BibTex RIS Kaynak Göster

Switchable Wettability on Textile Surfaces Using Nanotechnology Applications

Yıl 2015, Cilt: 18 Sayı: 1, 31 - 37, 11.08.2015

Öz

Wettability of a textile surface basically depends on chemical structure and roughness of surface. Science world has developed new methods and materials using biomimetics to obtain nanorough surfaces like lotus leafs which have self-cleaning feature. In this study, wettability of textile surfaces, theory of wettability and production of nano surfaces having stimuli-responsive wettability were discussed. Alteration of surface chemistry and conformation under the effects of temperature, pH, light or electrical field were examined.

Kaynakça

  • Adomaviciene M.P, Schwarz A., Stanys S., (2006), Analysis of the Wetting Behaviour of an Inclined Fibre, Fibres & Textiles in Eastern Europe, 14, 3(57), 91-96.
  • Wang S., Jiang L., (2007), Definition of superhydrophobic states, Adv. Mater, 19, 21, 3423–3424.
  • Miao H., Bao F., Cheng L., Shi W., (2010), Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via γ-ray-induced grafting, Radiation Physics and Chemistry, 79, 7, 786–790.
  • Xin B., Hao J., (2010), Reversibly switchable wettability, Chem. Soc. Rev., 39, 2, 769-782.
  • Onda T., Shibuichi S., Satoh N.,Tsujii K., (1996), Super water repellent fractal surfaces, Langmuir, 12, 9, 2125-2127.
  • Wang X., Ding B., Yu J., Wang M., (2011), Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials, Nano Today, 6, 5, 510-530.
  • Michielsen S., Lee H.J., (2007), Design of a superhydrophobic surface using woven structures, Langmuir, 23, 11, 6004-6010.
  • Bhushan B., Jung Y.C., Koch K., (2009), Micro-, nano- superhydrophobicity, self-cleaning and low adhesion, Phil. Trans. R. Soc. A, .367, 1894, 1631– 1672.
  • Ollivier H., (1907), Ann. Chim. Phys., 10, 229.
  • Li S., Zhang S., Wang X., (2008). Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process, Langmuir, 24, 10, 5585–5590.
  • Li D., Xia Y.N., (2003), Fabrication of titania nanofibers by electrospinning, Nano Letters, 3, 4, 555-560.
  • Shi F., Wang Z., Zhang X., (2005), Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Adv. Mater., 17, 8, 1005–1009.
  • Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., (2005). Transparent ultra water- repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating, Appl. Surf. Sci., 244, 1-4, 619–622.
  • Ogawa T., Ding B., Sone Y., Shiratori S., (2007), Super-hydrophobic surfaces of layer-by- layer structured film-coated electrospun nanofibrous membranes, Nanotechnology, 18, 16.
  • Yu M., Gu G., Meng W., Qing F., (2007), Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent, Applied Surface Science, 253, 7, 3669–3673.
  • Gu S.Y., Wang Z.M., Li J.B., Ren J., (2010), Switchable Wettability of Thermo-Responsive Biocompatible Nanofibrous Films Created by Electrospinning, Macromol. Mater. Eng., 295, 1, 32-36.
  • Mishchenko L., Hatton B., Bahadur V., Taylor J. A., Krupenkin T., Aizenberg J., (2010), Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS Nano, 4, 12, 7699-7707.
  • Phani A.R. , (2006), Structural, morphological, wettability and thermal resistance properties of hydro-oleophobic thin films prepared by a wet chemical process, Applied Surface Science, 253, 4, 1873–1881.
