Research Article
BibTex RIS Cite

Galileo uydu sisteminin nokta konumlamaya etkisi

Year 2023, Volume: 12 Issue: 3, 799 - 809, 15.07.2023
https://doi.org/10.28948/ngumuh.1250019

Abstract

Küresel konumlama çalışmalarında GPS, GLONASS, Galileo ve BeiDou, bölgesel olarak ise IRNSS ve QZSS uydu sistemleri kullanılmaktadır. Yakın zamana kadar nokta konumları GPS ve GLONASS, BeiDou uydu sistemleri kullanılarak belirlenmiştir. 2020 yılından itibaren Galileo uydu sistemi de kullanılmaya başlanmıştır. GNSS ile nokta konumlarının belirlenmesindeki doğruluk kullanılan uydu sistemine, değerlendirme yazılımına, veri toplama süresine/kayıt aralığına vb. etkilere bağlı olarak değişmektedir. Bu çalışmada, Galileo uydu sisteminin nokta konumlamaya etkisi, ölçü süresine bağlı olarak araştırılmıştır. Bu kapsamda, 15.10.2020-13.11.2020 tarihleri arasında seçilen 7 adet TUSAGA istasyonun günlük RINEX verileri, 14 adet IGS istasyonuna ait RINEX verilerinden yararlanılarak, 2, 4 ve 12 saatlik dilimlere ayrılmış ve çözümler GAMIT/GLOBK ile GPS (G), GLONASS (R), Galileo (E) ve GPS+GLONASS+Galileo (GRE) ile değerlendirilmiştir. Değerlendirmeler sonucunda sadece GPS ile elde edilen günlük koordinatlar esas alınarak diğer uydu kombinasyonlarının bu koordinatlara yaklaşımı analiz edilmiştir. Yapılan analizlerde, ölçü süresi arttıkça doğruluğun arttığı, GPS koordinatlarına en iyi yaklaşımı sırasıyla, GRE., Galileo ve GLONASS uydu kombinasyonlarının sağladığı sonucuna varılmıştır.

References

  • T. A. Herring, R. W. King, M. A. Floyd, S. C. McClusky, GAMIT (GPS Analysis at MIT) Reference Manual Release 10.7, Massachusetts Institute of Technology, Cambridge, Amerika Birleşik Devletleri, 2018.
  • T. A. Herring, M. A. Floyd, R. W. King, S. C. McClusky, GLOBK Reference Manual: Global Kalman filter VLBI and GPS Analysis Program, Release 10.6, Massachusetts Institute of Technology, Cambridge, Amerika Birleşik Devletleri, 2015.
  • X, Luo., S, Schaufler., M, Branzanti., J, Chen., Assessing the benefits of Galileo to high-precision GNSS positioning – RTK, PPP and post-processing, Advances in Space Research, 68, 4916–4931, 2021.
  • W. Zhou, H. Cai, G. Chen, W. Jiao, Q. He, Y. Yang, Multi-GNSS Combined Orbit and Clock Solutions at Sensors, 22, 457, 2022. https://doi.org/10.3390/s2 2020457
  • L. Zhao, P. Blunt, L. Yang, 2022, Performance Analysis of Zero-Difference GPS L1/L2/L5 and Galileo E1/E5a/E5b/E6 Point Positioning Using CNES Uncombined Bias Products, Remote Sensing, 14, 650, 2022. https://doi.org/10.3390/rs14030650
  • F. Mirmohammadian, J. Asgari, S. Verhagen, A. A. Simkooei, Improvement of Multi-GNSS Precision and Success Rate Using Realistic Stochastic Model of Observations, Remote Sensing, 14(1), 60, 2022. https://doi.org/10.3390/rs14010060
  • I. Ashour, M, E. Tokhey, Y. Mogahed, A. Ragheb, erformance of global navigation satellite systems (GNSS) in absence of GPS observations, Ain Shams Engineering Journal 13, 2, 101589, 2022. https://doi.org/10.1016/j.asej.2021.09.016
  • A. Angrisano, G. Dardanelli, A. Innac, A. Pisciotta, Performance Assessment of PPP Surveys with Open Source Software Using the GNSS GPS–GLONASS–Galileo Constellations, Appl. Sci. 10(16), 5420, 2020. https://doi.org/10.3390/app10165420
  • H. Karimi, An analysis of satellite visibility and single point positioning with GPS, GLONASS, Galileo, and BeiDou-2/3, Applied Geomatics, 13, 781-791, 2021. https://doi.org/10.1007/s12518-021-00391-2
  • J. Chen, X. Zhao, C. Liu, S. Zhu, Z. Liu, D. Yue, Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS, The Journal of Navigation, 74(1), 247-267, 2021. http://doi:10.1017/S037 3463320000508
  • A. Pırtı, R. G. Hoşbaş, B. Şenel, M. Köroğlu, S. Bilim, Galileo Uydu Sistemi ve Sinyal Yapısı. Geomatik 6(3), 207-216. 2021. http://doi:10.29128 /geomatik.750469
  • https://www.gps.gov/systems/gps/modernization/ civilsignals/#L5, Accessed 18 May 2023
  • https://www.glonass-iac.ru/en/sostavOG/, Accessed 18 May 2023
  • B. Bhatta, Global Navigation Satellite Systems: New Technologies and Applications Second Edition, Taylor & Francis Group, Boca Raton, London, New York, 2021.
  • https://www.gsc-europa.eu/system-service-status/co nstellation-information, Accessed 18 May 2023
  • N. Samama, Global Positioning: Technologies and Performances, John Wiley ve Sons, Amerika Birleşik Devletleri, 2008.
  • https://www.euspa.europa.eu/european-space/galil eo/What-Galileo, Accessed 18 May 2023
  • M.A. Floyd, T.A. Herring, R.W. King, S.C. McClusky, GAMIT/GLOBK Quick Start Guide, Massachusetts Institute of Technology, Cambridge, MA, USA, 2022.
  • https://www.harita.gov.tr/public/sunum/, Accessed 18 May 2023
  • https://igs.org/network, Accessed 18 May 2023
  • T. Gündoğan, Galileo Uydu sisteminin Nokta Konumlamaya Etkisi, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Konya, 2023.

