Retraction

Retraction:

Year 2024, Volume: 8 Issue: 2, 403 - 415, 30.04.2024
This is a retraction to: Investigating the historical building materials with spectroscopic and geophysical methods: A case study of Mardin Castle https://dergipark.org.tr/en/pub/tuje/issue/72409/1145711

Retraction Note

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • Ma, S., Wang, L., Bao, P. (2022). Study on Properties of Blue-Brick Masonry Materials for Historical Buildings. Journal of Renewable Materials, 10(7), 1961–1978.
  • Alyilmaz, C., Yakar, M., & Yilmaz, H. M. (2010). Drawing of petroglyphs in Mongolia by close range photogrammetry. Scientific Research and Essays, 5(11), 1216-1222.
  • Normal 1/88 (1990). Alterazioni macroscopiche dei materiali lapidei: lessico, Macroscopic alteration of stone materials: glossary. Comas Graphica, Rome.
  • Franke, L., Schumann, I., Van, H. R., Van der, K. L., Naldini, S., Binda, L., Baronio, G., Van Balen, K., & Mateus, J. (1998). Classification of damage patterns found in brick masonry. protection and conservation of european cultural heritage. Research Report European Commission, 8(2), Stuttgart: Frauenhofer IRB, Verlag.
  • Henriques, M. A., Delgado-Rodrigues, J., Aires-Barros, L., & Proença, N. (2004). Materiais Pétreos e similares : terminologia das formas de alteraçao e degradaçao. In: ICT Informaçao técnica, Patologia e reabilitaçao das construçoes, ISBN: ITPRC 2, 39.
  • VDI 3798 (1998). Untersuchung und Behandlung von immissionsgeschädigten Werkstoffen, insbesondere bei kulturhistorischen Objekten. Die Graphische Dokumentation. VDIRichtlinien, 1-27.
  • Fitzner, B. (2002). Damage diagnosis on stone monuments—ın situ ınvestigation and laboratory studies. In Proceedings of the International Symposium of the Conservation of the Bangudae Petroglyph, Seoul National University, 29–71, Seoul, Korea
  • Jo, Y. H., & Lee, C. H. (2014). Quantitative modeling of blistering zones by active thermography for deterioration evaluation of stone monuments. Journal of Cultural Heritage, 15(6), 621–627.
  • de Ferri, L., Lottici, P. P., Lorenzi, A., Montenero, A., & Salvioli-Mariani, E. (2011). Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. Journal of Cultural Heritage, 12(4), 356-363.
  • Winkler, E. (1997). Stone in Architecture: Properties, Durability, 3rd edition, Springer, Berlin.
  • Corvo, F., Reyes-Trujeque, J., Valdés C., Villaseñor F., Cuesta O., Aguilar, D. & Quintana, P. (2010). Influence of air pollution and humidity on limestone materials degradation in historical buildings located in cities under tropical coastal climates. Water Air and Soil Pollution, 205, 359-375. Doi:10.1007/s11270-009-0081-1.
  • Fort, R., Alvarez de, B., & López de, A. M. C. (2004). The efficiency of urban remodelling in reducing the effects of atmospheric pollution on monuments, Air Pollution and Cultural Heritage, ed. C. Saiz-Jimenez, Balkema, Amsterdam, 225–232.
  • Moroni, B., Pitzurra, L., & Poli, G. (2004). Microbial growth and air pollutants in the corrosion of carbonate building stone: Results of laboratory and outdoor experimental tests. Environmental Geology, 46, 436–447.
  • Spezzano, P. (2021). Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Science of The Total Environment, 754(), 142345–. doi: 10.1016/j.scitotenv.2020.142345
  • Webb, A. H., Bawden, R. J., Busby, A. K., & Hopkins, J. N. (1992). Studies on the effects of air pollution on limestone in Great Britain. Atmospheric Environment, 26(2), 165-181.
  • Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural heritage modelling using UAV photogrammetric methods: a case study of Kanlıdivane archeological site. Advanced UAV, 1(1), 24-33.
  • Sesana, E., Gagnon, A. S., Ciantelli, C., Cassar, J. & Hughes, J. J. (2021). Climate change impacts on cultural heritage: a literature review, WIREs Climate Change, 12 e710.
  • Aboushook, M., Park, H. D., Gouda, M., Mazen, O., & El-Sohby, M. (2022). Determination of durability of some Egyptian monument stones using digital image analysis, Proceedings of the 10th IAEG Congress, Engineering Geology for Tomorrow`s Cities, Nottingham, UK, The Geological Society of London, 80, 110.
  • Bradley, S. M. & Middleton, A. P. (1988). A study of the deterioration of Egyptian limestone sculpture. J Am Inst Conserv, 27(2), 64–86. https://doi.org/10.2307/3179403.