  • Verplanck N., Coffinier Y., Thomy V., Boukherroub R., (2007), Wettability Switching Techniques on Superhydrophobic Surfaces, Nanoscale Res. Lett., 2, 12, 577–596.
  • Bhushan B., Jung Y.C., (2011), Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, 56, 1, 1–108.
  • Adamson A.W., (1990), Physical Chemistry of Surfaces 5th Edition, John Wiley & Sons, Inc., U.S.A.
  • Wenzel R.N., (1936), Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 10, 988-994.
  • Cassie A.B.D., Baxter S., (1944), Wettability of porous surfaces, Transactions of the Faraday Society, 40, 546-551.
  • Xu B., Cai Z., (2008), Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification, Applied Surface Science, 254, 18, 5899–5904.
  • Jiang L., Gao X., (2004), Biophysics: Water- repellent legs of water striders, Nature, 432, 7013, p.36.
  • Url-1.https://strider-ss.com/strider.html, 03.04.2014.
  • Elbert J., Gallei M., Rüttiger C., Brunsen A., Didzoleit H., Stühn B., Rehahn M., (2013), Ferrocene Polymers for Switchable Surface Wettability, Organometallics, 32, 20, 5873–5878.
  • Zhu X., Zhang Z., Men X., Yang J., Xu X., (2010), Fabrication of an intelligent superhydrophobic surface based on ZnO nanorod arrays with switchable adhesion property, Applied Surface Science, 256, 24, 7619–7622.
  • Yuan W., Jiang G., Wang J., Wang G., Song Y., Jiang L., (2006), Temperature / Light Dual- Responsive Surface with Tunable Wettability Created by Modification with an Azobenzene- Containing Copolymer, Macromolecules, 39, 3, 1300-1303.
  • Chen M., Besenbacher F., (2011), Light-driven wettability changes on a photoresponsive electrospun mat, ACS Nano, 5, 2, 1549-1555.
  • Hua Z., Yang J., Wang T., Liu G., Zhang G., (2013), Transparent Surface with Reversibly Switchable Wettability between Superhydrophobicity and Superhydrophilicity, Langmuir, 29, 33, 10307–10312.
  • Byun J., Shin J., Kwon S., Jang S., Kim J.K., (2012), Fast and reversibly switchable wettability induced by a photothermal effect, Chem. Commun., 48, 74, 9278–9280.
  • Meng H., Hu J., (2010), A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli, Journal of Intelligent Material Systems and Structures, 21, 9, 859-885.
  • Schmaljohann D., (2006), Thermo- and pH- responsive Advanced Drug Delivery Reviews, 58, 15, 1655– 1670. in drug delivery,
  • Fu Q., Rama Rao G.V., Basame S.B., Keller D.J., Artyushkova K., Fulghum J.E., Lopez G.P. (2004), Reversible Control of Free Energy and Topography of Nanostructured Surfaces, J. Am. Chem. Soc., 126, 29, 8904-8905.
  • Xia F., Jiang L., (2008), Bio-Inspired, smart, multiscale interfacial materials, Advanced Materials, 20, 15, 2842-2858.
  • Li H., Zheng M., Liu S., Ma L., Zhu C., Xiong Z., (2013),Reversible surface wettability transition between superhydrophobicity and superhydrophilicity on hierarchical micro/nanostructure ZnO mesh films, Surface and Coatings Technology, 224, 15, 88–92.
  • Xia F., Feng L., Wang S., Sun T., Song W., Jiang W., Jiang L., (2006), Dual-Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity, Advanced Materials, 18, 4, 432-436.
  • Lahann J., Mitragotri S., Tran T., Kaido H., Sundaram J., Choi I.S., Hoffer S., Somorjai G.A., Langer R., (2003), A Reversibly Switching Surface, Science, 299, 5605, 371-374.
  • Sun W.,Zho S., You B., Wu L., (2013), Polymer Brush-Functionalized Surfaces with Reversible, Precisely Controllable Two-Way Responsive Wettability, Macromolecules, 46, 17, 7018–7026.

