

120

Süleyman Demirel University
Journal of Natural and Applied Sciences

Volume 24, Issue 1, 120-131, 2020

Süleyman Demirel Üniversitesi
Fen Bilimleri Enstitüsü Dergisi
Cilt 24, Sayı 1, 120-131, 2020

 DOI: 10.19113/sdufenbed.635465

A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance
for Binary Optimization

Zeynep Banu ÖZGER*1 , Bülent BOLAT2 , Banu Diri3

1Sütçü İmam Üniversitesi, Mühendislik Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümü, 46040,
Kahramanmaraş, Türkiye

2Yıldız Teknik Üniversitesi, Elektrik-Elektronik Fakültesi, Elektronik ve Haberleşme Mühendisliği Bölümü,
34220, İstanbul, Türkiye

3Yıldız Teknik Üniversitesi, Elektrik-Elektronik Fakültesi, Bilgisayar Mühendisliği Bölümü, 34220, İstanbul,
Türkiye

(Alınış / Received: 21.10.2019, Kabul / Accepted: 03.02.2020, Online Yayınlanma / Published Online: 20.04.2020)

Keywords
Artificial bee colony,
Data mining,
Heuristic algorithms,
Machine learning

Abstract: Artificial Bee Colony is a population based, bio-inspired optimization
algorithm that developed for continues problems. The aim of this study is to
develop a binary version of the Artificial Bee Colony (ABC) Algorithm to solve
feature subset selection problem on bigger data. ABC Algorithm, has good global
search capability but there is a lack of local search in the algorithm. To overcome
this problem, the neighbor selection mechanism in the employed bee phase is
improved by changing the new source generation formula that has hamming
distance based local search capacity. With a re-population strategy, the diversity of
the population is increased and premature convergence is prevented. To measure
the effectiveness of the proposed algorithm, fourteen datasets which have more
than 100 features were selected from UCI Machine Learning Repository and
processed by the proposed algorithm. The performance of the proposed algorithm
was compared to three well-known algorithms in terms of classification error,
feature size and computation time. The results proved that the increased local
search ability improves the performance of the algorithm for all criteria.

Hamming Mesafesi ile Lokal Arama Tabanlı İkili Yapay Arı Kolonisi Algoritması

Anahtar Kelimeler
Yapay arı kolonisi,
Veri madenciliği,
Sezgisel algoritmalar,
Makine öğrenmesi

Özet: Yapay Arı Kolonisi Algoritması sürekli uzay problemleri için geliştirilen,
popülasyon tabanlı, doğadan esinlemeli bir optimizasyon algoritmasıdır. Bu
çalışmanın amacı, büyük veride, öznitelik alt küme seçimi problemini efektif bir
biçimde çözmek için Yapay Arı Koloni (YAK) Algoritmasının ikili bir versiyonunu
geliştirmektir. YAK Algoritması başarılı bir global yakınsama sunmakla birlikte
lokal bölgedeki olası çözümleri gözden kaçırabilmektedir. Algoritmanın komşu
kaynak seçimi mekanizmasına, Hamming Mesafe ölçümü tabanlı bir yerel arama
prosedürü eklenmiştir. Ayrıca, yeniden nüfus stratejisi ile popülasyonun çeşitliliği
artırılmış ve erken yakınsama önlenmiştir. UCI Makine Öğrenmesi Havuzu’ndan,
öznitelik sayısı 100’den fazla olan 14 veri kümesi seçilmiş ve önerilen yöntem ile
öznitelik seçimi yapılmıştır. Algoritmanın performansı, yaygın kullanılan ve
başarısı kanıtlanmış üç sezgisel algoritma ile sınıflandırma hatası, seçilen öznitelik
sayısı ve hesapsal maliyet bakımından karşılaştırılmıştır. Elde edilen sonuçlar, YAK
algoritmasına entegre edilen lokal arama prosedürünün, algoritmanın
performansını tüm kriterler bakımından artırdığını göstermektedir.

1. Introduction

The process of selecting the distinctive features
(attributes) of a given dataset is called feature subset
selection [1], or simply features selection. Unlike the

process of feature extraction, a feature selection
process finds the most relevant features of the data
without using a transformation and removes all
unnecessary features. Three common feature
selection methods are reported in the literature:

* Corresponding author: zeynepozger@ksu.edu.tr

https://orcid.org/0000-0003-2614-3803
https://orcid.org/0000-0002-2468-8618
https://orcid.org/0000-0002-4052-0049

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

121

filters, wrappers and hybrid methods. Filters select
the most relevant top n features according to an
arbitrary quality score such as t-score, p-stat, etc., but
they do not consider the relationships between
features. The computational cost of filters is low;
however, their performance is not sufficient for most
applications [2]. Furthermore, when the datasets
differ in size and complexity, it is a problem to
determine what the value of n will be. Wrappers
consist of an induction algorithm to select a subset of
the features and a learner to produce feedback for the
induction algorithm. Wrappers yield better
performance in terms of computational complexity.
For example, if the data consists of n features, 2n
possible subsets need to be searched. Especially for
very large datasets, it is not possible to search the
entire set of possibilities [3]. To overcome this
problem, hybrid methods have been developed. A
hybrid feature selection method first reduces the
number of features to a reasonable value by using a
filter. Then, the best subset is determined by a
wrapper.

The feature selection process has two main steps:
subset generation and subset evaluation. Subset
generation is basically a search procedure. Since
heuristic search algorithms do not need to search the
entire space, they are widely used in wrappers to
overcome the curse of dimensionality. Particle swarm
optimization [4-6], genetic algorithms [7, 8], genetic
programming [9], ant colony optimization [10-12],
the Bat algorithm [13], tabu search [14, 15],
simulated annealing [16, 17] and differential
evolution [18, 19] are some examples of heuristic
algorithms that have been applied to feature selection
problems.

If an algorithm produces multiple solutions and tries
to improve the solutions iteratively, it is called a
population-based algorithm. Artificial Bee Colony
(ABC) is a population-based swarm intelligence
algorithm that simulates the foraging behaviour of
honeybees. A bee colony includes three types of bees:
employed bees, onlooker bees and scout bees.
Communication between the employed and onlooker
bees is based on sharing information the quality of
the food source. Scout bees are responsible for
searching for new sources when a food source is
abandoned.

