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Abstract: Artificial Bee Colony is a population based, bio-inspired optimization 
algorithm that developed for continues problems. The aim of this study is to 
develop a binary version of the Artificial Bee Colony (ABC) Algorithm to solve 
feature subset selection problem on bigger data. ABC Algorithm, has good global 
search capability but there is a lack of local search in the algorithm. To overcome 
this problem, the neighbor selection mechanism in the employed bee phase is 
improved by changing the new source generation formula that has hamming 
distance based local search capacity. With a re-population strategy, the diversity of 
the population is increased and premature convergence is prevented. To measure 
the effectiveness of the proposed algorithm, fourteen datasets which have more 
than 100 features were selected from UCI Machine Learning Repository and 
processed by the proposed algorithm. The performance of the proposed algorithm 
was compared to three well-known algorithms in terms of classification error, 
feature size and computation time. The results proved that the increased local 
search ability improves the performance of the algorithm for all criteria. 

  
  

Hamming Mesafesi ile Lokal Arama Tabanlı İkili Yapay Arı Kolonisi Algoritması 
 
 

Anahtar Kelimeler 
Yapay arı kolonisi, 
Veri madenciliği, 
Sezgisel algoritmalar, 
Makine öğrenmesi  

Özet: Yapay Arı Kolonisi Algoritması sürekli uzay problemleri için geliştirilen, 
popülasyon tabanlı, doğadan esinlemeli bir optimizasyon algoritmasıdır. Bu 
çalışmanın amacı, büyük veride, öznitelik alt küme seçimi problemini efektif bir 
biçimde çözmek için Yapay Arı Koloni (YAK) Algoritmasının ikili bir versiyonunu 
geliştirmektir. YAK Algoritması başarılı bir global yakınsama sunmakla birlikte 
lokal bölgedeki olası çözümleri gözden kaçırabilmektedir. Algoritmanın komşu 
kaynak seçimi mekanizmasına, Hamming Mesafe ölçümü tabanlı bir yerel arama 
prosedürü eklenmiştir. Ayrıca, yeniden nüfus stratejisi ile popülasyonun çeşitliliği 
artırılmış ve erken yakınsama önlenmiştir. UCI Makine Öğrenmesi Havuzu’ndan, 
öznitelik sayısı 100’den fazla olan 14 veri kümesi seçilmiş ve önerilen yöntem ile 
öznitelik seçimi yapılmıştır. Algoritmanın performansı, yaygın kullanılan ve 
başarısı kanıtlanmış üç sezgisel algoritma ile sınıflandırma hatası, seçilen öznitelik 
sayısı ve hesapsal maliyet bakımından karşılaştırılmıştır. Elde edilen sonuçlar, YAK 
algoritmasına entegre edilen lokal arama prosedürünün, algoritmanın 
performansını tüm kriterler bakımından artırdığını göstermektedir.  

  
 
1. Introduction 
 
The process of selecting the distinctive features 
(attributes) of a given dataset is called feature subset 
selection [1], or simply features selection. Unlike the 

process of feature extraction, a feature selection 
process finds the most relevant features of the data 
without using a transformation and removes all 
unnecessary features. Three common feature 
selection methods are reported in the literature: 
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filters, wrappers and hybrid methods. Filters select 
the most relevant top n features according to an 
arbitrary quality score such as t-score, p-stat, etc., but 
they do not consider the relationships between 
features. The computational cost of filters is low; 
however, their performance is not sufficient for most 
applications [2]. Furthermore, when the datasets 
differ in size and complexity, it is a problem to 
determine what the value of n will be. Wrappers 
consist of an induction algorithm to select a subset of 
the features and a learner to produce feedback for the 
induction algorithm. Wrappers yield better 
performance in terms of computational complexity. 
For example, if the data consists of n features, 2n 
possible subsets need to be searched. Especially for 
very large datasets, it is not possible to search the 
entire set of possibilities [3]. To overcome this 
problem, hybrid methods have been developed. A 
hybrid feature selection method first reduces the 
number of features to a reasonable value by using a 
filter. Then, the best subset is determined by a 
wrapper.  
 
The feature selection process has two main steps: 
subset generation and subset evaluation. Subset 
generation is basically a search procedure. Since 
heuristic search algorithms do not need to search the 
entire space, they are widely used in wrappers to 
overcome the curse of dimensionality. Particle swarm 
optimization [4-6], genetic algorithms [7, 8], genetic 
programming [9], ant colony optimization [10-12], 
the Bat algorithm [13], tabu search [14, 15], 
simulated annealing [16, 17] and differential 
evolution [18, 19] are some examples of heuristic 
algorithms that have been applied to feature selection 
problems. 
 
