Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 3, 123 - 128, 29.09.2022
https://doi.org/10.46810/tdfd.1134722

Abstract

References

  • Ai ZY, Ye ZK, Yang JJ. Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model. Comput Geotech. 2021;129.
  • Biot MA. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956;27:240–253.
  • Zamani A, Hetnarski RB, Eslami MR. Second sound in a cracked layer based on Lord–Shulman theory. J. Therm. Stresses. 2011;34(3):181-200.
  • Lord HW, Shulman Y. A generalized dynamical theory of thermo-elasticity. J. Mech. Phys. Solids. 1967;15(5):299–309.
  • Shakeriaski F, Ghodrat M, Escobedo-Diaz J, Behnia M. Recent advances in generalized thermoelasticity theory and the modified models: a review. J. Comput. Des. Eng. 2021;8(1):15-35.
  • Furukawa T, Noda N, Ashida F. Generalized thermoelasticity in an infinite solid with a hole. J. Therm. Stresses. 1989;12(3):385–402.
  • Furukawa T, Naotake N, Fumihiro A. Generalized thermoelasticity for an infinite solid cylinder. JSME Int J., Ser. A. 1991;34(3):281-286.
  • Hosseini-Tehrani P, Eslami MR. Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA Journal. 2000;38(3):534–41.
  • Hosseini-Tehrani P, Eslami MR. Boundary element analysis of finite domains under thermal and mechanical shock with the Lord-Shulman theory. J. Strain Anal. Eng. Des. 2003;38(1):53–64.
  • Bagri A, Eslami MR. Generalized coupled thermoelasticity of disks based on the Lord–Shulman model. J. Therm. Stresses. 2004;27(8):691–704.
  • Bagri A, Eslami MR. A unified generalized thermoelasticity; solution for cylinders and spheres. Int. J. Mech. Sci. 2007;49(12):1325–35.
  • Bagri A, Eslami MR. A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders. J. Therm. Stresses. 2007;30(9-10):911-930.
  • Sharma JN, Sharma PK, Mishra KC, Dynamic Response of Functionally Graded Cylinders due to Timedependent Heat Flux. Meccanica. 2016;51(1):139-154.
  • Zenkour, AM. Generalized thermoelasticity theories for axisymmetric hollow cylinders under thermal shock with variable thermal conductivity. J. Mol. Eng. Mater. 2018;6(3-4):1850006.
  • Abbas IA, Abd elmaboud Y. Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time. Math. Mech. Solids. 2017;22(2):210-223.
  • Carter JP, Booker JR. Finite element analysis of coupled thermoelasticity. Comput Struct. 1989;31(1):73-80.
  • Trefethen, LN. Spectral Methods in Matlab, 10, SIAM, Philadelphia, PA, 2000.
  • Fornberg, B. A Practical Guide to Pseudospectral Methods, 1, Cambridge University Press, Cambridge, 1998.
  • Gottlieb D. The Stability of Pseudospectral-Chebyshev Methods. Math. Comput. 1981;36(153):107-118.

A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder

Year 2022, Volume: 11 Issue: 3, 123 - 128, 29.09.2022
https://doi.org/10.46810/tdfd.1134722

Abstract

In this study, the thermoelastic behavior of a thick-walled homogeneous cylinder based on Lord-Shulman theory is investigated. It is assumed that the inner and outer surfaces of the cylinder are traction-free, and the outer surface is insulated while the inner surface is subjected to a time-dependent internal temperature load. The governing equations in coupled form are solved with the pseudospectral Chebyshev method. The numerical approach is validated with benchmark results in the literature. The temperature, radial and tangential stress distributions are examined for three different moments to represent the time-varying effects of the applied instantaneous temperature load. The effect of the coupled term in Lord-Shulman theory for different high temperatures is examined and the difference between the coupled and uncoupled solution in different time periods is tabulated and the difference is highlighted.

