Research Article
BibTex RIS Cite

DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS

Year 2022, Volume: 27 Issue: 3, 1061 - 1080, 31.12.2022
https://doi.org/10.17482/uumfd.1137071

Abstract

In microrobotics field, self-reconfigurable modular robots (SRMRs) offer several advantages including adaptation to uneven environments, the capability of handling various sets of tasks, and continuous operation in the case of a malfunction of a single module. The current research direction in self-reconfigurable robotic systems is towards reaching million level number of modules working in coherence by means of locomotion, self-reconfiguration, and information flow. This research direction comes with new challenges such as miniaturizing the modules. One should consider looking for alternative ways of locomotion and self-reconfiguration when dealing with SRMRs having million level number of modules. Externally actuating the modules can be a good alternative to micro SRMRs. In this study, we developed a novel motion mechanism for a single module in a micro SRMR system by using external magnetic actuators. An assembly of elastic microtubes and permanent magnets is attached inside a cube-shaped module and periodic motion of the assembly is applied. The motion of a single microtube with permanent magnets inside is generated by using COMSOL Multiphysics software. The results of the simulations are compared with theoretical values to validate the motion mechanism that is introduced in the study.

References

  • 1. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K. and Nelson, B.J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 157-167. doi:10.1007/978-3-642-14743-2_14
  • 2. Al Khatib, E., Bhattacharjee, A., Razzaghi, P., Rogowski, L.W., Kim, M.J. and Hurmuzlu Y. (2020). Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 5(2), 2958-2965. doi:10.1109/LRA.2020.2974389
  • 3. Ceylan, H., Giltinan, J., Kozielski, K. and Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip, 17(10), 1705-1724. doi:10.1039/C7LC00064B
  • 4. Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P. and Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.
  • 5. Diller, E., Pawashe, C., Floyd, S. and Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. International Journal of Robotics Research, 30(14), 1667-1680. doi:10.1177/0278364911416140
  • 6. Ergeneman, O., Dogangil, G., Kummer, M.P., Abbott, J.J., Nazeeruddin, M.K. and Nelson, B.J. (2008). A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sensors Journal, 8(1), 29-37.doi:10.1109/JSEN.2007.912552
  • 7. Fukuda, T. and Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55-72. doi:10.1007/BF00437320
  • 8. Goeller, M., Oberlaender, J., Uhl, K., Roennau, A. and Dillmann, R. (2012). Modular robots for on-orbit satellite servicing. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018- 2023. doi:10.1109/ROBIO.2012.6491265
  • 9. Hirai, M., Hirose, S. and Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27(14), 1099-1111. doi:10.1080/01691864.2013.812174
  • 10. Jeon, S., Hoshiar, A.K., Kim, S., Lee, S., Kim, E., Lee, S., Kim, K., Lee, J., Kim, J. and Choi, H. (2018). Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 6:15. doi:10.1186/s40486-018-0077-y
  • 11. Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T. and Chen, X. (2020). Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 8, 100085. doi:10.1016/j.mtbio.2020.100085
  • 12. Lin, D., Jiao, N., Wang, Z. and Liu, L. (2021). A Magnetic Continuum Robot with Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 6(2), 2485-2492. doi:10.1109/LRA.2021.3061376
  • 13. Lyder, A., Garcia, R.F.M. and Stoy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 883-889. doi:10.1109/IROS.2008.4650888
  • 14. Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.P. and Bohringer, K.F. (2009). Self-assembly from milli- to nanoscales: Methods and applications. Journal of micromechanics and microengineering: structures, devices and systems, 19(8), 83001. doi:10.1088/0960-1317/19/8/083001
  • 15. Nguyen B.H., Son P.T., Kim, J.S. and Lee, J.W. (2020). Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. Journal of Magnetism and Magnetic Materials, 494, 165778. doi:10.1016/j.jmmm.2019.165778
  • 16. Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V. and Yim, M. (2015). Automated Self-Assembly of Large Maritime Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science and Engineering, 12(3), 958-968. doi:10.1109/TASE.2015.2416678
  • 17. Pawashe, C., Floyd, S. and Sitti, M. (2009). Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research, 28(8), 1077-1094. doi:10.1177/0278364909341413
  • 18. Pieters, R., Lombriser, S., Alvarez-Aguirre, A. and Nelson, B.J. (2016). Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 1(1), 455-460. doi:10.1109/LRA.2016.2521407
  • 19. Ren, L., Nama, N., McNeill, J.M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J. and Mallouk, T.E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5(10), eaax3084. doi:10.1126/sciadv.aax3084
  • 20. Sawetzki, T., Rahmouni, S., Bechingera, C. and Marr, D.W. (2008). In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20141-5. doi:10.1073/pnas.0808808105
  • 21. Yang, Z. and Zhang, L. (2020). Magnetic actuation systems for miniature robots: A review. Advanced Intelligent Systems, 2, 2000082. doi:10.1002/aisy.202000082
  • 22. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G.S. (2007). Modular selfreconfigurable robot systems [Grand challenges of robotics], IEEE Robotics and Automation Magazine, 14(1), 43-52. doi:10.1109/MRA.2007.339623
  • 23. Zhou, H., Mayorga-Martinez, C.C., Pane, S., Zhang, L. and Pumera, M. (2021). Magnetically Driven Micro and Nanorobots. Chemical Reviews, 121(8), 4999-5041. doi:10.1021/acs.chemrev.0c01234