Nanoteknoloji Uygulamalari İle Tekstil Yüzeylerinde Değiştirilebilen Islanabilirlik

Yıl 2015, Cilt: 18 Sayı: 1, 31 - 37, 11.08.2015

Öz

Bir tekstil yüzeyinin ıslanabilirliği esas olarak yüzeyin kimyasal yapısı ve yüzey pürüzlülüğüne bağlı olarak değişmektedir. Bilim dünyası doğada kendini temizleyebilme özelliğine sahip nilüfer yaprağı gibi nanopürüzlü yüzeylerin biyobenzetim tekniği ile benzerini üretmeyi esas alan yöntemler ve malzemeler geliştirmektedir. Bu çalışmada, tekstil yüzeylerinin ıslanabilirliği, ıslanma teorisi ve ortam şartlarına bağlı olarak ıslanabilirliği değişen yüzeyler ele alınmıştır. Bu yüzeylerin; sıcaklık, pH, ışık veya elektrik alan etkisi altında yüzey kimyası ve konformasyonunun değişimi incelenmiştir

Kaynakça

  • Adomaviciene M.P, Schwarz A., Stanys S., (2006), Analysis of the Wetting Behaviour of an Inclined Fibre, Fibres & Textiles in Eastern Europe, 14, 3(57), 91-96.
  • Wang S., Jiang L., (2007), Definition of superhydrophobic states, Adv. Mater, 19, 21, 3423–3424.
  • Miao H., Bao F., Cheng L., Shi W., (2010), Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via γ-ray-induced grafting, Radiation Physics and Chemistry, 79, 7, 786–790.
  • Xin B., Hao J., (2010), Reversibly switchable wettability, Chem. Soc. Rev., 39, 2, 769-782.
  • Onda T., Shibuichi S., Satoh N.,Tsujii K., (1996), Super water repellent fractal surfaces, Langmuir, 12, 9, 2125-2127.
  • Wang X., Ding B., Yu J., Wang M., (2011), Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials, Nano Today, 6, 5, 510-530.
  • Michielsen S., Lee H.J., (2007), Design of a superhydrophobic surface using woven structures, Langmuir, 23, 11, 6004-6010.
  • Bhushan B., Jung Y.C., Koch K., (2009), Micro-, nano- superhydrophobicity, self-cleaning and low adhesion, Phil. Trans. R. Soc. A, .367, 1894, 1631– 1672.
  • Ollivier H., (1907), Ann. Chim. Phys., 10, 229.
  • Li S., Zhang S., Wang X., (2008). Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process, Langmuir, 24, 10, 5585–5590.
  • Li D., Xia Y.N., (2003), Fabrication of titania nanofibers by electrospinning, Nano Letters, 3, 4, 555-560.
  • Shi F., Wang Z., Zhang X., (2005), Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Adv. Mater., 17, 8, 1005–1009.
  • Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., (2005). Transparent ultra water- repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating, Appl. Surf. Sci., 244, 1-4, 619–622.
  • Ogawa T., Ding B., Sone Y., Shiratori S., (2007), Super-hydrophobic surfaces of layer-by- layer structured film-coated electrospun nanofibrous membranes, Nanotechnology, 18, 16.
  • Yu M., Gu G., Meng W., Qing F., (2007), Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent, Applied Surface Science, 253, 7, 3669–3673.
  • Gu S.Y., Wang Z.M., Li J.B., Ren J., (2010), Switchable Wettability of Thermo-Responsive Biocompatible Nanofibrous Films Created by Electrospinning, Macromol. Mater. Eng., 295, 1, 32-36.
  • Mishchenko L., Hatton B., Bahadur V., Taylor J. A., Krupenkin T., Aizenberg J., (2010), Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS Nano, 4, 12, 7699-7707.
  • Phani A.R. , (2006), Structural, morphological, wettability and thermal resistance properties of hydro-oleophobic thin films prepared by a wet chemical process, Applied Surface Science, 253, 4, 1873–1881.
  • Verplanck N., Coffinier Y., Thomy V., Boukherroub R., (2007), Wettability Switching Techniques on Superhydrophobic Surfaces, Nanoscale Res. Lett., 2, 12, 577–596.
  • Bhushan B., Jung Y.C., (2011), Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, 56, 1, 1–108.