References

  • Ai ZY, Ye ZK, Yang JJ. Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model. Comput Geotech. 2021;129.
  • Biot MA. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956;27:240–253.
  • Zamani A, Hetnarski RB, Eslami MR. Second sound in a cracked layer based on Lord–Shulman theory. J. Therm. Stresses. 2011;34(3):181-200.
  • Lord HW, Shulman Y. A generalized dynamical theory of thermo-elasticity. J. Mech. Phys. Solids. 1967;15(5):299–309.
  • Shakeriaski F, Ghodrat M, Escobedo-Diaz J, Behnia M. Recent advances in generalized thermoelasticity theory and the modified models: a review. J. Comput. Des. Eng. 2021;8(1):15-35.
  • Furukawa T, Noda N, Ashida F. Generalized thermoelasticity in an infinite solid with a hole. J. Therm. Stresses. 1989;12(3):385–402.
  • Furukawa T, Naotake N, Fumihiro A. Generalized thermoelasticity for an infinite solid cylinder. JSME Int J., Ser. A. 1991;34(3):281-286.
  • Hosseini-Tehrani P, Eslami MR. Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA Journal. 2000;38(3):534–41.
  • Hosseini-Tehrani P, Eslami MR. Boundary element analysis of finite domains under thermal and mechanical shock with the Lord-Shulman theory. J. Strain Anal. Eng. Des. 2003;38(1):53–64.
  • Bagri A, Eslami MR. Generalized coupled thermoelasticity of disks based on the Lord–Shulman model. J. Therm. Stresses. 2004;27(8):691–704.
  • Bagri A, Eslami MR. A unified generalized thermoelasticity; solution for cylinders and spheres. Int. J. Mech. Sci. 2007;49(12):1325–35.
  • Bagri A, Eslami MR. A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders. J. Therm. Stresses. 2007;30(9-10):911-930.
  • Sharma JN, Sharma PK, Mishra KC, Dynamic Response of Functionally Graded Cylinders due to Timedependent Heat Flux. Meccanica. 2016;51(1):139-154.
  • Zenkour, AM. Generalized thermoelasticity theories for axisymmetric hollow cylinders under thermal shock with variable thermal conductivity. J. Mol. Eng. Mater. 2018;6(3-4):1850006.
  • Abbas IA, Abd elmaboud Y. Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time. Math. Mech. Solids. 2017;22(2):210-223.
  • Carter JP, Booker JR. Finite element analysis of coupled thermoelasticity. Comput Struct. 1989;31(1):73-80.
  • Trefethen, LN. Spectral Methods in Matlab, 10, SIAM, Philadelphia, PA, 2000.
  • Fornberg, B. A Practical Guide to Pseudospectral Methods, 1, Cambridge University Press, Cambridge, 1998.
  • Gottlieb D. The Stability of Pseudospectral-Chebyshev Methods. Math. Comput. 1981;36(153):107-118.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Eker 0000-0002-6785-1710

Durmuş Yarımpabuç 0000-0002-8763-1125

Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Eker, M., & Yarımpabuç, D. (2022). A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder. Türk Doğa Ve Fen Dergisi, 11(3), 123-128. https://doi.org/10.46810/tdfd.1134722
AMA Eker M, Yarımpabuç D. A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder. TJNS. September 2022;11(3):123-128. doi:10.46810/tdfd.1134722
Chicago Eker, Mehmet, and Durmuş Yarımpabuç. “A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 123-28. https://doi.org/10.46810/tdfd.1134722.
EndNote Eker M, Yarımpabuç D (September 1, 2022) A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder. Türk Doğa ve Fen Dergisi 11 3 123–128.
IEEE M. Eker and D. Yarımpabuç, “A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder”, TJNS, vol. 11, no. 3, pp. 123–128, 2022, doi: 10.46810/tdfd.1134722.
ISNAD Eker, Mehmet - Yarımpabuç, Durmuş. “A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 123-128. https://doi.org/10.46810/tdfd.1134722.
JAMA Eker M, Yarımpabuç D. A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder. TJNS. 2022;11:123–128.
MLA Eker, Mehmet and Durmuş Yarımpabuç. “A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 123-8, doi:10.46810/tdfd.1134722.
Vancouver Eker M, Yarımpabuç D. A Generalized Thermoelastic Behaviour of Isotropic Hollow Cylinder. TJNS. 2022;11(3):123-8.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.