Research Article
BibTex RIS Cite

3B yazıcı kullanılarak odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının yazdırılması ve katman kalınlıklarının mekanik özelliklere etkisinin incelenmesi

Year 2021, Volume: 4 Issue: 2, 183 - 192, 27.12.2021
https://doi.org/10.33725/mamad.1026248

Abstract

Bu çalışmada kayın odun-unu ile PLA (Polilaktik asit) polimeri çift vidalı ekstrüderde karıştırıldıktan sonra 3B yazıcı kompozit filamenti elde edilmiştir. Elde edilen kompozit filamentinden mobilya bağlantı elemanları ve farklı katman kalınlıklarında (0.1, 0.2, 0.4 mm) mekanik test örnekleri yazdırılmıştır. Mekanik test sonuçlarına göre, yazdırılan kompozitler arasında en yüksek çekme direncini 0.1 mm katman kalınlığına sahip kompozitlerin (29.26 MPa) sergilediği görülmüştür. Ayrıca, en yüksek eğilme direnci değeri 0.1 mm katman kalınlığına sahip kompozit örneğinde 50.49 MPa olarak tespit edilmiştir. Katman kalınlığı artışı ile mukavemet arasında genel olarak ters bir orantı olduğu anlaşılmıştır. Ayrıca kompozit örneklerinin enine kesitlerinin, katman kalınlığı artışı sonucu boşluklu olduğu görülmüştür. Bunlara ek olarak kompozit örneklerinin Shore D sertlik değerlerinin birbirine yakın değerler sergiledikleri görülmüştür. Bu çalışmada, odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının başarılı bir şekilde yazdırılabildiği ve katman kalınlığının mekanik özellikler üzerinde önemli derece etkili olduğu sonucuna ulaşılmıştır.

References

  • ASTM D2240, (2015), Standard test method for rubber property-durometer hardness, ASTM International, West Conshohocken, PA.
  • ASTM D638, (2014), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA.
  • ASTM D790, (2017), Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA.
  • Ayrilmis, N., Kariz, M., Kwon, J. H., Kuzman, M. K., (2019), Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 102(5), 2195-2200. DOI: 10.1007/s00170-019-03299-9.
  • Bhagia, S., Bornani, K., Agarwal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Ragauskas, A. J., (2021), Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Applied Materials Today, 24, 101078. DOI: 10.1016/j.apmt.2021.101078
  • Christiyan, K. J., Chandrasekhar, U., Venkateswarlu, K., (2016), A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. In IOP Conference Series: Materials Science and Engineering, 114(1), 012109. DOI: 10.1088/1757-899X/114/1/012109
  • Dudek, P., (2013), FDM 3D printing technology in manufacturing composite elements, Archives of Metallurgy and Materials, 58, 1415–1418. DOI: 10.2478/amm-2013-0186
  • Jiang, J., Gu, H., Li, B., Zhang, J., (2021), Preparation and properties of straw/PLA wood plastic composites for 3D printing, Earth and Environmental Science, 692(3), 032004. DOI: 10.1088/1755-1315/692/3/032004
  • Masood, S. H., Song, W. Q., (2004), Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Materials & Design, 25, 587–594. DOI: 10.1016/j.matdes.2004.02.009
  • Narlıoğlu, N., Salan, T., Alma, M. H., (2021), Properties of 3D-Printed wood sawdust-reinforced PLA composites. BioResources, 16(3). DOI: 10.15376/biores.16.3.5467-5480
  • Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S., (2015), Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composite Part B Engineering, 80, 369–378. DOI: 0.1016/j.compositesb.2015.06.013
  • Örs, Y., Efe, H., (1998), Mobilya (çerçeve konstrüksiyon) tasarımında bağlantı elemanlarının mekanik davranış özellikleri. Turkish Journal of Agriculture and Forestry, 22(1), 21-27.
  • Tanikella, N. G., Wittbrodt, B., Pearce, J. M., (2017), Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Additive Manufacturing, 15, 40-47. DOI: 10.1016/j.addma.2017.03.005
  • Tao, Y., Wang, H., Li, Z., Li, P., Shi, S. Q., (2017), Development and application of wood flour-filled polylactic acid composite filament for 3D printing, Materials, 10(4), 339. DOI: 10.3390/ma10040339.
  • Trinka, M., (1989) Ready-to-assemble furniture; marketing and material use trends, Forest Products Journal, 40(3), 35-39.
  • Vaezi, M., Chua, C. K., (2011), Effects of layer thickness and binder saturation level parameters on 3D printing process. The International Journal of Advanced Manufacturing Technology, 53(1), 275-284. DOI: 10.1007/s00170-010-2821-1.