Kendi Kendini Konfigüre Edebilen Bir Sistemdeki Tekil Modül İçin Dış Manyetik Eyleyiciler Kullanılarak Hareket Mekanizmasının Geliştirilmesi

Year 2022, Volume: 27 Issue: 3, 1061 - 1080, 31.12.2022
https://doi.org/10.17482/uumfd.1137071

Abstract

Mikro robotik alanında, kendi kendini konfigüre edebilen modüler robotlar (KKMR) düzensiz çevreye uyum sağlayabilme, birçok değişken görevi yerine getirebilme ve tekil modüllerin arızalanması durumunda operasyonu sürdürebilme gibi avantajlar sunmaktadır. Kendi kendini konfigüre edebilen robotik sistemlerdeki son güncel araştırmalar, milyon seviyesinde modül sayısına sahip sistemlerin hareket, kendi kendini konfigüre etme ve bilgi akışı gözetilerek geliştirilmesi yönündedir. Bu araştırma yönelimi beraberinde modüllerin minyatürleştirilmesi gibi sınamalar getirmektedir. Milyon mertebesinde modüle sahip bir KKMR sistemi göz önünde bulundurulduğunda, hareket ve kendi kendini konfigüre etme mekanizmaları için alternatif metotların araştırılması gerekmektedir. Modüllerin dış eyleyiciler ile harekete geçirilmesi mikro KKMR sistemleri için iyi bir seçenek oluşturmaktadır. Bu çalışmada mikro KKMR sistemindeki tekil bir modül için dış manyetik eyleyiciler kullanılarak özgün bir hareket mekanizması geliştirilmiştir. Esnek mikro tüp ve kalıcı mıknatıslardan oluşan bir yapı modülün içerisine yerleştirilmiş ve yapıya periyodik bir hareket uygulanmıştır. Tekil bir mikro tüp kalıcı mıknatıs yapısının hareketi COMSOL Multiphysics yazılımı kullanılarak canlandırılmıştır. Simülasyon sonuçları teorik değerler ile karşılaştırılarak önerilen hareket mekanizmasının doğrulaması gerçekleştirilmiştir.