  • Cardell, C., Delalieux, F., Roumpopoulos, K., Moropoulou, A., Auger, F., & Van Griekena, R. (2003). Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Construction and Building Materials, 17, 165–179.
  • Fahmy, A., Molina-Piernas, E. & Martínez-López, J. (2022). Salt weathering impact on Nero/Ramses II Temple at El-Ashmonein archaeological site (Hermopolis Magna), Egypt. Herit Sci, 10, 125. https://doi.org/10.1186/s40494-022-00759-6
  • Navarro, R., Pereira, D., de Arévalo, E. F., Sebastián-Pardo, E. M., & Rodriguez-Navarro, C. (2021). Weathering of serpentinite stone due to in situ generation of calcium and magnesium sulfates. Construction and Building Materials, 280, 122402. https://doi.org/10.1016/j.conbuildmat.2021.122402.
  • Rothert, E., Eggers, T., & Cassar, J. (2007). Stone properties and weathering induced by salt crystallization of maltese globigerina limestone. In: Prikryl R, Smith B J (ed) Building stone decay: from diagnosis to conservation. Geological society, Special publications, London, 271, 189–198.
  • Sabbioni, C., Brimblecombe, P., & Cassar, M. (2010). The atlas of climate change impact on European cultural heritage: scientific analysis and management strategies (No. 19). London: Anthem Press.
  • Viles, H. A. & Cutler, N. A. (2012). Global environmental change and the biology of heritage structures, Global Change Biol. 18 2406–2418.
  • McCabe, S., Smith, B., Adamson, C., Mullan, D., & McAllister, D. (2011). The ‘greening’of natural stone buildings: quartz sandstone performance as a secondary indicator of climate change in the British Isles?. Atmospheric and Climate Sciences, 1(04), 165-171.
  • Graedel, T. E. (2000). Mechanisms for the atmospheric corrosion of carbonate stone. Journal of the Electrochemical Society, 147(3), 1006–1009.
  • Korumaza, A. G., Korumaz, M., Dulgerlera, O. N., Karasaka, L., Yıldız, F., & Yakar, M. (2010). Evaluation of laser scanner performance in documentation of historical and architectural ruins, a case study in Konya. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5), 361-366.
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.
  • Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin İnsansız Hava Aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125.
  • Alptekin, A., Çelik, M. Ö., & Yakar, M. (2019). Anıtmezarın yersel lazer tarayıcı kullanarak 3B modellenmesi. Türkiye Lidar Dergisi, 1(1), 1-4.
  • Alptekin, A., Fidan, Ş., Karabacak, A., Çelik, M. Ö., & Yakar, M. (2019). Üçayak Örenyeri'nin yersel lazer tarayıcı kullanılarak modellenmesi. Türkiye Lidar Dergisi, 1(1), 16-20.
  • Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40.
  • Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40.
  • Casadio F, Daher C, Bellot-Gurlet L. Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top Curr Chem (Cham). 2016 Oct;374(5):62. https://doi.org/10.1007/s41061-016-0061-z.
  • Kramar, S., Urosevic, M., Pristacz, H., & Mirtič, B. (2010). Assessment of limestone deterioration due to salt formation by micro‐Raman spectroscopy: application to architectural heritage. Journal of Raman Spectroscopy, 41(11), 1441-1448.
  • Lodi, G.C., De Ferri, L. & Pojana, G. (2017). Spectroscopic characterization of historical building materials: The case study of the Biblioteca Nazionale Marciana (Venice, Italy). Journal of Raman Spectroscopy. https://doi.org/10.1002/jrs.5290
  • Kottke, J. (2009). An Investigation of Quantifying and Monitoring Stone Surface Deterioration Using Three Dimensional Laser Scanning. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA.
  • Pavlíková, M., Pavlík, Z., Keppert, M., & Černý, R. (2011). Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings’ walls. Construction and Building Materials, 25(3), 1205-1212.
  • Pavlík Z, Vejmelková E, Pavlíková M, Keppert M, Černý S. C., Cassar M., Brimblecombe P., Tidblad J., Kozlowski R., Drd´acký M., Saiz-Jimenez C., Grontoft T., Wainwright I. & Ari˜no X. (2006). Global climate change impact on built heritage and cultural landscapes. In International Conference on Heritage, Weathering and Conservation, HWC; R. Fort, M. Alvarez de Buergo, M. Gomez-Heras and Vazquez-Calvo Eds. London: Taylor & Francis, 395- 401.
  • Wonganan, N., Athisakul, C., Mahasuwanchai, P., Tanchirapat, W., Sahamitmongkol, R., & Leelataviwat, S. (2021). Ancient materials and substitution materials used in Thai historical masonry structure preservation. Journal of Renewable Materials, 9(2), 179-204.
  • Alioğlu, E. F. (2000). Mardin Şehir Dokusu ve Evler, İstanbul.