Printing of furniture fasteners from wood-PLA composite filament using a 3D printer and investigating the effect of layer thicknesses on mechanical properties

Year 2021, Volume: 4 Issue: 2, 183 - 192, 27.12.2021
https://doi.org/10.33725/mamad.1026248

Abstract

In this study, 3D printer composite filament was obtained after mixing beech wood-flour and PLA (Polylactic acid) polymer in a twin-screw extruder. Furniture fasteners and mechanical test samples in different layer thicknesses (0.1, 0.2, 0.4 mm) were printed from the obtained composite filament. According to the mechanical test results, it was observed that composites with a layer thickness of 0.1 mm (29.26 MPa) exhibited the highest tensile strength among the printed composites. In addition, the highest flexural strength value was determined as 50.49 MPa in the composite sample with a layer thickness of 0.1 mm. It has been understood that there is an inverse proportion between the increases of layer thickness with strength in general. Also, it was observed that the cross-sections of the composite samples were porous as a result of the increase the layer thickness. In addition, Shore D hardness values of the composite samples were found close to each other. In this study, it was concluded that furniture fasteners can be successfully printed from the wood-PLA composite filament and the layer thickness has a significant effect on the mechanical properties.

References

  • ASTM D2240, (2015), Standard test method for rubber property-durometer hardness, ASTM International, West Conshohocken, PA.
  • ASTM D638, (2014), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA.
  • ASTM D790, (2017), Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA.
  • Ayrilmis, N., Kariz, M., Kwon, J. H., Kuzman, M. K., (2019), Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology, 102(5), 2195-2200. DOI: 10.1007/s00170-019-03299-9.
  • Bhagia, S., Bornani, K., Agarwal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Ragauskas, A. J., (2021), Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Applied Materials Today, 24, 101078. DOI: 10.1016/j.apmt.2021.101078
  • Christiyan, K. J., Chandrasekhar, U., Venkateswarlu, K., (2016), A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. In IOP Conference Series: Materials Science and Engineering, 114(1), 012109. DOI: 10.1088/1757-899X/114/1/012109
  • Dudek, P., (2013), FDM 3D printing technology in manufacturing composite elements, Archives of Metallurgy and Materials, 58, 1415–1418. DOI: 10.2478/amm-2013-0186
  • Jiang, J., Gu, H., Li, B., Zhang, J., (2021), Preparation and properties of straw/PLA wood plastic composites for 3D printing, Earth and Environmental Science, 692(3), 032004. DOI: 10.1088/1755-1315/692/3/032004
  • Masood, S. H., Song, W. Q., (2004), Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Materials & Design, 25, 587–594. DOI: 10.1016/j.matdes.2004.02.009
  • Narlıoğlu, N., Salan, T., Alma, M. H., (2021), Properties of 3D-Printed wood sawdust-reinforced PLA composites. BioResources, 16(3). DOI: 10.15376/biores.16.3.5467-5480
  • Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S., (2015), Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composite Part B Engineering, 80, 369–378. DOI: 0.1016/j.compositesb.2015.06.013
  • Örs, Y., Efe, H., (1998), Mobilya (çerçeve konstrüksiyon) tasarımında bağlantı elemanlarının mekanik davranış özellikleri. Turkish Journal of Agriculture and Forestry, 22(1), 21-27.
  • Tanikella, N. G., Wittbrodt, B., Pearce, J. M., (2017), Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Additive Manufacturing, 15, 40-47. DOI: 10.1016/j.addma.2017.03.005
  • Tao, Y., Wang, H., Li, Z., Li, P., Shi, S. Q., (2017), Development and application of wood flour-filled polylactic acid composite filament for 3D printing, Materials, 10(4), 339. DOI: 10.3390/ma10040339.
  • Trinka, M., (1989) Ready-to-assemble furniture; marketing and material use trends, Forest Products Journal, 40(3), 35-39.
  • Vaezi, M., Chua, C. K., (2011), Effects of layer thickness and binder saturation level parameters on 3D printing process. The International Journal of Advanced Manufacturing Technology, 53(1), 275-284. DOI: 10.1007/s00170-010-2821-1.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Timber, Pulp and Paper
Journal Section Articles
Authors

Nasır Narlıoğlu 0000-0002-1295-6558

Publication Date December 27, 2021
Submission Date November 20, 2021
Acceptance Date December 15, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Narlıoğlu, N. (2021). 3B yazıcı kullanılarak odun-PLA kompozit filamentinden mobilya bağlantı elemanlarının yazdırılması ve katman kalınlıklarının mekanik özelliklere etkisinin incelenmesi. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 4(2), 183-192. https://doi.org/10.33725/mamad.1026248

International Journal

18332  18333 TR DİZİN   18334  18335  18336 18434