The effect of Galileo satellite system on point positioning

Year 2023, Volume: 12 Issue: 3, 799 - 809, 15.07.2023
https://doi.org/10.28948/ngumuh.1250019

Abstract

GPS, GLONASS, Galileo, BeiDou are used in global positioning studies, while IRNSS and QZSS are used regionally. Until recently, point positions were determined using GPS, GLONASS, and BeiDou satellite systems. Since 2020, the Galileo satellite system has also been used. The accuracy of point positioning with GNSS depends on the satellite system used, processing software, data collection time/interval, etc. In this study, the effect of the Galileo satellite system on point positioning was investigated depending on the data logging time. For this purpose, daily RINEX data of 7 selected TUSAGA stations between October 15, 2020, and November 13, 2020, were analyzed in 2, 4, and 12-hour increments using 14 IGS station RINEX data, and the solutions were evaluated with GAMIT/GLOBK according to GPS (G), GLONASS (R), Galileo (E), and GPS+GLONASS+Galileo (GRE). As a result of the evaluations, the approaches of other satellite combinations to the daily coordinates obtained using only GPS were analyzed. In the analyses conducted, it was concluded that the accuracy increases as the measurement time increases and that GRE, Galileo, and GLONASS satellite combinations provide the best approximation to GPS coordinates, respectively.