Retraction: Investigating the historical building materials with spectroscopic and geophysical methods: A case study of Mardin Castle

Year 2024, Volume: 8 Issue: 2, 403 - 415, 30.04.2024
This is a retraction to: Investigating the historical building materials with spectroscopic and geophysical methods: A case study of Mardin Castle https://dergipark.org.tr/en/pub/tuje/issue/72409/1145711

Retraction Note

Veri paylaşımı

Abstract

Today, the building materials form the historical buildings are being exposed to various deteriorations increasingly due to different causes. Many historical masonry constructions in the world are on the edge of extinction due to the increasing frequency and changing models of material deterioration. The materials as close as possible to the original materials in terms of their chemical compositions and physical properties are required in the reconstruction and maintenance of the buildings that have historical importance. In addition, the properties of the materials used in the historical buildings are generally not known with a sufficient accuracy. This causes misapplications in case of emergencies, and also may lead to future potential greater damages on the building. The lack of data regarding the engineering properties of these buildings causes long-term damages on the buildings due to inappropriate conservation methods and materials. Therefore, it is necessary to investigate the properties of certain materials for application in the renewal of the historical buildings. Within this context, in this study the construction materials of Mardin Castle, which is located in Mardin Province, Turkey and existing for centuries as the symbol of the city, are investigated and its properties are reached. Experimental research methods were used in the study. Primarily, the castle structure was examined on-site by field study and sampling was carried out from the areas determined. The samples were analyzed via various spectroscopic and geophysical methods, and various findings were achieved. Relatively variable and high levels of salinization were determined in the findings regarding the average values in stone samples of Mardin Castle’s Fortification Walls. Results of the research document the conservation status regarding Mardin Castle and provide an experimental base and also a theoretical support for the conservation of historical buildings in Turkey; and present indicative suggestions to establish conservation schemes of the historical buildings.