ABC is a stochastic optimization technique that
operates on continuous space. In this study the
feature selection problem is tackled at binary space.
Therefore, it is necessary either to transform the
result vector to binary space using a binarization
function, or to adapt the equations in the employed
bee phase to work with binary vectors. The literature
reports several binary versions of ABC algorithms.
Ozturk et al. [20] presented an algorithm that uses
binary vectors and a cross-over genetic operator to
solve the dynamic image clustering and 0-1 knapsack

problems. Jia et al. [21] utilized bitwise AND, OR, and
XOR operators to generate new sources for solving
some benchmark functions. Kiran and Gunduz [22]
also employed the bitwise XOR operator for the
uncapacitated location problem at binary space.
Kashan et al. [23] proposed a distance-based ABC
algorithm called DisABC. They preferred the Jaccard
Coefficient measure on binary vectors for solving
pure binary optimization problems. Ozturk et al. [24]
added genetic cross-over, swap and selection
operators to DisABC and named their variant as
IDisABC. IDisABC is used for dynamic clustering
problems. Because of its effectiveness, Hancer et al.
[25] hybridized DisABC with the Differential
Evolution algorithm (MDisABC) for feature selection
problems. Singhal et al. [26] also utilized DisABC to
produce new binary sources for solving the unit
commitment problem. They modified the Ø vector,
which is a component of the production mechanism
for new sources. Additionally, in order to increase the
convergence rate, the abandoned source is
determined as the global best vector. Yurtkuran and
Emel [27] determined different cross-over operators
for producing new sources both in the employed and
scout bee phases. Zhang and Zhang [28] also used
binary vectors as food sources to construct spanning
trees in vehicular ad hoc networks. In this work, to
produce a candidate solution in the employed bee
phase, two random bits are selected from the current
source, and then they are inverted. Zhang and Gu [29]
proposed a combination of the insertion and swap
operators to solve the flow shop scheduling problem.
Tasgetiren et al. [30] improved the previous work by
adding a local search mechanism in the employed and
onlooker bee phases. The algorithm proposed by
Zhang and Ye [31] produced a new source by
performing a local search around the current source,
and then selecting the best one in the employed bee
phase. Ye and Chen [32] proposed a method that uses
some local search strategies based on velocity
computation for solving the minimum attribute
reduction problem. Ribas et al. [33] also used the
local search strategy in their study for the blocking
flow shop problem. Han et al. [34] developed a
differential evolution-based binary ABC algorithm for
the flow shop scheduling problem. Schiezaro and
Pedrini [35] utilized a perturbation parameter in the
employed bee phase. In this method, a random
number from a distribution between 0 and 1 is
generated for each position of the current source. If
this random value is greater than a predefined
perturbation parameter, the bit is set as 1. Ozmen et
al. [36] produced new sources in discrete space with
substitution and shift operators.

The methods mentioned above use binary vectors
and/or impose changes on the component of the ABC
algorithm that produces the new source. However,
some other methods use continuous vectors, and
then transform the results to the binary space. Wei
and Hanning [37] used the round function for four

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

122

benchmark functions and named it BABC. Tran and
Wu [38] modified BABC by changing the
transformation function: they preferred a sigmoid
function and expanded the threshold values. While
Kiran [39] used the mod and the round operators
together for solving the uncapacitated facility
location problem, Mandala and Gupta [40] utilized
the tangent function to transform the continuous
results into binary space.

ABC is a strong optimization algorithm. Therefore it
applied to many optimization problems. To avoid
falling to local optimum, the local search capability of
the algorithm is limited. Candidate solutions are
generated somewhere between two sources. We
examined that, because of this strategy, sometimes
causes to lose a good solution. This issue motivated
us to adopt a local search procedure in the algorithm.
Our aim was to add a local search procedure to the
algorithm without losing its heuristic.

The goal of this study is to develop a binary version of
the ABC algorithm to solve the feature subset
selection problem on large datasets. To achieve this
goal, BitABC [21], which is a binary variant based on
bitwise operators, is selected as a starting point with
reference to our previous studies [41]. To improve
the local search ability of this algorithm, the
neighbour selection mechanism in the employed bee
phase is improved by changing the new source
generation formula and by using multiple candidates
for new sources. To improve exploration capacity, the
initialization phase is updated. Additionally, a
repopulation strategy is provided to increase the
diversity of the population. To measure the
effectiveness of the proposed algorithm, fourteen
datasets that each has more than 100 features were
selected from the UCI Machine Learning Repository
and processed by the proposed algorithm. The
performance of the proposed algorithm was
compared to that of three well-known heuristic
algorithms.

Organization of the paper as follows. Section 2
introduces the principles of ABC, Binary ABC, and
BitABC. The proposed method is introduced in the
Section 3. Section 4 summarizes the experimental
results. Finally, Section 5 devotes to the concluding
remarks.

2. Material and Method

In this section the background of study is presented.

2.1. Artificial bee colony algorithm

ABC is a bio-inspired swarm intelligence algorithm
proposed by Karaboga in 2005 [42]. The algorithm
was developed to solve multi-dimensional
optimization problems by modelling the foraging,
learning, and knowledge sharing behaviors of honey

bees. Typically, during the food searching process
three distinct bee types are present. Employed bees
exploit their sources and provide information to
onlooker bees about the food sources. The onlooker
bees select a food source and try to optimize it. Scout
bees search new sources randomly. The food sources
represent possible solutions, and the quality of a
solution is indicated by the amount of nectar. Each
food source is exploited by one employed bee and
optimized by one onlooker bee; therefore, the
number of the food source is equal to the number of
the employed and onlooker bees. The original ABC
algorithm includes 4 phases:

1. Initialization phase: Suppose that there are N
bees in the hive and each bee represents a solution
that is expressed by D parameters. The initial food
sources are generated randomly by (1).

 𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑈(0,1)(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (1)

Where xi={xi1, xi2…xij…xid }is the ith food source, U(0,
1) is a uniformly distributed random variable
between 0 and 1, and xjmin and xjmax are the minimum
and maximum values of parameter j.

The current source number is represented by i, and j
is the dimension of the vector.

2. Employed bee phase: Each employed bee directs
to a food source and then finds a new source in the
vicinity of the current source by using (2).