If an algorithm produces multiple solutions and tries 
to improve the solutions iteratively, it is called a 
population-based algorithm. Artificial Bee Colony 
(ABC) is a population-based swarm intelligence 
algorithm that simulates the foraging behaviour of 
honeybees. A bee colony includes three types of bees: 
employed bees, onlooker bees and scout bees. 
Communication between the employed and onlooker 
bees is based on sharing information the quality of 
the food source. Scout bees are responsible for 
searching for new sources when a food source is 
abandoned. 
 
ABC is a stochastic optimization technique that 
operates on continuous space. In this study the 
feature selection problem is tackled at binary space. 
Therefore, it is necessary either to transform the 
result vector to binary space using a binarization 
function, or to adapt the equations in the employed 
bee phase to work with binary vectors. The literature 
reports several binary versions of ABC algorithms. 
Ozturk et al. [20] presented an algorithm that uses 
binary vectors and a cross-over genetic operator to 
solve the dynamic image clustering and 0-1 knapsack 

problems. Jia et al. [21] utilized bitwise AND, OR, and 
XOR operators to generate new sources for solving 
some benchmark functions. Kiran and Gunduz [22] 
also employed the bitwise XOR operator for the 
uncapacitated location problem at binary space. 
Kashan et al. [23] proposed a distance-based ABC 
algorithm called DisABC. They preferred the Jaccard 
Coefficient measure on binary vectors for solving 
pure binary optimization problems. Ozturk et al. [24] 
added genetic cross-over, swap and selection 
operators to DisABC and named their variant as 
IDisABC. IDisABC is used for dynamic clustering 
problems. Because of its effectiveness, Hancer et al. 
[25] hybridized DisABC with the Differential 
Evolution algorithm (MDisABC) for feature selection 
problems. Singhal et al. [26] also utilized DisABC to 
produce new binary sources for solving the unit 
commitment problem. They modified the Ø vector, 
which is a component of the production mechanism 
for new sources. Additionally, in order to increase the 
convergence rate, the abandoned source is 
determined as the global best vector. Yurtkuran and 
Emel [27] determined different cross-over operators 
for producing new sources both in the employed and 
scout bee phases. Zhang and Zhang [28] also used 
binary vectors as food sources to construct spanning 
trees in vehicular ad hoc networks. In this work, to 
produce a candidate solution in the employed bee 
phase, two random bits are selected from the current 
source, and then they are inverted. Zhang and Gu [29] 
proposed a combination of the insertion and swap 
operators to solve the flow shop scheduling problem. 
Tasgetiren et al. [30] improved the previous work by 
adding a local search mechanism in the employed and 
onlooker bee phases. The algorithm proposed by 
Zhang and Ye [31] produced a new source by 
performing a local search around the current source, 
and then selecting the best one in the employed bee 
phase. Ye and Chen [32] proposed a method that uses 
some local search strategies based on velocity 
computation for solving the minimum attribute 
reduction problem. Ribas et al. [33] also used the 
local search strategy in their study for the blocking 
flow shop problem. Han et al. [34] developed a 
differential evolution-based binary ABC algorithm for 
the flow shop scheduling problem. Schiezaro and 
Pedrini [35] utilized a perturbation parameter in the 
employed bee phase. In this method, a random 
number from a distribution between 0 and 1 is 
generated for each position of the current source. If 
this random value is greater than a predefined 
perturbation parameter, the bit is set as 1.  Ozmen et 
al. [36] produced new sources in discrete space with 
substitution and shift operators.  
 

The methods mentioned above use binary vectors 
and/or impose changes on the component of the ABC 
algorithm that produces the new source. However, 
some other methods use continuous vectors, and 
then transform the results to the binary space. Wei 
and Hanning [37] used the round function for four 
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benchmark functions and named it BABC. Tran and 
Wu [38] modified BABC by changing the 
transformation function: they preferred a sigmoid 
function and expanded the threshold values. While 
Kiran [39] used the mod and the round operators 
together for solving the uncapacitated facility 
location problem, Mandala and Gupta [40] utilized 
the tangent function to transform the continuous 
results into binary space.  
 