References

  • T. A. Herring, R. W. King, M. A. Floyd, S. C. McClusky, GAMIT (GPS Analysis at MIT) Reference Manual Release 10.7, Massachusetts Institute of Technology, Cambridge, Amerika Birleşik Devletleri, 2018.
  • T. A. Herring, M. A. Floyd, R. W. King, S. C. McClusky, GLOBK Reference Manual: Global Kalman filter VLBI and GPS Analysis Program, Release 10.6, Massachusetts Institute of Technology, Cambridge, Amerika Birleşik Devletleri, 2015.
  • X, Luo., S, Schaufler., M, Branzanti., J, Chen., Assessing the benefits of Galileo to high-precision GNSS positioning – RTK, PPP and post-processing, Advances in Space Research, 68, 4916–4931, 2021.
  • W. Zhou, H. Cai, G. Chen, W. Jiao, Q. He, Y. Yang, Multi-GNSS Combined Orbit and Clock Solutions at Sensors, 22, 457, 2022. https://doi.org/10.3390/s2 2020457
  • L. Zhao, P. Blunt, L. Yang, 2022, Performance Analysis of Zero-Difference GPS L1/L2/L5 and Galileo E1/E5a/E5b/E6 Point Positioning Using CNES Uncombined Bias Products, Remote Sensing, 14, 650, 2022. https://doi.org/10.3390/rs14030650
  • F. Mirmohammadian, J. Asgari, S. Verhagen, A. A. Simkooei, Improvement of Multi-GNSS Precision and Success Rate Using Realistic Stochastic Model of Observations, Remote Sensing, 14(1), 60, 2022. https://doi.org/10.3390/rs14010060
  • I. Ashour, M, E. Tokhey, Y. Mogahed, A. Ragheb, erformance of global navigation satellite systems (GNSS) in absence of GPS observations, Ain Shams Engineering Journal 13, 2, 101589, 2022. https://doi.org/10.1016/j.asej.2021.09.016
  • A. Angrisano, G. Dardanelli, A. Innac, A. Pisciotta, Performance Assessment of PPP Surveys with Open Source Software Using the GNSS GPS–GLONASS–Galileo Constellations, Appl. Sci. 10(16), 5420, 2020. https://doi.org/10.3390/app10165420
  • H. Karimi, An analysis of satellite visibility and single point positioning with GPS, GLONASS, Galileo, and BeiDou-2/3, Applied Geomatics, 13, 781-791, 2021. https://doi.org/10.1007/s12518-021-00391-2
  • J. Chen, X. Zhao, C. Liu, S. Zhu, Z. Liu, D. Yue, Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS, The Journal of Navigation, 74(1), 247-267, 2021. http://doi:10.1017/S037 3463320000508
  • A. Pırtı, R. G. Hoşbaş, B. Şenel, M. Köroğlu, S. Bilim, Galileo Uydu Sistemi ve Sinyal Yapısı. Geomatik 6(3), 207-216. 2021. http://doi:10.29128 /geomatik.750469
  • https://www.gps.gov/systems/gps/modernization/ civilsignals/#L5, Accessed 18 May 2023
  • https://www.glonass-iac.ru/en/sostavOG/, Accessed 18 May 2023
  • B. Bhatta, Global Navigation Satellite Systems: New Technologies and Applications Second Edition, Taylor & Francis Group, Boca Raton, London, New York, 2021.
  • https://www.gsc-europa.eu/system-service-status/co nstellation-information, Accessed 18 May 2023
  • N. Samama, Global Positioning: Technologies and Performances, John Wiley ve Sons, Amerika Birleşik Devletleri, 2008.
  • https://www.euspa.europa.eu/european-space/galil eo/What-Galileo, Accessed 18 May 2023
  • M.A. Floyd, T.A. Herring, R.W. King, S.C. McClusky, GAMIT/GLOBK Quick Start Guide, Massachusetts Institute of Technology, Cambridge, MA, USA, 2022.
  • https://www.harita.gov.tr/public/sunum/, Accessed 18 May 2023
  • https://igs.org/network, Accessed 18 May 2023
  • T. Gündoğan, Galileo Uydu sisteminin Nokta Konumlamaya Etkisi, Yüksek Lisans Tezi, Konya Teknik Üniversitesi, Konya, 2023.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Geomatic Engineering
Authors

Cevat İnal 0000-0001-8980-2074

Tunahan Gündoğan 0000-0003-4939-3207

Sercan Bülbül 0000-0001-6066-611X

Early Pub Date May 26, 2023
Publication Date July 15, 2023
Submission Date February 15, 2023
Acceptance Date April 26, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA İnal, C., Gündoğan, T., & Bülbül, S. (2023). Galileo uydu sisteminin nokta konumlamaya etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 799-809. https://doi.org/10.28948/ngumuh.1250019
AMA İnal C, Gündoğan T, Bülbül S. Galileo uydu sisteminin nokta konumlamaya etkisi. NOHU J. Eng. Sci. July 2023;12(3):799-809. doi:10.28948/ngumuh.1250019
Chicago İnal, Cevat, Tunahan Gündoğan, and Sercan Bülbül. “Galileo Uydu Sisteminin Nokta Konumlamaya Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 799-809. https://doi.org/10.28948/ngumuh.1250019.
EndNote İnal C, Gündoğan T, Bülbül S (July 1, 2023) Galileo uydu sisteminin nokta konumlamaya etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 799–809.
IEEE C. İnal, T. Gündoğan, and S. Bülbül, “Galileo uydu sisteminin nokta konumlamaya etkisi”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 799–809, 2023, doi: 10.28948/ngumuh.1250019.
ISNAD İnal, Cevat et al. “Galileo Uydu Sisteminin Nokta Konumlamaya Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 799-809. https://doi.org/10.28948/ngumuh.1250019.
JAMA İnal C, Gündoğan T, Bülbül S. Galileo uydu sisteminin nokta konumlamaya etkisi. NOHU J. Eng. Sci. 2023;12:799–809.
MLA İnal, Cevat et al. “Galileo Uydu Sisteminin Nokta Konumlamaya Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 799-0, doi:10.28948/ngumuh.1250019.
Vancouver İnal C, Gündoğan T, Bülbül S. Galileo uydu sisteminin nokta konumlamaya etkisi. NOHU J. Eng. Sci. 2023;12(3):799-80.

download