 𝑣𝑖𝑗 = 𝑥𝑖𝑗 + ∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) (2)

Where i is the index of the current source, k is the
index of a randomly selected neighbor source, and Øij
is a uniformly distributed random number between -
1 and 1. If the fitness value of the new source is better
than the previous one, the employed bee memorizes
it, sets the number of trials to zero, and abandons the
previous source. Otherwise, the number of trials of
the current source is increased by 1 until a
predefined maximum value is reached.

3. Onlooker bee phase: Once the employed bees
provide information to the onlooker bees about the
location and the quality of the food sources, each
onlooker bee selects a source by using the roulette-
wheel method (3). According to this equation, if the
nectar volume of a source is high, it has a high
probability of being selected. In other words,
onlooker bees make a greedy selection according to
information provided by employed bees. The
selection probability of the ith source is calculated as
follows:

 𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑁
𝑗=1

 (3)

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

123

where ‘fitnessi’ is the fitness value of ‘x i’ and ‘N’ is the
total number of the food sources. After calculating the
probabilities of all sources, a uniformly distributed
random value between 0 and 1 is generated. If pi is
greater than the random value, a new source is
generated using equation (2) and its fitness value is
calculated. An onlooker bee selects the new source if
it has better fitness value than the current source,
and the onlooker bee becomes an employed bee for
the next iteration.

4. Scout bee phase: There is a pre-defined threshold
value for the number of trials of the sources. When
the number of trials of a source exceeds this
threshold value, it is assumed that this source is a
local optimum, and the source is abandoned. If a food
source is abandoned, the bee that had been assigned
to it becomes a scout bee, and a new source is
generated by using (1) for the scout bee.

2.2. Binary artificial bee colony algorithm

Initially, the ABC algorithm was designed to solve
optimization problems effectively in continuous
space. Hence, the original ABC algorithm is not
suitable for binary optimization problems such as
feature selection. There have been a few attempts to
overcome this issue reported in the literature, as seen
in Section 1. Their common properties are
summarized as follows. The sources are represented
by binary vectors, and the size of the vector is equal
to the number of features. Logic 1 in this vector
indicates that the corresponding feature is being
selected, and logic 0 indicates the opposite. The
fitness value of any source is calculated by using the
classification accuracy of the feature subset
determined by the source.

2.3. Bitwise operators ABC algorithm

Ji et al. [21] introduced a binary ABC algorithm
(BitABC) based on the bitwise operators between
binary vectors. In this work, the authors used binary
vectors, and to generate a new source they used
bitwise operators. The authors revised the
initialization method and the new source generation
strategy of the employed and onlooker bee phases. In
the initialization phase, ABC uses the maximum and
the minimum values of each parameter. However, if
the problem comes from a binary space, any
parameter can only be 0 or 1. Sources are initialized
for BitABC with equation (4). According to this, a
random value between 0 and 1 is produced, and if
this value greater than a threshold value,
corresponding dimension of vector is set to 1
otherwise it is set to 0.

 𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (4)

ABC uses arithmetic operators for generating new
sources. In binary space, arithmetic operators are not
meaningful. To overcome this issue BitABC changed
the new food source production method in the
employed and onlooker bee phases by using binary
operators instead of arithmetic operators.

2.4. The proposed method

In our previous paper [41], we applied binary ABC
algorithms on the feature selection problem using 10
datasets. We have seen that one of these binary
algorithms (BitABC) yielded better results in the
feature selection process. Its better results and
simplicity lead us to select it a starting point. The
weakness of BitABC is its lack of local search ability.

The main goal of this study is to develop a binary ABC
algorithm that can solve the feature selection
problem effectively. As mentioned above, in our
previous experiments we found that BitABC achieved
better accuracy than the other binary ABC variants.
However, because of its new source generation
strategy, its local search capacity is limited. Hence,
this deduction led us to improve the local search
capacity of BitABC. In the ABC algorithm, local search
is performed in the onlooker and employed bee
phases. Then, we have modified the new source
generation method of the employed bee step of
BitABC.

The ABC algorithm’s strategy for new source
generation is as follows. In the itch iteration, a new
source is generated by using the current source xi, a
randomly selected neighbor xk and a random value Ø.
Therefore, the new source should fall within the
range between xi and xk. The Øi term determines
whether the new source is close to xi or xk. If the new
source is far from the current source, the bee moves
away from its own local area, and the current source
is potentially abandoned, even it contains a
promising amount of nectar. Abandoning a
potentially good region causes the lack of local search
ability of the algorithm. To improve the local search
ability of ABC, we limited the distance between the
current source and the new source. By using such
restrictions the risk of abandoning a promising
source is reduced. Since the position of a given source
is represented by a binary string, Hamming distance
is used as the distance metric. Additionally, since
using arithmetic operators is not meaningful in
binary space, we used bitwise operators like BitABC.
The Ø vector is also a binary vector.

As mentioned above, the location of the new source is
determined by the random Ø vector and a randomly
selected neighbor. It is not possible to restrict the
distance between the selected neighbor and the
current source. For example, if the data have 100
features, the food sources must have 100 dimensions.
Therefore, the Hamming distance between the

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

124

current source and the random neighbor should be
any integer between 1 and 100, and using existing
methods, there is no way to limit the distance to be
lower than a certain number. However, using the
BitABC algorithm, this can easily be controlled by
modifying the new source generation formula that is
used in BitABC. New source generation formula is
updated with equation (5).

 𝑣𝑖 = ∅2𝐴𝑁𝐷 (∅1𝐴𝑁𝐷 (𝑥𝑖 𝑂𝑅 𝑥𝑘) (5)

Where Ø1 and Ø2 are random vectors, xi is the current
source, xk is a randomly selected neighbor and vi is
the new source. As an example, let xi = {1 0 1 1 1 1 0 0
0 0 0 0} be the current source, xk = {1 0 1 0 1 1 0 0 0 1
1 0} be the neighbor source, and Ø be a random
binary vector, dH(xi, xk) = d where dH(x, y) is the
Hamming distance between the binary vectors x and
y, and d is an integer. To increase the diversity of the
selected features, i.e. the position of 1s in the source
vector, the bitwise ‘OR’ operator is applied to the
current sources and the neighbor sources using
equation (6).