  • Adamson A.W., (1990), Physical Chemistry of Surfaces 5th Edition, John Wiley & Sons, Inc., U.S.A.
  • Wenzel R.N., (1936), Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 10, 988-994.
  • Cassie A.B.D., Baxter S., (1944), Wettability of porous surfaces, Transactions of the Faraday Society, 40, 546-551.
  • Xu B., Cai Z., (2008), Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification, Applied Surface Science, 254, 18, 5899–5904.
  • Jiang L., Gao X., (2004), Biophysics: Water- repellent legs of water striders, Nature, 432, 7013, p.36.
  • Url-1.https://strider-ss.com/strider.html, 03.04.2014.
  • Elbert J., Gallei M., Rüttiger C., Brunsen A., Didzoleit H., Stühn B., Rehahn M., (2013), Ferrocene Polymers for Switchable Surface Wettability, Organometallics, 32, 20, 5873–5878.
  • Zhu X., Zhang Z., Men X., Yang J., Xu X., (2010), Fabrication of an intelligent superhydrophobic surface based on ZnO nanorod arrays with switchable adhesion property, Applied Surface Science, 256, 24, 7619–7622.
  • Yuan W., Jiang G., Wang J., Wang G., Song Y., Jiang L., (2006), Temperature / Light Dual- Responsive Surface with Tunable Wettability Created by Modification with an Azobenzene- Containing Copolymer, Macromolecules, 39, 3, 1300-1303.
  • Chen M., Besenbacher F., (2011), Light-driven wettability changes on a photoresponsive electrospun mat, ACS Nano, 5, 2, 1549-1555.
  • Hua Z., Yang J., Wang T., Liu G., Zhang G., (2013), Transparent Surface with Reversibly Switchable Wettability between Superhydrophobicity and Superhydrophilicity, Langmuir, 29, 33, 10307–10312.
  • Byun J., Shin J., Kwon S., Jang S., Kim J.K., (2012), Fast and reversibly switchable wettability induced by a photothermal effect, Chem. Commun., 48, 74, 9278–9280.
  • Meng H., Hu J., (2010), A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli, Journal of Intelligent Material Systems and Structures, 21, 9, 859-885.
  • Schmaljohann D., (2006), Thermo- and pH- responsive Advanced Drug Delivery Reviews, 58, 15, 1655– 1670. in drug delivery,
  • Fu Q., Rama Rao G.V., Basame S.B., Keller D.J., Artyushkova K., Fulghum J.E., Lopez G.P. (2004), Reversible Control of Free Energy and Topography of Nanostructured Surfaces, J. Am. Chem. Soc., 126, 29, 8904-8905.
  • Xia F., Jiang L., (2008), Bio-Inspired, smart, multiscale interfacial materials, Advanced Materials, 20, 15, 2842-2858.
  • Li H., Zheng M., Liu S., Ma L., Zhu C., Xiong Z., (2013),Reversible surface wettability transition between superhydrophobicity and superhydrophilicity on hierarchical micro/nanostructure ZnO mesh films, Surface and Coatings Technology, 224, 15, 88–92.
  • Xia F., Feng L., Wang S., Sun T., Song W., Jiang W., Jiang L., (2006), Dual-Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity, Advanced Materials, 18, 4, 432-436.
  • Lahann J., Mitragotri S., Tran T., Kaido H., Sundaram J., Choi I.S., Hoffer S., Somorjai G.A., Langer R., (2003), A Reversibly Switching Surface, Science, 299, 5605, 371-374.
  • Sun W.,Zho S., You B., Wu L., (2013), Polymer Brush-Functionalized Surfaces with Reversible, Precisely Controllable Two-Way Responsive Wettability, Macromolecules, 46, 17, 7018–7026.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Mehmet Ersoy

Yayımlanma Tarihi 11 Ağustos 2015
Gönderilme Tarihi 13 Mayıs 2015
Yayımlandığı Sayı Yıl 2015Cilt: 18 Sayı: 1

Kaynak Göster

APA Ersoy, M. (2015). Nanoteknoloji Uygulamalari İle Tekstil Yüzeylerinde Değiştirilebilen Islanabilirlik. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 18(1), 31-37. https://doi.org/10.17780/ksujes.97489