Research Article
BibTex RIS Cite

NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE

Year 2020, Volume: 6 Issue: 1, 1 - 15, 06.01.2020
https://doi.org/10.18186/thermal.670863

Abstract

Steady-state laminar mixed convection of Newtonian fluids in a square cross-sectioned cylindrical annular enclosure with rotating inner wall and heated top cover has been numerically analysed based on axisymmetric incompressible flow simulations. Richardson number, Reynolds number and r_i/R effects on heat and momentum transport have been investigated for the range of Richardson number 0 ≤ Ri ≤ 1, Reynolds number 500 ≤ Re ≤ 2000 and 0.25≤r_i/R≤8 at a representative value of Prandtl number (i.e. Pr=1.0). A scaling analysis has been also carried out in order to elucidate the possible influences of Reynolds, Richardson and Prandtl numbers and r_i/R on the mean Nusselt number. It has been found that the mean Nusselt number (Nu) ̅ demonstrates a monotonically decreasing trend with increasing Ri whereas (Nu) ̅ increases with increasing r_i/R and Re which is consistent with scaling estimation. It is also observed that the flow pattern in the case of purely forced convection (i.e. Ri = 0) is significantly different from those in mixed convection (i.e. Ri> 0). In the case of Ri = 0 (i.e. purely forced convection), a one-cell flow structure with two small vortexes on the top corners is observed for r_i/R≤1, whereas a second cell appears in the flow field for r_i/R> 1 at Re = 1000. On the other hand, in the case of mixed convection (i.e. Ri> 0), two-cell and four-cell flow structures occur in the flow field depending on Ri and r_i/R for the range of Ri, Re and r_i/R considered here at Pr⁡=1.0. Based these observations, a flow regime diagram has been proposed here for mixed convection (i.e. Ri> 0) for the range of Ri, Re and r_i/R analysed in this study.

References

  • [1] Zandbergen PJ, Dikstra D. Von Karman swirling flows. Annual Reviews Fluid Mechanics 1987;19:465-491. https://doi.org/10.1146/annurev.fl.19.010187.002341
  • [2] Vogel HU, Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gahause mit darin rotieren-der Scheibe. MPI Bericht 6; 1968.
  • [3] Vogel HU, Rückströmungsblasen in Drallsströmungen. Festschrift 50 Jahre Max-Planck-Institut für Strömungsforschung 1925-1975, 1975.
  • [4] Ronnenberg B. Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationaren sylinder-symmetrischen Drehströmung mit einem Rückstromgebiet. MPI Bericht 20, 1977.
  • [5] Bertela M, Gori F. Laminer flow in a cylindrical container with a rotating cover. Journal of Fluids Engineering 1982;104:31-39. https://doi.org/10.1115/1.3240849.
  • [6] Escudier MP. Observations of the flow produced in a cylindrical container by rotating endwall. Experiments in Fluids 1984;2:189-196. https://doi.org/10.1007/BF00571864.
  • [7] Lugt HJ, Haussling HJ. Axisymmetric vortex breakdown in rotating fluid within a container. Journal of Applied Mechanics 1982;49:921-923. https://doi.org/10.1115/1.3162645.
  • [8] Lopez JM. Axisymmetric vortex breakdown: Part1. Confined swirling flow. Journal Fluid Mechanics 1990;221: 533-552. https://doi.org/10.1017/S0022112090003664.
  • [9] Kim WN, Hyun JM. Convective heat transfer in a cylinder with a rotating lid under stable stratification. Int J of Heat and Fluid Flow 1997;18:384-388. https://doi.org/10.1016/S0142-727X(97)00012-X.
  • [10] Lee CH, Hyun JM. Flow of a stratified fluid in a cylinder with a rotating lid. Int J of Heat and Fluid Flow 1999;20: 26-33. https://doi.org/10.1016/S0142-727X(98)10041-3.
  • [11] Iwatsu R. Flow pattern and heat transfer of swirling flows in cylindrical container with rotating top and stable temperature gradient. International Journal of Heat and Mass Transfer 2004; 47: 2755-2767. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.032.
  • [12] Escuider MP, O’Leary J, Poole RJ. Flow produced in a conical container by a rotating end wall. Int J of Heat and Fluid Flow 2007;28:1418-1428. https://doi.org/10.1016/j.ijheatfluidflow.2007.04.018.
  • [13] Turan O, Yigit S, Chakraborty N. Effects of wall heating on laminar mixed convection in a cylindrical enclosure with a rotating end wall. Journal of Thermal Science 2018;131:80-93. https://doi.org/10.1016/j.ijthermalsci.2018.05.005
  • [14] Patankar SV. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, D.C; 1980.
Year 2020, Volume: 6 Issue: 1, 1 - 15, 06.01.2020
https://doi.org/10.18186/thermal.670863