 𝑦 = 𝑥𝑖𝑂𝑅 𝑥𝑘 = {1 0 1 1 1 1 0 0 0 1 1 0} (6)

This operation increases the diversity of the selected
features; however, the resulting vector y has greater
than or equal to the number of 1s in xi. Since the main
goal of the feature selection process is to find the
minimal set of relevant features, this result is
inappropriate. Another problem is that, after such
operation, the distance between xi and xk increases,
and the ability to search locally is reduced. To resolve
these problems, a random Ø1 vector is used. If dH(xi,
xk)) = r, then Ø1 is produced by altering random d bits
of xi. Let d = 5 and Ø1 ={0 0 1 1 1 1 0 1 1 0 1 1}; then
y2 is found using equation (7):

 𝑦2 = ∅1𝐴𝑁𝐷 (𝑥𝑖 𝑂𝑅 𝑥𝑘) = {0 0 1 1 1 1 0 0 0 0 0 0} (7)

Where dH(xi, y2) = 1 < d. However, after simulation
experiments we saw that if another random term, e.g.
Ø2, is used, it is possible to find better new sources.
This new Ø1 vector is derived by altering r bits of Ø1.
Again, let d = 5 and Ø2 ={0 1 1 0 0 0 0 1 1 0 0 1}. By
using equation (5), the final solution of the new
source vi becomes vi= {0 0 1 0 0 0 0 0 0 0 0 0}. The
distance between vi and xi is a Gaussian-like
distributed variable between 1 and d. In a feature
selection problem, identifying distinctive feature
subgroups is important. By using (5) at the employed
bee phase, we provided that there are small changes
between the previous and current sources. Thus, the
algorithm is able to identify features that are highly
discriminatory when combined together.

As a final improvement, to increase the local search
ability of the ABC algorithm, five new candidate
sources were generated for each employed bee
within a maximum distance of r from the current

source, and the best one was selected. This step
concludes the first version of the proposed method.
Following preliminary experiments, a new version of
this method has been developed. If the fitness of the
current source is better than all of the new candidate
sources, it means that the current source is a local
optimum. If d is chosen as a small value, then the new
candidates originate from narrow vicinity, and it is
possible to miss a better solution due to the highly
localized nature of the search algorithm. To fix this
problem, a small change has been made to the
proposed algorithm. First, the number of the
candidate sources is reduced to three. If these three
candidates cannot produce a better solution than the
current source, a fourth candidate is produced by
using a new source generation formula (8) of BitABC
because this equation always produces a new source
that has a larger distance from the current one.

 𝑣𝑖 = 𝑥𝑖𝑋𝑂𝑅 (∅𝑖 𝐴𝑁𝐷 (𝑥𝑖 𝑂𝑅 𝑥𝑘)) (8)

If the fitness of the fourth candidate is better than the
current, the new solution of this candidate becomes
the current source for the next step. Otherwise, the
number of trials parameter of the ith source is
increased by four (four new sources are generated).
The flowchart of the proposed method is shown in
Figure 1. We named this method exBitABC.

Figure 1. Flow chart of the new source generation
procedure of exBitABC

The initial food sources are determined randomly by
the ABC algorithm. In this way, any two sources are
close to each other. Namely, the Hamming Distance
between any two sources can be a small value. Our
purpose is to increase the search capacity in the local
regions around the sources. If two or more sources
are close to each other, the regions being searched
will also overlap. To overcome this problem, the
initialization strategy is updated: The search space is
divided into regions, and the number of regions is
equal to the number of food sources. In this way, the
distance between sources is equal. For the feature
selection problem, the size of the search space is
equal to the feature size of the dataset. Consequently,
the distance between any two sources is determined

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

125

by using equation (9). Each employed bee is
responsible for a single specified region when
iterations are initiated.

 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒

#𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 (9)

The roulette-wheel method used in the onlooker bee
phase directs more bees to better sources. However,
this strategy may cause a decrease of diversity over
time. Since the proposed method performs a
comprehensive local search around each source, the
proximity of sources leads to searching in the same
regions. To overcome this problem and to increase
diversity, a re-population strategy is applied. At the
end of each iteration, the Hamming distances
between the sources are calculated. If the distance
between two sources is less than d (the predefined
maximum Hamming distance value that mentioned
above), the one with better fitness is kept, and the
other is re-initialized. In this way, premature
convergence is prevented and diversity is increased.
Also, this algorithm supports our more
comprehensive local search strategy without
decreasing global search.

3. Results

To show the effectiveness of our method, 14
benchmark datasets with different sizes were
selected from the UCI Machine Learning Repository,
and a binary particle swarm optimization method
(BinPSO), genetic algorithm (GA), a binary ABC
algorithm (BitABC), and the proposed algorithm were
applied on these benchmarks. We did not need to
reapply the other binary ABC variants in the
literature since we have previously examined these
[41]. To prove the effectiveness of feature selection,
the benchmark data were classified by using 5-NN
without feature selection. Table 1 summarizes the
number of features, the number of classes, and the
sizes of the datasets selected for the benchmark
testing. During the experiments, all datasets were
randomly divided into three parts. The first part
includes approximately 60% of each dataset as the
training set, 20% of each dataset as the test set and
the remaining data are used as the validation set. The
validation data is never used in the feature selection
process. During the feature selection, a 5-NN is
trained with the training set by using the selected
subset of features, and then its effectiveness is
measured by using the test set. Once the best subset
is determined, its performance is measured by using
validation set.

The initial population was generated by using a
threshold value of 0.85, i.e. any bit of xi set to 0 with a
probability of 0.85. Since these algorithms include
non-deterministic operations, all of the experiments
were repeated 30 times, and the results were
averaged to confirm the results statistically. The

distance parameter of exBitABC (d) was set to 15.
The number of the trials value for the scout bee was
set to 50. All of the parameters were chosen by trial
and error. For the BinPSO, learning factors c1 and c2
were selected as 2, the initial weight (w) was set to
0.9, and the maximum speed (Vmax) for particles was
selected as 0.6, as stated in [43]. For the GA, the
crossover and mutation rates were set as 0.8 and 0.2,
respectively, as reported in [44]. BinPSO and GA were
implemented according to the suggestions of the
authors of [43, 44].

Table 1. The datasets consider in this work

Dataset Name #Features #Classes #Samples
Hill-Valley 100 2 606

UrbanLandCover 148 9 168
Musk-I 166 2 476

Arrhythmia 279 16 452
LSVTVoice

Rehabilitation
309 2 126

Madelon 500 2 2600
Secom 591 2 1567

Malacious 513 2 373
Isolet5 617 26 1559

Multiple
Features

649 6 2000

CNAE 857 9 1080
Micromass 1300 9 931

Gisette 5000 2 6000
Arcene 10000 2 200

In a feature selection problem, the quality of the
selection method is determined by the accuracy and
the number of the selected features. Since the
accuracy is more important than the number of the
selected features, the fitness and accuracy values are
determined as in equation (10) and (11) respectively,
where c=0.9995.