ABC is a strong optimization algorithm. Therefore it 
applied to many optimization problems. To avoid 
falling to local optimum, the local search capability of 
the algorithm is limited. Candidate solutions are 
generated somewhere between two sources. We 
examined that, because of this strategy, sometimes 
causes to lose a good solution. This issue motivated 
us to adopt a local search procedure in the algorithm. 
Our aim was to add a local search procedure to the 
algorithm without losing its heuristic.  
 
The goal of this study is to develop a binary version of 
the ABC algorithm to solve the feature subset 
selection problem on large datasets. To achieve this 
goal, BitABC [21], which is a binary variant based on 
bitwise operators, is selected as a starting point with 
reference to our previous studies [41]. To improve 
the local search ability of this algorithm, the 
neighbour selection mechanism in the employed bee 
phase is improved by changing the new source 
generation formula and by using multiple candidates 
for new sources. To improve exploration capacity, the 
initialization phase is updated. Additionally, a 
repopulation strategy is provided to increase the 
diversity of the population. To measure the 
effectiveness of the proposed algorithm, fourteen 
datasets that each has more than 100 features were 
selected from the UCI Machine Learning Repository 
and processed by the proposed algorithm. The 
performance of the proposed algorithm was 
compared to that of three well-known heuristic 
algorithms. 
 
Organization of the paper as follows. Section 2 
introduces the principles of ABC, Binary ABC, and 
BitABC. The proposed method is introduced in the 
Section 3. Section 4 summarizes the experimental 
results. Finally, Section 5 devotes to the concluding 
remarks. 
 
2.  Material and Method 
 
In this section the background of study is presented. 
 
2.1. Artificial bee colony algorithm 
 
ABC is a bio-inspired swarm intelligence algorithm 
proposed by Karaboga in 2005 [42].  The algorithm 
was developed to solve multi-dimensional 
optimization problems by modelling the foraging, 
learning, and knowledge sharing behaviors of honey 

bees. Typically, during the food searching process 
three distinct bee types are present. Employed bees 
exploit their sources and provide information to 
onlooker bees about the food sources. The onlooker 
bees select a food source and try to optimize it. Scout 
bees search new sources randomly. The food sources 
represent possible solutions, and the quality of a 
solution is indicated by the amount of nectar. Each 
food source is exploited by one employed bee and 
optimized by one onlooker bee; therefore, the 
number of the food source is equal to the number of 
the employed and onlooker bees. The original ABC 
algorithm includes 4 phases: 
 
1. Initialization phase: Suppose that there are N 
bees in the hive and each bee represents a solution 
that is expressed by D parameters. The initial food 
sources are generated randomly by (1). 
 

  𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑈(0,1)(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)                 (1) 

 
Where xi={xi1, xi2…xij…xid }is the ith food source, U(0, 
1) is a uniformly distributed random variable 
between 0 and 1, and xjmin and xjmax are the minimum 
and maximum values of parameter j. 
 
The current source number is represented by i, and j 
is the dimension of the vector. 
 
2. Employed bee phase: Each employed bee directs 
to a food source and then finds a new source in the 
vicinity of the current source by using (2). 
 
                             𝑣𝑖𝑗 = 𝑥𝑖𝑗 + ∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)                    (2) 

 
Where i is the index of the current source, k is the 
index of a randomly selected neighbor source, and Øij 
is a uniformly distributed random number between -
1 and 1. If the fitness value of the new source is better 
than the previous one, the employed bee memorizes 
it, sets the number of trials to zero, and abandons the 
previous source. Otherwise, the number of trials of 
the current source is increased by 1 until a 
predefined maximum value is reached. 
 
3. Onlooker bee phase: Once the employed bees 
provide information to the onlooker bees about the 
location and the quality of the food sources, each 
onlooker bee selects a source by using the roulette-
wheel method (3). According to this equation, if the 
nectar volume of a source is high, it has a high 
probability of being selected. In other words, 
onlooker bees make a greedy selection according to 
information provided by employed bees. The 
selection probability of the ith source is calculated as 
follows: 
 

 𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑁
𝑗=1

                                  (3) 
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where ‘fitnessi’ is the fitness value of ‘x i’ and ‘N’ is the 
total number of the food sources. After calculating the 
probabilities of all sources, a uniformly distributed 
random value between 0 and 1 is generated. If pi is 
greater than the random value, a new source is 
generated using equation (2) and its fitness value is 
calculated. An onlooker bee selects the new source if 
it has better fitness value than the current source, 
and the onlooker bee becomes an employed bee for 
the next iteration. 
 