References

  • 1. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K. and Nelson, B.J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 157-167. doi:10.1007/978-3-642-14743-2_14
  • 2. Al Khatib, E., Bhattacharjee, A., Razzaghi, P., Rogowski, L.W., Kim, M.J. and Hurmuzlu Y. (2020). Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 5(2), 2958-2965. doi:10.1109/LRA.2020.2974389
  • 3. Ceylan, H., Giltinan, J., Kozielski, K. and Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip, 17(10), 1705-1724. doi:10.1039/C7LC00064B
  • 4. Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P. and Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.
  • 5. Diller, E., Pawashe, C., Floyd, S. and Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. International Journal of Robotics Research, 30(14), 1667-1680. doi:10.1177/0278364911416140
  • 6. Ergeneman, O., Dogangil, G., Kummer, M.P., Abbott, J.J., Nazeeruddin, M.K. and Nelson, B.J. (2008). A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sensors Journal, 8(1), 29-37.doi:10.1109/JSEN.2007.912552
  • 7. Fukuda, T. and Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55-72. doi:10.1007/BF00437320
  • 8. Goeller, M., Oberlaender, J., Uhl, K., Roennau, A. and Dillmann, R. (2012). Modular robots for on-orbit satellite servicing. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018- 2023. doi:10.1109/ROBIO.2012.6491265
  • 9. Hirai, M., Hirose, S. and Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27(14), 1099-1111. doi:10.1080/01691864.2013.812174
  • 10. Jeon, S., Hoshiar, A.K., Kim, S., Lee, S., Kim, E., Lee, S., Kim, K., Lee, J., Kim, J. and Choi, H. (2018). Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 6:15. doi:10.1186/s40486-018-0077-y
  • 11. Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T. and Chen, X. (2020). Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 8, 100085. doi:10.1016/j.mtbio.2020.100085
  • 12. Lin, D., Jiao, N., Wang, Z. and Liu, L. (2021). A Magnetic Continuum Robot with Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 6(2), 2485-2492. doi:10.1109/LRA.2021.3061376
  • 13. Lyder, A., Garcia, R.F.M. and Stoy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 883-889. doi:10.1109/IROS.2008.4650888
  • 14. Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.P. and Bohringer, K.F. (2009). Self-assembly from milli- to nanoscales: Methods and applications. Journal of micromechanics and microengineering: structures, devices and systems, 19(8), 83001. doi:10.1088/0960-1317/19/8/083001
  • 15. Nguyen B.H., Son P.T., Kim, J.S. and Lee, J.W. (2020). Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. Journal of Magnetism and Magnetic Materials, 494, 165778. doi:10.1016/j.jmmm.2019.165778
  • 16. Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V. and Yim, M. (2015). Automated Self-Assembly of Large Maritime Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science and Engineering, 12(3), 958-968. doi:10.1109/TASE.2015.2416678
  • 17. Pawashe, C., Floyd, S. and Sitti, M. (2009). Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research, 28(8), 1077-1094. doi:10.1177/0278364909341413
  • 18. Pieters, R., Lombriser, S., Alvarez-Aguirre, A. and Nelson, B.J. (2016). Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 1(1), 455-460. doi:10.1109/LRA.2016.2521407
  • 19. Ren, L., Nama, N., McNeill, J.M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J. and Mallouk, T.E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5(10), eaax3084. doi:10.1126/sciadv.aax3084
  • 20. Sawetzki, T., Rahmouni, S., Bechingera, C. and Marr, D.W. (2008). In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20141-5. doi:10.1073/pnas.0808808105
  • 21. Yang, Z. and Zhang, L. (2020). Magnetic actuation systems for miniature robots: A review. Advanced Intelligent Systems, 2, 2000082. doi:10.1002/aisy.202000082
  • 22. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G.S. (2007). Modular selfreconfigurable robot systems [Grand challenges of robotics], IEEE Robotics and Automation Magazine, 14(1), 43-52. doi:10.1109/MRA.2007.339623
  • 23. Zhou, H., Mayorga-Martinez, C.C., Pane, S., Zhang, L. and Pumera, M. (2021). Magnetically Driven Micro and Nanorobots. Chemical Reviews, 121(8), 4999-5041. doi:10.1021/acs.chemrev.0c01234
There are 23 citations in total.

Details

Primary Language English
Subjects Control Engineering, Mechatronics and Robotics, Mechanical Engineering
Journal Section Research Articles
Authors

Halil İbrahim Dokuyucu 0000-0001-6991-1708

Nurhan Gürsel Özmen 0000-0002-7016-5201

Ömer Cora 0000-0003-3564-5493

Early Pub Date December 9, 2022
Publication Date December 31, 2022
Submission Date June 28, 2022
Acceptance Date November 10, 2022
Published in Issue Year 2022 Volume: 27 Issue: 3

Cite

APA Dokuyucu, H. İ., Gürsel Özmen, N., & Cora, Ö. (2022). DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1061-1080. https://doi.org/10.17482/uumfd.1137071
AMA Dokuyucu Hİ, Gürsel Özmen N, Cora Ö. DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. UUJFE. December 2022;27(3):1061-1080. doi:10.17482/uumfd.1137071
Chicago Dokuyucu, Halil İbrahim, Nurhan Gürsel Özmen, and Ömer Cora. “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, no. 3 (December 2022): 1061-80. https://doi.org/10.17482/uumfd.1137071.
EndNote Dokuyucu Hİ, Gürsel Özmen N, Cora Ö (December 1, 2022) DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 3 1061–1080.
IEEE H. İ. Dokuyucu, N. Gürsel Özmen, and Ö. Cora, “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”, UUJFE, vol. 27, no. 3, pp. 1061–1080, 2022, doi: 10.17482/uumfd.1137071.
ISNAD Dokuyucu, Halil İbrahim et al. “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/3 (December 2022), 1061-1080. https://doi.org/10.17482/uumfd.1137071.
JAMA Dokuyucu Hİ, Gürsel Özmen N, Cora Ö. DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. UUJFE. 2022;27:1061–1080.
MLA Dokuyucu, Halil İbrahim et al. “DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 27, no. 3, 2022, pp. 1061-80, doi:10.17482/uumfd.1137071.
Vancouver Dokuyucu Hİ, Gürsel Özmen N, Cora Ö. DEVELOPING A MOTION MECHANISM FOR A SINGLE MODULE IN A SELF-RECONFIGURABLE MODULAR MICROROBOTICS SYSTEM BY USING EXTERNAL MAGNETIC ACTUATORS. UUJFE. 2022;27(3):1061-80.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.