Abstract

References

  • [1] Zandbergen PJ, Dikstra D. Von Karman swirling flows. Annual Reviews Fluid Mechanics 1987;19:465-491. https://doi.org/10.1146/annurev.fl.19.010187.002341
  • [2] Vogel HU, Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gahause mit darin rotieren-der Scheibe. MPI Bericht 6; 1968.
  • [3] Vogel HU, Rückströmungsblasen in Drallsströmungen. Festschrift 50 Jahre Max-Planck-Institut für Strömungsforschung 1925-1975, 1975.
  • [4] Ronnenberg B. Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationaren sylinder-symmetrischen Drehströmung mit einem Rückstromgebiet. MPI Bericht 20, 1977.
  • [5] Bertela M, Gori F. Laminer flow in a cylindrical container with a rotating cover. Journal of Fluids Engineering 1982;104:31-39. https://doi.org/10.1115/1.3240849.
  • [6] Escudier MP. Observations of the flow produced in a cylindrical container by rotating endwall. Experiments in Fluids 1984;2:189-196. https://doi.org/10.1007/BF00571864.
  • [7] Lugt HJ, Haussling HJ. Axisymmetric vortex breakdown in rotating fluid within a container. Journal of Applied Mechanics 1982;49:921-923. https://doi.org/10.1115/1.3162645.
  • [8] Lopez JM. Axisymmetric vortex breakdown: Part1. Confined swirling flow. Journal Fluid Mechanics 1990;221: 533-552. https://doi.org/10.1017/S0022112090003664.
  • [9] Kim WN, Hyun JM. Convective heat transfer in a cylinder with a rotating lid under stable stratification. Int J of Heat and Fluid Flow 1997;18:384-388. https://doi.org/10.1016/S0142-727X(97)00012-X.
  • [10] Lee CH, Hyun JM. Flow of a stratified fluid in a cylinder with a rotating lid. Int J of Heat and Fluid Flow 1999;20: 26-33. https://doi.org/10.1016/S0142-727X(98)10041-3.
  • [11] Iwatsu R. Flow pattern and heat transfer of swirling flows in cylindrical container with rotating top and stable temperature gradient. International Journal of Heat and Mass Transfer 2004; 47: 2755-2767. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.032.
  • [12] Escuider MP, O’Leary J, Poole RJ. Flow produced in a conical container by a rotating end wall. Int J of Heat and Fluid Flow 2007;28:1418-1428. https://doi.org/10.1016/j.ijheatfluidflow.2007.04.018.
  • [13] Turan O, Yigit S, Chakraborty N. Effects of wall heating on laminar mixed convection in a cylindrical enclosure with a rotating end wall. Journal of Thermal Science 2018;131:80-93. https://doi.org/10.1016/j.ijthermalsci.2018.05.005
  • [14] Patankar SV. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, D.C; 1980.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Osman Turan

Publication Date January 6, 2020
Submission Date January 25, 2018
Published in Issue Year 2020 Volume: 6 Issue: 1

Cite

APA Turan, O. (2020). NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE. Journal of Thermal Engineering, 6(1), 1-15. https://doi.org/10.18186/thermal.670863
AMA Turan O. NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE. Journal of Thermal Engineering. January 2020;6(1):1-15. doi:10.18186/thermal.670863
Chicago Turan, Osman. “NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE”. Journal of Thermal Engineering 6, no. 1 (January 2020): 1-15. https://doi.org/10.18186/thermal.670863.
EndNote Turan O (January 1, 2020) NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE. Journal of Thermal Engineering 6 1 1–15.
IEEE O. Turan, “NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE”, Journal of Thermal Engineering, vol. 6, no. 1, pp. 1–15, 2020, doi: 10.18186/thermal.670863.
ISNAD Turan, Osman. “NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE”. Journal of Thermal Engineering 6/1 (January 2020), 1-15. https://doi.org/10.18186/thermal.670863.
JAMA Turan O. NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE. Journal of Thermal Engineering. 2020;6:1–15.
MLA Turan, Osman. “NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE”. Journal of Thermal Engineering, vol. 6, no. 1, 2020, pp. 1-15, doi:10.18186/thermal.670863.
Vancouver Turan O. NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN A SQUARE CROSS-SECTIONED CYLINDRICAL ANNULAR ENCLOSURE. Journal of Thermal Engineering. 2020;6(1):1-15.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering