Research Article
BibTex RIS Cite

Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi

Year 2023, Volume: 12 Issue: 2, 604 - 611, 15.04.2023
https://doi.org/10.28948/ngumuh.1196795

Abstract

Bu çalışmada Etial 180 alaşımı içerisine ağırlıkça %0-5 oranında bakır ilavesi gerçekleştirilmiştir. Üretilen numunelerin mikroyapısal incelemeleri, sertlik değerleri ve korozyon dirençleri ölçülmüştür. Çalışmada bakır ilavesinin Etial 180 alaşımının mikroyapısında önemli değişikliklere neden olduğu gözlemlenmiştir. Artan bakır oranı ile mikroyapıda Al2Cu faz yoğunluğunun arttığı görülmüştür. Sertlik testi sonucu Etial 180 alaşımına ilave bakırın alaşımın sertliğinde doğrusal bir artışa neden olduğu tespit edilmiştir. Çalışmada en yüksek sertlik değeri ağırlıkça %5 bakır içeren alaşımda 80.2 HB olarak ölçülmüş ve referans numuneye göre sertliği %22 oranında artırdığı tespit edilmiştir. Döküm numunelere gerçekleştirilen potansiyodinamik polorizasyon testi sonucu artan bakır oranının korozyon potansiyellerinde önemli bir değişime neden olmadığı tespit edilmiş fakat akım yoğunluğu değerlerinin genel olarak artan bakır oranı ile arttığı görülmüştür. Çalışmada en düşük korozyon direnci %5 bakır içeren numunede ölçülmüştür.

Supporting Institution

Zonguldak Bülent Ecevit Üniversitesi

Project Number

2021-73338635-01

Thanks

Bu çalışma, Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırmalar Projeleri Kordinatörlüğü BAP 2021-73338635-01 nolu proje ile desteklenmiştir.