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑐 ∗ 𝑎𝑐𝑐) + ((1 − 𝑐)
#𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
) (10)

 𝑎𝑐𝑐. =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (11)

Population size is one of the important parameters
for swarm intelligence algorithms, and generally it is
problem dependent. To determine the size of a
population, the colony sizes 30, 40, and 50 were
compared according to consumed fitness number as
shown in Figure 2. There is a general opinion that the
error decreases as the size of the population
increases. However, our results did not support this
idea. For all other datasets, after the algorithm
consumed 1000 fitnesses, the system became stable.
Although the increase of the population size for some
datasets reduced the error, we can see that 40 bees
are sufficient for the system for the majority of
datasets. A much larger population is needed for hard
optimization, problems but it is clear that after
reaching a sufficient population size, increasing the
population size only increases the execution time. As
shown in the convergence graph, generally train set

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

126

Figure 2. Convergence graph according to the consumed fitness number

Figure 3. Convergence graph according to iterations

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

127

error differences are very small for different
population sizes, but we saw that the difference
between the execution times is quite high. For LSVT
and Secom datasets, the curves for sizes 30 and 40
overlap. Also for Malacious, Multiple Features, and
Madelon datasets the curves for sizes 40 and 50
overlap. Therefore, for our datasets population size
was set as 40. In ABC algorithms, the sources are
being improved in both the employed bee and
onlooker bee phases. Namely, the total population
size is the sum of the numbers of employed and
onlooker bees. However, in GA and PSO, each source
can be improved in only one phase in a cycle.
Therefore there are 20 employed and onlooker bees
for exBitABC and BitABC, 40 individuals for GA and
40 particles for PSO.

To compare different algorithms with each other, the
maximum number of iterations is typically used.
exBitABC consumes more than one fitness for each
resource. According to [45-47], to make a fair
comparison in such situations, it is more suitable to
use execution time or number of consumed fitness.
Background applications, updates, etc. affect the
running time of the PC; therefore, the consumed
fitness number is selected as the stopping criterion
and this is based on the dataset. The consumed
fitness number is calculated by counting the number
of new sources that produced by the algorithm and
setting this as the stopping criterion for BitABC, GA,
and Bin PSO.

ABC is an iterative algorithm. At the end of any
iteration, if the algorithm converges to an optimum,
the algorithm stops to improve, and the fitness value
remains constant after this point. Subsequently,
continuing the iterations usually does not improve
the result but increases the execution time. It is
important to find the optimum iteration number to
reduce the time complexity. The convergence graph
related to iteration number and test set error is
shown in Figure 3. The number of max iteration is
chosen by trial and-error and is set as 50 for
exBitABC. It is clear that for all datasets, 50 iterations
are sufficient, and all of them became stable after
reaching an optimum point.

At our previous work [41], we implemented, different
binary ABC variants to feature selection problem. We
saw that, BitABC got better results according to other
binary ABC variants. Therefore in this study, we did
not apply again other binary ABC algorithms. Since
the proposed methods are derived from BitABC, we
first compared the performance of the proposed
method with respect to BitABC. However, we also
compared our results with other well-known meta-
heuristic algorithms such as Genetic Algorithm (GA)
and Binary Particle Swarm Optimization Algorithm
(BinPSO). In order to test the usefulness of the
feature selection process, the 5-NN classifier was
applied to datasets without any feature reduction.

Table 2 summarizes the classification errors; these
are shown in terms of mean and standard deviation
in percent. If two methods have the same
classification error, the one that selects fewer
features is considered as better. In Table 2, the
results of exBitABC and the results of other meta-
heuristic methods are compared and the best results
are shown in bold text. The results of 5-NN is given to
show the usefulness of the feature selection process.
It is not included in comparison. The ‘Sig’ row shows
statistically significant differences obtained by
Wilcoxon Rank Sum Test between the algorithms. "+"
indicates that exBitABC is significantly better than
the compared algorithm. "-" shows that exBitABC is
significantly worse than the compared algorithm. If
any other algorithm produces a significantly similar
result relative to exBitABC, the compared algorithm
is labelled with the "~" symbol.

As seen in Table 2, the proposed method outperforms
the other three methods both in terms of validation
error and of the number of selected features. With
the exception of Isolet, the improvement of test set
errors is meaningful. In addition, it is clear that the
size of the feature subsets selected by exBitABC is
much smaller than the size of the feature subsets
selected by the other methods. The Secom, Malacious,
Multiple Features, and Gisette datasets are classified
with very small error. Consequently, there is no
significant difference between the methods in terms
of validation set error. For these datasets, success is
determined by the number of selected features. It is
clear that exBitABC achieves the same error, but
using fewer features than other algorithms. Hill
Valley and Micromass are difficult datasets: Even if
they are classified with 5-NN by using all features, the
error rate is very high. Unlike the other methods,
exBitABC decreased the error rate for Micromass
using fewer features, and the error difference with all
features-5NN is small for Hill Valley. When the results
of exBitABC are compared with 5-NN, by using
feature selection, it is possible to achieve lower or
similar test errors by using fewer features. If
exBitABC was excluded, BitABC generally produced
better test error results than GA and BinPSO. Among
these, the smallest subsets were always selected by
using BitABC. According to standard deviation values,
GA and BinPSO cannot produce stable results for
feature subset size. The significance test is applied to
show statistically significant differences in terms of
only validation set errors. The significance test
performance of exBitABC is statistically worse than
BinPSO, GA, and BitABC for the Isolet and Musk
datasets. For Secom, Malacious, and Multiple
Features datasets, no statistically meaningful
difference is observed between methods, but it is
clear that for these datasets there is no significant
difference between validation error results.

Computation time of the algorithms is shown in Table
2. The algorithms were executed on a server with 32

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

128

GB RAM and an Intel Xeon E5 2.6 GHz CPU by using
MATLAB 2016b. In the case of computational cost,
the size of the dataset is evaluated according to the
number of cells (\#features x \#samples). Generally,
the execution time of exBitABC is shorter than that of
other methods. Regarding Table 3, for small datasets
no substantial difference is observed between
methods. However, when the larger datasets like
Gisette are considered, exBitABC is faster than the
others.

