludağ Üniversitesi.
  • Kreyling, W. G., Semmler-Behnke, M., & Möller, W. (2006). Health implications of nanoparticles. Journal of Nanoparticle Research, 8(5), 543–562. https://doi.org/10.1007/S11051-005-9068-Z/METRICS
  • Kuo, Kung-Yu, T. C.-J. (2001). Kuo AAQR2001. Aerosol and Air Quality Research, 1, 47–56. Morawska, L., Thomas, S., Gilbert, D., & Greenaway, C. (1999). Yoğun bir yola göre mikrometre altı parçacıkların yatay ve dikey profilinin incelenmesi. Atmosferik.
  • Oruç, E. (2020). EKSENEL SİKLON AYIRICILARIN PERFORMANS PARAMETRELERİNİN SAYISAL OLARAK İNCELENMESİ Emre ORUÇ. Bursa Uludağ Üniversitesi.
  • Parvaz, F., Hosseini, S. H., Elsayed, K., & Ahmadi, G. (2020). Influence of the dipleg shape on the performance of gas cyclones. Separation and Purification Technology, 233(May 2019), 116000. https://doi.org/10.1016/j.seppur.2019.116000
  • Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to FineParticulate Air Pollution. JAMA, 287(9), 1132–1141. https://doi.org/10.1001/JAMA.287.9.1132
  • US EPA. (1999). APTI 413: Control of Particulate Matter Emissions, fifth ed.
  • Wasilewski, M., & Brar, L. S. (2017). Optimization of the geometry of cyclone separators used in clinker burning process: A case study. Powder Technology, 313, 293–302. https://doi.org/10.1016/j.powtec.2017.03.025
  • Wilson, W. E., & Suh, H. H. (2012). Fine Particles and Coarse Particles: Concentration Relationships Relevant to Epidemiologic Studies. Http://Dx.Doi.Org/10.1080/10473289.1997.10464074, 47(12), 1238–1249. https://doi.org/10.1080/10473289.1997.10464074
  • Zhao, B., Su, Y., & Zhang, J. (2006). Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chemical Engineering Research and Design, 84(12 A), 1158–1165. https://doi.org/10.1205/cherd06040
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Air Pollution and Gas Cleaning
Journal Section Environmental Engineering
Authors

Nihan Babaoğlu 0000-0003-3356-9407

Ayşe Nur Gökduman 0009-0009-2436-1138

Publication Date March 3, 2024
Submission Date July 23, 2023
Published in Issue Year 2024Volume: 27 Issue: 1

Cite

APA Babaoğlu, N., & Gökduman, A. N. (2024). EKSENEL AKIŞLI SİKLONLARDA KANAT SAYISININ AYIRMA VERİMİ VE BASINÇ KAYIPLARINA OLAN ETKİSİNİN ARAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 40-48. https://doi.org/10.17780/ksujes.1331694