4. Scout bee phase: There is a pre-defined threshold 
value for the number of trials of the sources. When 
the number of trials of a source exceeds this 
threshold value, it is assumed that this source is a 
local optimum, and the source is abandoned. If a food 
source is abandoned, the bee that had been assigned 
to it becomes a scout bee, and a new source is 
generated by using (1) for the scout bee. 
 
2.2. Binary artificial bee colony algorithm 
 
Initially, the ABC algorithm was designed to solve 
optimization problems effectively in continuous 
space. Hence, the original ABC algorithm is not 
suitable for binary optimization problems such as 
feature selection.  There have been a few attempts to 
overcome this issue reported in the literature, as seen 
in Section 1. Their common properties are 
summarized as follows. The sources are represented 
by binary vectors, and the size of the vector is equal 
to the number of features.  Logic 1 in this vector 
indicates that the corresponding feature is being 
selected, and logic 0 indicates the opposite. The 
fitness value of any source is calculated by using the 
classification accuracy of the feature subset 
determined by the source. 
 
2.3. Bitwise operators ABC algorithm 
 
Ji et al. [21] introduced a binary ABC algorithm 
(BitABC) based on the bitwise operators between 
binary vectors. In this work, the authors used binary 
vectors, and to generate a new source they used 
bitwise operators. The authors revised the 
initialization method and the new source generation 
strategy of the employed and onlooker bee phases. In 
the initialization phase, ABC uses the maximum and 
the minimum values of each parameter. However, if 
the problem comes from a binary space, any 
parameter can only be 0 or 1. Sources are initialized 
for BitABC with equation (4). According to this, a 
random value between 0 and 1 is produced, and if 
this value greater than a threshold value, 
corresponding dimension of vector is set to 1 
otherwise it is set to 0. 
 

 𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (4) 

 

ABC uses arithmetic operators for generating new 
sources. In binary space, arithmetic operators are not 
meaningful. To overcome this issue BitABC changed 
the new food source production method in the 
employed and onlooker bee phases by using binary 
operators instead of arithmetic operators. 
 
2.4. The proposed method 
 
In our previous paper [41], we applied binary ABC 
algorithms on the feature selection problem using 10 
datasets. We have seen that one of these binary 
algorithms (BitABC) yielded better results in the 
feature selection process. Its better results and 
simplicity lead us to select it a starting point. The 
weakness of BitABC is its lack of local search ability.  
 
The main goal of this study is to develop a binary ABC 
algorithm that can solve the feature selection 
problem effectively. As mentioned above, in our 
previous experiments we found that BitABC achieved 
better accuracy than the other binary ABC variants. 
However, because of its new source generation 
strategy, its local search capacity is limited. Hence, 
this deduction led us to improve the local search 
capacity of BitABC. In the ABC algorithm, local search 
is performed in the onlooker and employed bee 
phases. Then, we have modified the new source 
generation method of the employed bee step of 
BitABC. 
 
The ABC algorithm’s strategy for new source 
generation is as follows. In the itch iteration, a new 
source is generated by using the current source xi, a 
randomly selected neighbor xk and a random value Ø. 
Therefore, the new source should fall within the 
range between xi and xk. The Øi term determines 
whether the new source is close to xi or xk. If the new 
source is far from the current source, the bee moves 
away from its own local area, and the current source 
is potentially abandoned, even it contains a 
promising amount of nectar. Abandoning a 
potentially good region causes the lack of local search 
ability of the algorithm. To improve the local search 
ability of ABC, we limited the distance between the 
current source and the new source. By using such 
restrictions the risk of abandoning a promising 
source is reduced. Since the position of a given source 
is represented by a binary string, Hamming distance 
is used as the distance metric. Additionally, since 
using arithmetic operators is not meaningful in 
binary space, we used bitwise operators like BitABC. 
The Ø vector is also a binary vector. 
 
As mentioned above, the location of the new source is 
determined by the random Ø vector and a randomly 
selected neighbor. It is not possible to restrict the 
distance between the selected neighbor and the 
current source. For example, if the data have 100 
features, the food sources must have 100 dimensions. 
Therefore, the Hamming distance between the 



Z. B. Özger et al. / A Locally Searched Binary Artificial Bee Colony Algorithm Based on Hamming Distance for Binary Optimization  

124 
 

current source and the random neighbor should be 
any integer between 1 and 100, and using existing 
methods, there is no way to limit the distance to be 
lower than a certain number. However, using the 
BitABC algorithm, this can easily be controlled by 
modifying the new source generation formula that is 
used in BitABC. New source generation formula is 
updated with equation (5). 
 