4. Discussion and Conclusion

The aim of this study is to develop a binary ABC
algorithm. Within this scope, existing binary ABC
algorithms are examined for strengths and
weaknesses. When the performances of these

variants are compared, it is clear that, using bitwise
operators are successful in binarization process [41].
Therefore, at the proposed method, binarization
process was carried out using bitwise operators.

It is also investigated that is it possible to make a
limited local search around good sources that have
already been discovered without falling local optima.
After some research, adding a local search procedure
was performed using Hamming distance
measurement. So, promising results are obtained
when the proposed method applied to feature
selection problem. Because of local search strategy, it
was consumed multiple fitness at each iteration. For
all that, the computational costs did not exceed other
algorithms.

Table 2. The performance comparison of the algorithms
 BitABC GA BinPSO exBitABC 5-NN

Hill-Valley
Valid Error
#Feature
Sig

0.481±0.044
19.83±3.18

+

0.482±0.035
20.7±4.09

+

0.495±0.004
14.37±13.45

+

0.462±0.034
8.9±3.45

0.44±0.034

Urban
Land
Cover

Valid Error
#Feature
Sig

0.188±0.026
43.23±29.21

+

0.202±0.042
30.07±56.62

+

0.191±0.031
48.93±13.8

+

0.147±0.03
10.2±2.22

0.192±0.025

Musk-I
Valid Error
#Feature
Sig

0.191±0.042
21.37±4.05

-

0.179±0.047
38.5±7.29

-

0.173±0.042
57.2±12.93

-

0.155±0.047
12.67±2.22

0.147±0.021

Arrhythmia
Valid Error
#Feature
Sig

0.337±0.047
27.67±6.9

+

0.33±0.04
51.97±7.66

+

0.351±0.045
66.37±29.87

+

0.296±0.04
13.33±2.78

0.375±0.035

LSVT
Valid Error
#Feature
Sig

0.247±0.09
30.7±6.92

+

0.26±0.09
49.1±8.1

+

0.24±0.08
83.73±44.14

-

0.201±0.102
19.73±6.57

0.33±0.062

Madelon
Valid Error
#Feature
Sig

0.2±0.021
51.07±14.16

+

0.218±0.027
86.57±9.05

+

0.26±0.029
155.8±37.3

+

0.1±0.011
11.3±2.13

0.271±0.014

Secom
Valid Error
#Feature
Sig

0.07±0.004
72±11.42

~

0.071±0.004
90.93±9.92

~

0.069±0.003
170.9±81.74

-

0.069±0.004
41.77±21.57

0.071±0.01

Malacious
Valid Error
#Feature
Sig

0.025±0.017
70.6±9.77

~

0.022±0.015
75.83±7.46

~

0.03±0.023
125.3±77.9

+

0.023±0.017
24.63±1.35

0.007±0.007

Isolet5
Valid Error
#Feature
Sig

0.196±0.023
50.6±5.9

-

0.221±0.025
109.23±11.59

-

0.242±0.024
192.73±50.95

+

0.211±0.022
44.9±9.87

0.277±0.018

Multiple
Features

Valid Error
#Feature
Sig

0.032±0.009
60.67±7.95

-

0.035±0.01
109.17±11.73

~

0.046±0.01
236.5±35.88

+

0.03±0.01
44.87±14.89

0.023±0.004

Cnae
Valid Error
#Feature
Sig

0.31±0.041
67.53±10.39

+

0.309±0.045
157.47±8.5

+

0.285±0.047
350.93±25.98

+

0.212±0.034
44.83±7.99

0.129±0.015

Micromass
Valid Error
#Feature
Sig

0.617±0.067
58.03±11.79

+

0.719±0.047
207.03±14.18

+

0.71±0.041
164.57±169.95

+

0.587±0.054
42.9±10.02

0.688±0.033

Gisette
Valid Error
#Feature
Sig

0.073±0.011
232.17±44.053

~

0.102±0.011
761.03±20.28

+

0.069±0.007
2104.2±166.21

~

0.071±0.009
146.53±20.48

0.066±0.004

Arcene
Valid Error
#Feature
Sig

0.247±0.06
924.5±139.33

+

0.243±0.072
1504.4±36.13

+

0.262±0.063
3233.4±904.37

+

0.182±0.076
776.4±37.68

0.229±0.053

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

129

In this article, a new binary ABC algorithm named
exBitABC that is suitable for feature selection
problems is proposed. The new method has strong
local search capability and can easily escape local
optima. To show the effectiveness of the proposed
method, 14 benchmark datasets from the UCI
Machine Learning Repository were processed by
using BinPSO, GA, BitABC and exBitABC algorithms,
and the results were compared. For all datasets,
exBitABC produced better results than BitABC in
terms of validation set error, and completed
processing in a shorter time. exBitABC also selected
fewer features in every trial. When compared with
BinPSO and GA, exBitABC yielded better performance
for 13 datasets, while BitABC was better for the
remaining one dataset. exBitABC also reduced the
features better than both BinPSO and GA. These
results demonstrate that the increased local search
ability of the exBitABC algorithm improves the
performance of the algorithm in terms of validation
set error, feature size, and running time.

Results are only compared with BitABC within
existing binary ABC methods. It is because, some
binary variants of ABC algorithm are applied and
compared in our previous study [41]. BitABC
outperformed other methods, therefore this study
focused on getting a good result from BitABC.
Additionally, results are compared with GA and
BinPSO because of their optimization performances.
In our next study, we will compare our results some

other population-based algorithms like Ant Colony
Optimization, Bacterial Colony Optimization.

The main purpose of this study is, adding a limited
local search process to ABC algorithm. At the new
source generation formula, ‘AND’ and ‘OR’ bitwise
operators and two random vectors are used. With
‘OR’ operator diversity of the selected features are
increased. With random vectors generated from
current source, it is ensured that the new source is in
a certain distance to the current source. Namely, new
sources are produced in the local area of the current
source. Finally ‘AND’ operator used for obtaining a
sparse vector.