Project Number

yok

References

  • Ma, S., Wang, L., Bao, P. (2022). Study on Properties of Blue-Brick Masonry Materials for Historical Buildings. Journal of Renewable Materials, 10(7), 1961–1978.
  • Alyilmaz, C., Yakar, M., & Yilmaz, H. M. (2010). Drawing of petroglyphs in Mongolia by close range photogrammetry. Scientific Research and Essays, 5(11), 1216-1222.
  • Normal 1/88 (1990). Alterazioni macroscopiche dei materiali lapidei: lessico, Macroscopic alteration of stone materials: glossary. Comas Graphica, Rome.
  • Franke, L., Schumann, I., Van, H. R., Van der, K. L., Naldini, S., Binda, L., Baronio, G., Van Balen, K., & Mateus, J. (1998). Classification of damage patterns found in brick masonry. protection and conservation of european cultural heritage. Research Report European Commission, 8(2), Stuttgart: Frauenhofer IRB, Verlag.
  • Henriques, M. A., Delgado-Rodrigues, J., Aires-Barros, L., & Proença, N. (2004). Materiais Pétreos e similares : terminologia das formas de alteraçao e degradaçao. In: ICT Informaçao técnica, Patologia e reabilitaçao das construçoes, ISBN: ITPRC 2, 39.
  • VDI 3798 (1998). Untersuchung und Behandlung von immissionsgeschädigten Werkstoffen, insbesondere bei kulturhistorischen Objekten. Die Graphische Dokumentation. VDIRichtlinien, 1-27.
  • Fitzner, B. (2002). Damage diagnosis on stone monuments—ın situ ınvestigation and laboratory studies. In Proceedings of the International Symposium of the Conservation of the Bangudae Petroglyph, Seoul National University, 29–71, Seoul, Korea
  • Jo, Y. H., & Lee, C. H. (2014). Quantitative modeling of blistering zones by active thermography for deterioration evaluation of stone monuments. Journal of Cultural Heritage, 15(6), 621–627.
  • de Ferri, L., Lottici, P. P., Lorenzi, A., Montenero, A., & Salvioli-Mariani, E. (2011). Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. Journal of Cultural Heritage, 12(4), 356-363.
  • Winkler, E. (1997). Stone in Architecture: Properties, Durability, 3rd edition, Springer, Berlin.
  • Corvo, F., Reyes-Trujeque, J., Valdés C., Villaseñor F., Cuesta O., Aguilar, D. & Quintana, P. (2010). Influence of air pollution and humidity on limestone materials degradation in historical buildings located in cities under tropical coastal climates. Water Air and Soil Pollution, 205, 359-375. Doi:10.1007/s11270-009-0081-1.
  • Fort, R., Alvarez de, B., & López de, A. M. C. (2004). The efficiency of urban remodelling in reducing the effects of atmospheric pollution on monuments, Air Pollution and Cultural Heritage, ed. C. Saiz-Jimenez, Balkema, Amsterdam, 225–232.
  • Moroni, B., Pitzurra, L., & Poli, G. (2004). Microbial growth and air pollutants in the corrosion of carbonate building stone: Results of laboratory and outdoor experimental tests. Environmental Geology, 46, 436–447.
  • Spezzano, P. (2021). Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Science of The Total Environment, 754(), 142345–. doi: 10.1016/j.scitotenv.2020.142345
  • Webb, A. H., Bawden, R. J., Busby, A. K., & Hopkins, J. N. (1992). Studies on the effects of air pollution on limestone in Great Britain. Atmospheric Environment, 26(2), 165-181.
  • Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural heritage modelling using UAV photogrammetric methods: a case study of Kanlıdivane archeological site. Advanced UAV, 1(1), 24-33.
  • Sesana, E., Gagnon, A. S., Ciantelli, C., Cassar, J. & Hughes, J. J. (2021). Climate change impacts on cultural heritage: a literature review, WIREs Climate Change, 12 e710.
  • Aboushook, M., Park, H. D., Gouda, M., Mazen, O., & El-Sohby, M. (2022). Determination of durability of some Egyptian monument stones using digital image analysis, Proceedings of the 10th IAEG Congress, Engineering Geology for Tomorrow`s Cities, Nottingham, UK, The Geological Society of London, 80, 110.
  • Bradley, S. M. & Middleton, A. P. (1988). A study of the deterioration of Egyptian limestone sculpture. J Am Inst Conserv, 27(2), 64–86. https://doi.org/10.2307/3179403.
  • Cardell, C., Delalieux, F., Roumpopoulos, K., Moropoulou, A., Auger, F., & Van Griekena, R. (2003). Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Construction and Building Materials, 17, 165–179.
  • Fahmy, A., Molina-Piernas, E. & Martínez-López, J. (2022). Salt weathering impact on Nero/Ramses II Temple at El-Ashmonein archaeological site (Hermopolis Magna), Egypt. Herit Sci, 10, 125. https://doi.org/10.1186/s40494-022-00759-6