References

  • J.R. Davis, Aluminum and Aluminum Alloys, Light Met. Alloy. 66, 2001. https://doi.org/10.1361 /autb2001p351.
  • B. Stojanovic, М. Bukvic, I. Epler, Application of aluminum and aluminum alloys in engineering, Appl. Eng. Lett. 3 (2), 52–62, 2018. https://doi.org/ 10.18485/aeletters.2018.3.2.2.
  • E. Kocaman, S. Şirin, D. Dispinar, Artificial Neural Network Modeling of Grain Refinement Performance in AlSi10Mg Alloy, Int. J. Met. 15, 338-348, 2021. https://doi.org/10.1007/s40962-020-00472-9.
  • R.S. Rana, R. Purohit, D. S, Reviews on the Influences of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites, Int. J. Sci. Res. Publ. 2 (6), 1–7, 2012
  • J.F. King, 6 - Aluminium products, in: J.F.B.T.-T.A.I. King (Ed.), Woodhead Publishing, pp. 6–36, 2001. https://doi.org/https://doi.org/10.1016/B978-1-85573-151-6.50012-4.
  • M. Çolak, S.H. Yetgin, Investigation of the Effects of Casting Method on Cooling Plate on Tribological Properties of A357 Aluminum Alloy with Taguchi Method, 7 (83), 99–103, 2018.
  • Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu, G. Ma, Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing, Mater. Des. 186, 108205, 2020. https://doi.org/https://doi.org/10.1016/j.matdes.2019.108205.
  • M. Warmuzek, Aluminum-silicon casting alloys, ASM International, Ohio, 2004.
  • M. Çolak, R. Kayıkcı, A356 Döküm Alaşımında Elektromanyetik Karıştırmanın Mikroyapı ve Mekanik Özelliklere Etkisi, Pamukkale Üniversitesi Mühendislik Bilim. Derg. 15 (3), 345–351, 2009.
  • A. Lakshmanan, S. Shabestari, J. Gruzleski, Microstructure Control of Iron Intermetallics in Al-Si Casting Alloys, 86, 457–465, 1995. https://doi.org/doi:10.1515/ijmr-1995-860704.
  • M. Başaranel, N. Saklakoğlu, SIMA prosesiyle üretilmiş ETİAL 180 alüminyum alaşımına eser miktarlarda magnezyum ve kalay ilavesinin etkilerinin incelenmesi, Journal. 3 (2), 83–90, 2012.
  • E. Uslu, R. Çatar, M. Çolak, Si ve Cu Elementleri İçeren Aluminyum Döküm Alaşımlarının Korozyon Özelliklerinin Belirlenmesi ve Karşılaştırılması, Eng. Sci. 12 (3), 133–140, 2017. https://doi.org/ http://dx.doi.org/10.12739/NWSA.2017.12.3.1A0381.
  • N. Nafsin, H.M.M.A. Rashed, Effects of Copper and Magnesium on Microstructure and Hardness of Al-Cu-Mg Alloys, 2 (5), 533–536, 2013.
  • Y.A. Muhi, Effect of Copper Addition on the Microstructure and Mechanical Properties of Al-Si Alloy, Al-Qadisiya J. Eng. Sci. 7, 366–381, 2014.
  • I. Bacaicoa, M. Wicke, M. Luetje, F. Zeismann, A. Brueckner-Foit, A. Geisert, M. Fehlbier, Characterization of casting defects in a Fe-rich Al-Si-Cu alloy by microtomography and finite element analysis, Eng. Fract. Mech. 183, 159–169, 2017. https://doi.org/https://doi.org/10.1016/j.engfracmech.2017.03.015.
  • C.M. Dinnis, J.A. Taylor, A.K. Dahle, As-cast morphology of iron-intermetallics in Al–Si foundry alloys, Scr. Mater. 53 (8), 955–958, 2005. https://doi.org/https://doi.org/10.1016/j.scriptamat.2005.06.028.
  • E. Sjölander, S. Seifeddine, Optimisation of solution treatment of cast Al–Si–Cu alloys, Mater. Des. 31, 44-49, 2010. https://doi.org/https://doi.org/10.1016/ j.matdes.2009.10.035.
  • M. Başaranel, N. Saklakoğlu, S.G. İrizalp, Etial 180 Alüminyum Alaşimina İlave Edilen Mg ve Sn Elementlerinin İntermetalik Fazlara Etkisi - The Influence of Sn And Mg Contents on the Intermetallic Phases of Etial 180 Alloy, Celal Bayar Üniversitesi Fen Bilim. Derg. 9, 17–24, 2015. http://dergipark. gov.tr/cbayarfbe/issue/4056/53423.
  • N.C.W. Kuijpers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S. van der Zwaag, The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements, Mater. Sci. Eng. A. 394, 9–19, 2005. https://doi.org/https://doi.org/10.1016/j.msea.2004.09.073.
  • M. Djurdjevic, T. Stockwell, J. Sokolowski, The effect of strontium on the microstructure of the aluminium-silicon and aluminium-copper eutectics in the 319 aluminium alloy, Int. J. Cast Met. Res. 12, 67–73, 1999. https://doi.org/10.1080/13640461.1999.11819344.
  • Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys, J. Mater. Sci. 38, 1203–1218, 2003. https://doi.org/10.1023/A:1022857703995.
  • A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment, Metall. Mater. Trans. A. 27, 1785–1798, 1996. https://doi.org/10.1007/BF02651928.
  • H. Wang, Y. Zhang, C. Wang, S. Cao, W. Bai, C. Wu, J. Qian, Effect of Al Content on Microstructure and Properties of Zn-Cu-Al Alloy, IOP Conf. Ser. Mater. Sci. Eng. 746, 12018, 2020. https://doi.org /10.1088/1757-899x/746/1/012018.
  • O. Zobac, A. Kroupa, A. Zemanova, K.W. Richter, Experimental Description of the Al-Cu Binary Phase Diagram, Metall. Mater. Trans. A. 50, 3805–3815, 2019. https://doi.org/10.1007/s11661-019-05286-x.
  • M. Emamy, A.R. Emami, K. Tavighi, The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite, Mater. Sci. Eng. A. 576, 36–44, 2013. https://doi.org/10.1016/j.msea.2013.03.066.
  • M. Zeren, E. Karakulak, S. Gümü, Influence of Cu addition on microstructure and hardness of near-eutectic Al-Si-xCu-alloys, Trans. Nonferrous Met. Soc. China (English Ed. 21, 1698–1702, 2011. https://doi.org/10.1016/S1003-6326(11)60917-5.
  • M. Emamy, N. Nemati, A. Heidarzadeh, The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al-15% Mg2Si composite, Mater. Sci. Eng. A. 527, 2998–3004, 2010. https://doi.org/10.1016/j.msea.2010.01.063.
  • C.P. student Castella, Politecnico di Torino Porto Institutional Repository [Doctoral thesis] Self hardening aluminum alloys for automotive applications, DOI 10.6092/Polito/Porto/2598757 2016-07-28, 2015. https://doi.org/10.6092/polito/porto/ 2598757.
  • C. Vargel, Chapter C.13 - Galvanic corrosion, in: C.B.T.-C. of A. (Second E. Vargel (Ed.), Elsevier, Amsterdam, 295–315, 2020. https://doi.org/https://doi.org/10.1016/B978-0-08-099925-8.00025-9.
  • M.J. Robinson, Mathematical modelling of exfoliation corrosion in high strength aluminium alloys, Corros. Sci. 22, 775–790, 1982. https://doi.org/https:// doi.org/10.1016/0010-938X(82)90013-0.
  • A. Hossain, F. Gulshan, A.S.W. Kurny, The effect of 4 wt.% Cu addition on the electrochemical corrosion behavior of automotive engine Al-6Si-0.5Mg alloy, Chem. Met. Alloy. 8, 69–74, 2015. https://doi.org/10.30970/cma8.0307.
  • A.T. Mayyas, M.M. Hamasha, A. Alrashdan, A.M. Hassan, M.T. Hayajneh, Effect of Copper and Silicon Carbide Content on the Corrosion Resistance of Al-Mg Alloys in Acidic and Alkaline Solutions, J. Miner. Mater. Charact. Eng. 11, 335–352, 2012. https://doi.org/10.4236/jmmce.2012.114025.
  • M. Abdulwahab, I.A. Madugu, S.A. Yaro, A.P.I. Popoola, Degradation Behavior of High Chromium Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated Seawater Environment, J. Miner. Mater. Charact. Eng. 10, 535–551, 2011. https://doi.org/ 10.4236/jmmce.2011.106041.

Effect of copper addition to Etial 180 alloy on microstructure, hardness and corrosion

Year 2023, Volume: 12 Issue: 2, 604 - 611, 15.04.2023
https://doi.org/10.28948/ngumuh.1196795

Abstract

In this study, 0-5 wt.% copper was added to Etial 180 alloy. Microstructural examinations, hardness tests and corrosion resistance of the produced samples were measured. In the study, it was observed that the addition of copper caused significant changes in the microstructure of the Etial 180 alloy. It was observed that the volumetric phase density of Al2Cu in the microstructure increased with increasing copper ratio. As a result of the hardness test, it was determined that the added copper to the Etial 180 alloy caused a linear increase in the hardness of the alloy. In the study, the highest hardness value was measured as 80.2 HB in the alloy containing 5 wt.% copper, and it was determined that it increased the hardness by 22% compared to the reference sample. As a result of the potentiodynamic polarization test performed on the cast samples, it was determined that the increased copper ratio did not cause a significant change in the corrosion potentials, but it was observed that the current density values generally increased with the increasing copper ratio. In the study, the lowest corrosion resistance was measured in the sample containing 5 wt.% copper.

Project Number

2021-73338635-01

References

  • J.R. Davis, Aluminum and Aluminum Alloys, Light Met. Alloy. 66, 2001. https://doi.org/10.1361 /autb2001p351.
  • B. Stojanovic, М. Bukvic, I. Epler, Application of aluminum and aluminum alloys in engineering, Appl. Eng. Lett. 3 (2), 52–62, 2018. https://doi.org/ 10.18485/aeletters.2018.3.2.2.
  • E. Kocaman, S. Şirin, D. Dispinar, Artificial Neural Network Modeling of Grain Refinement Performance in AlSi10Mg Alloy, Int. J. Met. 15, 338-348, 2021. https://doi.org/10.1007/s40962-020-00472-9.
  • R.S. Rana, R. Purohit, D. S, Reviews on the Influences of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites, Int. J. Sci. Res. Publ. 2 (6), 1–7, 2012
  • J.F. King, 6 - Aluminium products, in: J.F.B.T.-T.A.I. King (Ed.), Woodhead Publishing, pp. 6–36, 2001. https://doi.org/https://doi.org/10.1016/B978-1-85573-151-6.50012-4.
  • M. Çolak, S.H. Yetgin, Investigation of the Effects of Casting Method on Cooling Plate on Tribological Properties of A357 Aluminum Alloy with Taguchi Method, 7 (83), 99–103, 2018.
  • Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu, G. Ma, Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing, Mater. Des. 186, 108205, 2020. https://doi.org/https://doi.org/10.1016/j.matdes.2019.108205.
  • M. Warmuzek, Aluminum-silicon casting alloys, ASM International, Ohio, 2004.
  • M. Çolak, R. Kayıkcı, A356 Döküm Alaşımında Elektromanyetik Karıştırmanın Mikroyapı ve Mekanik Özelliklere Etkisi, Pamukkale Üniversitesi Mühendislik Bilim. Derg. 15 (3), 345–351, 2009.
  • A. Lakshmanan, S. Shabestari, J. Gruzleski, Microstructure Control of Iron Intermetallics in Al-Si Casting Alloys, 86, 457–465, 1995. https://doi.org/doi:10.1515/ijmr-1995-860704.
  • M. Başaranel, N. Saklakoğlu, SIMA prosesiyle üretilmiş ETİAL 180 alüminyum alaşımına eser miktarlarda magnezyum ve kalay ilavesinin etkilerinin incelenmesi, Journal. 3 (2), 83–90, 2012.
  • E. Uslu, R. Çatar, M. Çolak, Si ve Cu Elementleri İçeren Aluminyum Döküm Alaşımlarının Korozyon Özelliklerinin Belirlenmesi ve Karşılaştırılması, Eng. Sci. 12 (3), 133–140, 2017. https://doi.org/ http://dx.doi.org/10.12739/NWSA.2017.12.3.1A0381.
  • N. Nafsin, H.M.M.A. Rashed, Effects of Copper and Magnesium on Microstructure and Hardness of Al-Cu-Mg Alloys, 2 (5), 533–536, 2013.
  • Y.A. Muhi, Effect of Copper Addition on the Microstructure and Mechanical Properties of Al-Si Alloy, Al-Qadisiya J. Eng. Sci. 7, 366–381, 2014.
  • I. Bacaicoa, M. Wicke, M. Luetje, F. Zeismann, A. Brueckner-Foit, A. Geisert, M. Fehlbier, Characterization of casting defects in a Fe-rich Al-Si-Cu alloy by microtomography and finite element analysis, Eng. Fract. Mech. 183, 159–169, 2017. https://doi.org/https://doi.org/10.1016/j.engfracmech.2017.03.015.
  • C.M. Dinnis, J.A. Taylor, A.K. Dahle, As-cast morphology of iron-intermetallics in Al–Si foundry alloys, Scr. Mater. 53 (8), 955–958, 2005. https://doi.org/https://doi.org/10.1016/j.scriptamat.2005.06.028.
  • E. Sjölander, S. Seifeddine, Optimisation of solution treatment of cast Al–Si–Cu alloys, Mater. Des. 31, 44-49, 2010. https://doi.org/https://doi.org/10.1016/ j.matdes.2009.10.035.
  • M. Başaranel, N. Saklakoğlu, S.G. İrizalp, Etial 180 Alüminyum Alaşimina İlave Edilen Mg ve Sn Elementlerinin İntermetalik Fazlara Etkisi - The Influence of Sn And Mg Contents on the Intermetallic Phases of Etial 180 Alloy, Celal Bayar Üniversitesi Fen Bilim. Derg. 9, 17–24, 2015. http://dergipark. gov.tr/cbayarfbe/issue/4056/53423.
  • N.C.W. Kuijpers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S. van der Zwaag, The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements, Mater. Sci. Eng. A. 394, 9–19, 2005. https://doi.org/https://doi.org/10.1016/j.msea.2004.09.073.
  • M. Djurdjevic, T. Stockwell, J. Sokolowski, The effect of strontium on the microstructure of the aluminium-silicon and aluminium-copper eutectics in the 319 aluminium alloy, Int. J. Cast Met. Res. 12, 67–73, 1999. https://doi.org/10.1080/13640461.1999.11819344.
  • Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys, J. Mater. Sci. 38, 1203–1218, 2003. https://doi.org/10.1023/A:1022857703995.
  • A.M. Samuel, J. Gauthier, F.H. Samuel, Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment, Metall. Mater. Trans. A. 27, 1785–1798, 1996. https://doi.org/10.1007/BF02651928.
  • H. Wang, Y. Zhang, C. Wang, S. Cao, W. Bai, C. Wu, J. Qian, Effect of Al Content on Microstructure and Properties of Zn-Cu-Al Alloy, IOP Conf. Ser. Mater. Sci. Eng. 746, 12018, 2020. https://doi.org /10.1088/1757-899x/746/1/012018.
  • O. Zobac, A. Kroupa, A. Zemanova, K.W. Richter, Experimental Description of the Al-Cu Binary Phase Diagram, Metall. Mater. Trans. A. 50, 3805–3815, 2019. https://doi.org/10.1007/s11661-019-05286-x.
  • M. Emamy, A.R. Emami, K. Tavighi, The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite, Mater. Sci. Eng. A. 576, 36–44, 2013. https://doi.org/10.1016/j.msea.2013.03.066.
  • M. Zeren, E. Karakulak, S. Gümü, Influence of Cu addition on microstructure and hardness of near-eutectic Al-Si-xCu-alloys, Trans. Nonferrous Met. Soc. China (English Ed. 21, 1698–1702, 2011. https://doi.org/10.1016/S1003-6326(11)60917-5.
  • M. Emamy, N. Nemati, A. Heidarzadeh, The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al-15% Mg2Si composite, Mater. Sci. Eng. A. 527, 2998–3004, 2010. https://doi.org/10.1016/j.msea.2010.01.063.
  • C.P. student Castella, Politecnico di Torino Porto Institutional Repository [Doctoral thesis] Self hardening aluminum alloys for automotive applications, DOI 10.6092/Polito/Porto/2598757 2016-07-28, 2015. https://doi.org/10.6092/polito/porto/ 2598757.
  • C. Vargel, Chapter C.13 - Galvanic corrosion, in: C.B.T.-C. of A. (Second E. Vargel (Ed.), Elsevier, Amsterdam, 295–315, 2020. https://doi.org/https://doi.org/10.1016/B978-0-08-099925-8.00025-9.
  • M.J. Robinson, Mathematical modelling of exfoliation corrosion in high strength aluminium alloys, Corros. Sci. 22, 775–790, 1982. https://doi.org/https:// doi.org/10.1016/0010-938X(82)90013-0.
  • A. Hossain, F. Gulshan, A.S.W. Kurny, The effect of 4 wt.% Cu addition on the electrochemical corrosion behavior of automotive engine Al-6Si-0.5Mg alloy, Chem. Met. Alloy. 8, 69–74, 2015. https://doi.org/10.30970/cma8.0307.
  • A.T. Mayyas, M.M. Hamasha, A. Alrashdan, A.M. Hassan, M.T. Hayajneh, Effect of Copper and Silicon Carbide Content on the Corrosion Resistance of Al-Mg Alloys in Acidic and Alkaline Solutions, J. Miner. Mater. Charact. Eng. 11, 335–352, 2012. https://doi.org/10.4236/jmmce.2012.114025.
  • M. Abdulwahab, I.A. Madugu, S.A. Yaro, A.P.I. Popoola, Degradation Behavior of High Chromium Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated Seawater Environment, J. Miner. Mater. Charact. Eng. 10, 535–551, 2011. https://doi.org/ 10.4236/jmmce.2011.106041.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Engin Kocaman 0000-0001-5617-3064