There are some ABC variants based on bitwise
operators in the literature. All of these are proposed
for some binary problems. Bitwise operators are used
for producing neighbor source. At [21] bitwise ‘XOR’,
‘AND’ and ‘OR’ operators are used. At [22] only ‘XOR’
operator is used. The ‘XOR’ operator prevents the
new source from staying in the local area. Therefore
it did not used. The main difference from these
studies is the new source generation strategy ensures
that the new source remains in the local area.

References

[1] Guyon, I., Elisseeff, A. 2013. An Introduction to

Variable and Feature Selection. Journal of
Machine Learning Research, 3, 1157–1182.

[2] Sánchez-Maroño, N., Alonso-Betanzos, A.,
Tombilla-Sanromán, M. 2007. Filter Methods for
Feature Selection: a Comparative Study. I
Proceedings of the 8th International Conference
on Intelligent Data Engineering and Automated
Learning, December, Berlin, Heidelberg, 178–
187.

[3] Kohavi, R., John, G. H. 1997. Wrappers for
Feature Subset Selection. Artificial Intelligence,
1-2, 273-324.

[4] Unler, A., Murat, A. 2010. A Discrete Particle
Swarm Optimization Method for Feature
Selection in Binary Classification Problems.
European Journal of Operational Research,
206(3), 528-539.

[5] Cervante, L., Xue, B., Shang, L., Zhang, M. 2012. A
Dimension Reduction Approach to Classification
Based on Particle Swarm Optimisation and
Rough Set Theory. Advances in Artificial
Intelligence, 1 st ed., Springer, Berlin, Heidelberg,
313–325.

[6] Cervante, L., Xue, B., Shang, L., Zhang, M. 2013. A
Multi-Objective Feature Selection Approach
Based on Binary Pso and Rough Set Theory.
Evolutionary Computation in Combinatorial
Optimization, 7832, 25–36.

Table 3. Time consumptions of algorithms in seconds
Dataset BitABC BinPSO GA exBitABC

Hill-Val.
45.065
±0.71

43.57
±0.17

54.1
±0.71

48.92
±0.55

UrbL.C
46.64
±0.76

48.49
±0.36

57.17
±0.75

49.91
±0.43

Musk
42.47
±0.31

45.047
±0.3

54.21
±0.85

47.32
±0.24

Arryht.
43

±0.62
48.002
±0.28

54.68
±0.32

46.67
±0.36

Lsvt
40.2

±0.22
40.12
±0.22

54.54
±4.67

45.23
±0.17

Madel.
101.3
±9.16

198.47
±7.44

140.3
±6.45

76.61
±1.85

Secom
82.21
±1.73

118.38
±5.46

97.08
±9.59

80.31
±1.42

Malac.
42.64
±0.52

51.21
±0.58

54.5
±0.4

48.22
±0.38

Isolet
106.4

±25.64
174.96
±3.42

113.6
±4.38

95.48
±6.27

Mul.F.
147.98
±6.68

223.3
±70.36

146.1
±9.26

118.1
±6.28

Cnae
66.85
±3.38

117.13
±4.94

84.13
±3.49

59.54
±0.67

Micro.
58.86
±1.97

86.21
±2.45

65.66
±0.81

58.38
±1.35

Gisette
2741.3
±101.7

7931
±261.7

4431.4
±88

1227
±12.3

Arcene
100.79
±3.72

154.83
±2.65

144.6
±1.36

99.06
±1.46

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

130

[7] Yang, J., Honavar, V.G. 1998. Feature Subset
Selection Using a Genetic Algorithm. IEEE
Intelligent System, 13(2), 44–49.

[8] Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn,
L. A., Jain, A. K. 2000. Dimensionality Reduction
Using Genetic Algorithms. IEEE Transactions on
Evolutionary Computation, 4(2), 164–171.

[9] Ahmed, S., Zhang, M., Peng, L. 2014. Improving
Feature Ranking for Biomarker Discovery in
Proteomics Mass Spectrometry Data Using
Genetic Programming. Connection Science, 26(3),
215–243.

[10] Nemati, S., Basiri, M. E., Ghasem-Aghaee, N.,
Aghdam, M. H. 2009. A Novel ACO-GA Hybrid
Algorithm for Feature Selection in Protein
Function Prediction. Expert System Application,
36(10), 12086–12094.

[11] Wen, L., Yin, Q., Guo, P. 2008. Ant Colony
Optimization Algorithm for Feature Selection
and Classification of Multispectral Remote
Sensing Image. IEEE International Geoscience
and Remote Sensing Symposium (IGARSS2008),
7-11 July, Boston, USA, 923-926.

[12] Jensen, R. 2006. Performing Feature Selection
with ACO. Swarm Intelligence in Data Mining,
Springer, Berlin, Heidelberg, 45-73.

[13] Nakamura, R., Pereira, L., Costa, K., Rodrigues, D.,
Papa, J. 2012. BBA: a Binary Bat Algorithm for
Feature Selection. Conference on Graphics,
Patterns and Images, 22–25 Aug, Ouro Preto,
291-297.

[14] Oduntana, I. O., Toulouse, M., Baumgartner, R.,
Bowman, C., Somorjai, R., Crainic, T. G. 2008. A
Multilevel Tabu Search Algorithm for the
Feature Selection Problem in Biomedical Data.
Computers & Mathematics with Applications, 55,
1019–1033.

[15] Chuang, L. Y., Yang, C. H. 2009. Tabu Search and
Binary Particle Swarm Optimization for Feature
Selection using Microarray Data. Journal of
Computational Biology, 16(12), 1689-1703.

[16] Balabina, R. M., Smirnov, S. V. 2011. Variable
Selection in Near-Infrared Spectroscopy:
Benchmarking of Feature selection Methods on
Biodiesel Data. Analytica Chimica Acta, 692, 63–
72.

[17] Ustunkar, G., Ozogur-Akyuz, S., Weber, G. W.,
Friedrich, C. M., Aydin Son, Y. 2011. Selection of
Representative SNP Sets for Genome-Wide
Association Studies: a Metaheuristic Approach.
Optimization Letters, 6(6), 1207–1218.

[18] Hancer, E. 2019. Differential Evolution for
Feature Selection: a Fuzzy Wrapper-Filter
Approach. Soft Computing, 23(13), 5233-5248.

[19] Li, T., Dong, H., Sun, J. 2019. Binary Differential
Evolution Based on Individual entropy for
Feature Subset Optimization. IEEE Access, 7,
24109-24121.