  • Navarro, R., Pereira, D., de Arévalo, E. F., Sebastián-Pardo, E. M., & Rodriguez-Navarro, C. (2021). Weathering of serpentinite stone due to in situ generation of calcium and magnesium sulfates. Construction and Building Materials, 280, 122402. https://doi.org/10.1016/j.conbuildmat.2021.122402.
  • Rothert, E., Eggers, T., & Cassar, J. (2007). Stone properties and weathering induced by salt crystallization of maltese globigerina limestone. In: Prikryl R, Smith B J (ed) Building stone decay: from diagnosis to conservation. Geological society, Special publications, London, 271, 189–198.
  • Sabbioni, C., Brimblecombe, P., & Cassar, M. (2010). The atlas of climate change impact on European cultural heritage: scientific analysis and management strategies (No. 19). London: Anthem Press.
  • Viles, H. A. & Cutler, N. A. (2012). Global environmental change and the biology of heritage structures, Global Change Biol. 18 2406–2418.
  • McCabe, S., Smith, B., Adamson, C., Mullan, D., & McAllister, D. (2011). The ‘greening’of natural stone buildings: quartz sandstone performance as a secondary indicator of climate change in the British Isles?. Atmospheric and Climate Sciences, 1(04), 165-171.
  • Graedel, T. E. (2000). Mechanisms for the atmospheric corrosion of carbonate stone. Journal of the Electrochemical Society, 147(3), 1006–1009.
  • Korumaza, A. G., Korumaz, M., Dulgerlera, O. N., Karasaka, L., Yıldız, F., & Yakar, M. (2010). Evaluation of laser scanner performance in documentation of historical and architectural ruins, a case study in Konya. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5), 361-366.
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.
  • Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin İnsansız Hava Aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125.
  • Alptekin, A., Çelik, M. Ö., & Yakar, M. (2019). Anıtmezarın yersel lazer tarayıcı kullanarak 3B modellenmesi. Türkiye Lidar Dergisi, 1(1), 1-4.
  • Alptekin, A., Fidan, Ş., Karabacak, A., Çelik, M. Ö., & Yakar, M. (2019). Üçayak Örenyeri'nin yersel lazer tarayıcı kullanılarak modellenmesi. Türkiye Lidar Dergisi, 1(1), 16-20.
  • Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40.
  • Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40.
  • Casadio F, Daher C, Bellot-Gurlet L. Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top Curr Chem (Cham). 2016 Oct;374(5):62. https://doi.org/10.1007/s41061-016-0061-z.
  • Kramar, S., Urosevic, M., Pristacz, H., & Mirtič, B. (2010). Assessment of limestone deterioration due to salt formation by micro‐Raman spectroscopy: application to architectural heritage. Journal of Raman Spectroscopy, 41(11), 1441-1448.
  • Lodi, G.C., De Ferri, L. & Pojana, G. (2017). Spectroscopic characterization of historical building materials: The case study of the Biblioteca Nazionale Marciana (Venice, Italy). Journal of Raman Spectroscopy. https://doi.org/10.1002/jrs.5290
  • Kottke, J. (2009). An Investigation of Quantifying and Monitoring Stone Surface Deterioration Using Three Dimensional Laser Scanning. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA.
  • Pavlíková, M., Pavlík, Z., Keppert, M., & Černý, R. (2011). Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings’ walls. Construction and Building Materials, 25(3), 1205-1212.
  • Pavlík Z, Vejmelková E, Pavlíková M, Keppert M, Černý S. C., Cassar M., Brimblecombe P., Tidblad J., Kozlowski R., Drd´acký M., Saiz-Jimenez C., Grontoft T., Wainwright I. & Ari˜no X. (2006). Global climate change impact on built heritage and cultural landscapes. In International Conference on Heritage, Weathering and Conservation, HWC; R. Fort, M. Alvarez de Buergo, M. Gomez-Heras and Vazquez-Calvo Eds. London: Taylor & Francis, 395- 401.
  • Wonganan, N., Athisakul, C., Mahasuwanchai, P., Tanchirapat, W., Sahamitmongkol, R., & Leelataviwat, S. (2021). Ancient materials and substitution materials used in Thai historical masonry structure preservation. Journal of Renewable Materials, 9(2), 179-204.
  • Alioğlu, E. F. (2000). Mardin Şehir Dokusu ve Evler, İstanbul.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Retraction
Authors

Lale Karataş 0000-0001-8582-4612

Project Number yok
Early Pub Date April 7, 2024
Publication Date April 30, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2
Flag Counter