Erhan Baysal 0000-0002-2767-8722

Oğuz Koçar 0000-0002-1928-4301

Ahmet Seradr Güldibi 0000-0001-7021-060X

Selçuk Şirin 0000-0002-9129-9217

Project Number 2021-73338635-01
Publication Date April 15, 2023
Submission Date October 31, 2022
Acceptance Date December 30, 2022
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Kocaman, E., Baysal, E., Koçar, O., Güldibi, A. S., et al. (2023). Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 604-611. https://doi.org/10.28948/ngumuh.1196795
AMA Kocaman E, Baysal E, Koçar O, Güldibi AS, Şirin S. Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi. NOHU J. Eng. Sci. April 2023;12(2):604-611. doi:10.28948/ngumuh.1196795
Chicago Kocaman, Engin, Erhan Baysal, Oğuz Koçar, Ahmet Seradr Güldibi, and Selçuk Şirin. “Etial 180 alaşımına Ilave Edilen bakırın mikroyapı, Sertlik Ve Korozyon üzerindeki Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 2 (April 2023): 604-11. https://doi.org/10.28948/ngumuh.1196795.
EndNote Kocaman E, Baysal E, Koçar O, Güldibi AS, Şirin S (April 1, 2023) Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 604–611.
IEEE E. Kocaman, E. Baysal, O. Koçar, A. S. Güldibi, and S. Şirin, “Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi”, NOHU J. Eng. Sci., vol. 12, no. 2, pp. 604–611, 2023, doi: 10.28948/ngumuh.1196795.
ISNAD Kocaman, Engin et al. “Etial 180 alaşımına Ilave Edilen bakırın mikroyapı, Sertlik Ve Korozyon üzerindeki Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (April 2023), 604-611. https://doi.org/10.28948/ngumuh.1196795.
JAMA Kocaman E, Baysal E, Koçar O, Güldibi AS, Şirin S. Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi. NOHU J. Eng. Sci. 2023;12:604–611.
MLA Kocaman, Engin et al. “Etial 180 alaşımına Ilave Edilen bakırın mikroyapı, Sertlik Ve Korozyon üzerindeki Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 2, 2023, pp. 604-11, doi:10.28948/ngumuh.1196795.
Vancouver Kocaman E, Baysal E, Koçar O, Güldibi AS, Şirin S. Etial 180 alaşımına ilave edilen bakırın mikroyapı, sertlik ve korozyon üzerindeki etkisi. NOHU J. Eng. Sci. 2023;12(2):604-11.

23135