[20] Öztürk, C., Hançer, E., Karaboğa, D. 2015. A Novel
Binary Artificial Bee Colony Algorithm Based on
Genetic Operators. Information Science, 297,
154-170.

[21] Jia, D., Duan, X., Khan, M. K. 2014. Binary
Artificial Bee Colony Optimization Using Bitwise
Operation (BitABC). Computers and Industrial
Engineering, 76, 360–365.

[22] Kiran, M. S., Gündüz, M. 2013. XOR Based
Artificial Bee Colony algorithm for Binary
Optimization. Turkish Journal of Electrical
Engineering & Computation Sciences, 21, 2307–
2328.

[23] Kashan, M. H., Nahavandi, N., Kashan, A. H. 2012.
DisABC: A New Artificial Bee Colony Algorithm
for Binary Optimization. Applied Soft
Computing, 12, 342-352.

[24] Öztürk, C., Hançer, E., Karaboğa, D. 2014.
Dynamic Clustering With Improved Binary
Artificial Bee Colony-IDisABC. Applied Soft
Computing, 28, 69-80.

[25] Hançer, E., Xue, B., Karaboğa, D., Zhang, M. 2015.
A Binary ABC Algorithm Based on Advanced
Similarity scheme for Feature Selection. Applied
Soft Computing, 36, 334-348.

[26] Singhal, P. K., Noresh, R., Sherma, V. 2015. A
Novel Strategy-Based Hybrid Binary Artificial
Bee Colony Algorithm for Unit Commitment
Problem. Arabian Journal for Science and
Engineering, 40(5), 1455–1469.

[27] Yurtkurtaran, A., Emel, E. 2016. A Discrete
Artificial Bee Algorithm for Single Machine
Scheduling Problem. International Journal of
Production Research, 54(22), 6860-6878.

[28] Zhang, X., Zhang, X. 2016. A Binary Artificial Bee
Colony Algorithm for Constructing Spanning
Trees in Vehicular ad Hoc Networks. Ad Hoc
Networks, 58, 198-204.

[29] Zhang, S., Gu, X. 2015. An Effective Discrete
Artificial Bee Colony Algorithm for Flow Shop
Scheduling Problem with Intermediate Buffers.
Journal of Central South University, 22,
3471−3484.

[30] Tasgetiren, M. F., Pan, Q., Suganthan, P. N., Chen,
A. 2011. A Discrete Artificial Bee Colony
Algorithm for the Total Flow Time Minimization
in Permutation Flow Shops. Information
Sciences, 181, 3459–3475.

[31] Zhang, H., Ye, D. 2015. Key-Node-Based Local
Search Discrete Artificial Bee Colony Algorithm
for Obstacle-Avoiding Rectilinear Steiner Tree

Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization

131

Construction. Neural Comput & Applications, 26,
875–898.

[32] Ye, D., Chen, Z. 2015. A New Approach to
Minimum Attribute Reduction Based on Discrete
Artificial Bee Colony. Soft Computing, 19, 1893–
1903.

[33] Ribas, I., Companys, R., Tort-Martorell, X. 2015.
An Efficient Discrete Artificial Bee Colony
Algorithm for the Blocking Flow Shop Problem
with Total Flowtime Minimization. Expert
Systems with Applications, 42, 6155–6167.

[34] Han, Y. Y., Gong, D., Sun, X. A Discrete Artificial
Bee Colony Algorithm Incorporating Differential
Evolution for the Flow-Shop Scheduling Problem
with blocking. Engineering Optimization, 47,
927–946.

[35] Schiezaro, M., Pedrini, H. 2013. Data Feature
Selection Based on Artificial Bee Colony
Algorithm. Journal on Image and Video
Processing, 47.

[36] Özmen, Ö., Batbat, T., Özen, T., Sinanoğlu, C.,
Güven, A. 2018. Optimum Assembly Sequence
Planning System Using Discrete Artificial Bee
Colony Algorithm. Mathematical Problems in
Engineering, 2018, 340764.

[37] Wei, L., Hanning, C. 2012. BABC: A Binary
Version of Artificial Bee Colony Algorithm for
Discrete Optimization. International Journal of
Advancements in Computing Technology, 4(14),
307-314.

[38] Tran, D. C., Wu, Z. 2014. New Approaches for
Binary Artificial Bee Colony Algorithm for
Solving 0-1 Knapsack Problem. Advances in
Information Sciences and Service Sciences,
4(22), 464-471.

[39] Kıran, M. S. 2015. The Continues Artificial Bee

Colony Algorithm for Binary Optimization.
Applied Soft Computing, 33, 15-23.

[40] Mandala, M., Gupta, C. P. 2014. Binary Artificial
Bee Colony Optimization for GENCO’s Profit
Maximization under Pool Electricity Market.
International Journal of Computer Applications,
90, 34-42.

[41] Ozger, Z. B., Bolat, B., Diri, B. 2016. A
Comparative Study on Binary Artificial Bee
Colony Optimization Methods for Feature
Selection. INnovations in Intelligent SysTems
and Applications (INISTA), 2-5 Aug., Romaina, 1-
4.

[42] Karaboga, D., Akay, B. 2009. A Survey:
Algorithms Simulating Bee Swarm Intelligence.
Artificial Intelligence Review, 31, 61-85.

[43] Mirjalili, S., Lewis, A. 2013. S-Shaped Versus v-
Shaped Transfer Functions for Binary Particle
Swarm Optimization. Swarm Evolution
Computation, 9, 1–14.

[44] Sivanandam, S., Deepa, S. 2008. Genetic
Algorithm Implementation Using Matlab.
Introduction to Genetic Algorithms, Berlin:
Heidelberg, 211-262.

[45] Mernik, M., Liu, S. H., Karaboga, D., Črepinšek, M.
2015. On Clarifying Misconceptions When
Comparing Variants of the Artificial Bee Colony
Algorithm by Offering a New Implementation.
Information Sciences, 291, 115-127.

[46] Draa, A. 2015. On the Performances of the
Flower Pollination Algorithm–Qualitative and
Quantitative Analyses. Applied Soft Computing,
34, 349-371.

[47] Črepinšek, M., Liu, S. H., Mernik, L., Mernik, M.
2016. Is a Comparison of Results Meaningful
from the Inexact Replications of Computational
experiments?. Soft Computing, 20(1), 223-235.