 𝑣𝑖 = ∅2𝐴𝑁𝐷 (∅1𝐴𝑁𝐷 (𝑥𝑖  𝑂𝑅 𝑥𝑘) (5) 
 
Where Ø1 and Ø2 are random vectors, xi is the current 
source, xk is a randomly selected neighbor and vi is 
the new source. As an example, let xi = {1 0 1 1 1 1 0 0 
0 0 0 0} be the current source, xk = {1 0 1 0 1 1 0 0 0 1 
1 0} be the neighbor source, and Ø be a random 
binary vector, dH(xi, xk) = d where dH(x, y) is the 
Hamming distance between the binary vectors x and 
y, and d is an integer. To increase the diversity of the 
selected features, i.e. the position of 1s in the source 
vector, the bitwise ‘OR’ operator is applied to the 
current sources and the neighbor sources using 
equation (6). 
 
 𝑦 = 𝑥𝑖𝑂𝑅 𝑥𝑘 = {1 0 1 1 1 1 0 0 0 1 1 0} (6) 
 
This operation increases the diversity of the selected 
features; however, the resulting vector y has greater 
than or equal to the number of 1s in xi. Since the main 
goal of the feature selection process is to find the 
minimal set of relevant features, this result is 
inappropriate. Another problem is that, after such 
operation, the distance between xi and xk increases, 
and the ability to search locally is reduced. To resolve 
these problems, a random Ø1 vector is used. If dH(xi, 
xk)) = r, then Ø1 is produced by altering random d bits 
of  xi. Let d = 5 and Ø1 ={0 0 1 1 1 1 0 1 1 0 1 1}; then 
y2 is found using equation (7): 
 
 𝑦2 = ∅1𝐴𝑁𝐷 (𝑥𝑖  𝑂𝑅 𝑥𝑘) = {0 0 1 1 1 1 0 0 0 0 0 0} (7) 
 
Where dH(xi, y2) = 1 < d. However, after simulation 
experiments we saw that if another random term, e.g. 
Ø2, is used, it is possible to find better new sources. 
This new Ø1 vector is derived by altering r bits of Ø1. 
Again, let d = 5 and Ø2 ={0 1 1 0 0 0 0 1 1 0 0 1}. By 
using equation (5), the final solution of the new 
source vi becomes vi= {0 0 1 0 0 0 0 0 0 0 0 0}. The 
distance between vi and xi is a Gaussian-like 
distributed variable between 1 and d. In a feature 
selection problem, identifying distinctive feature 
subgroups is important. By using (5) at the employed 
bee phase, we provided that there are small changes 
between the previous and current sources. Thus, the 
algorithm is able to identify features that are highly 
discriminatory when combined together. 
 
As a final improvement, to increase the local search 
ability of the ABC algorithm, five new candidate 
sources were generated for each employed bee 
within a maximum distance of r from the current 

source, and the best one was selected. This step 
concludes the first version of the proposed method. 
Following preliminary experiments, a new version of 
this method has been developed. If the fitness of the 
current source is better than all of the new candidate 
sources, it means that the current source is a local 
optimum. If d is chosen as a small value, then the new 
candidates originate from narrow vicinity, and it is 
possible to miss a better solution due to the highly 
localized nature of the search algorithm. To fix this 
problem, a small change has been made to the 
proposed algorithm. First, the number of the 
candidate sources is reduced to three. If these three 
candidates cannot produce a better solution than the 
current source, a fourth candidate is produced by 
using a new source generation formula (8) of BitABC 
because this equation always produces a new source 
that has a larger distance from the current one. 
 
 𝑣𝑖 = 𝑥𝑖𝑋𝑂𝑅 (∅𝑖  𝐴𝑁𝐷 (𝑥𝑖 𝑂𝑅 𝑥𝑘))      (8) 
 

If the fitness of the fourth candidate is better than the 
current, the new solution of this candidate becomes 
the current source for the next step.  Otherwise, the 
number of trials parameter of the ith source is 
increased by four (four new sources are generated). 
The flowchart of the proposed method is shown in 
Figure 1. We named this method exBitABC. 
 

Figure 1. Flow chart of the new source generation 
procedure of exBitABC 
 

The initial food sources are determined randomly by 
the ABC algorithm. In this way, any two sources are 
close to each other. Namely, the Hamming Distance 
between any two sources can be a small value. Our 
purpose is to increase the search capacity in the local 
regions around the sources. If two or more sources 
are close to each other, the regions being searched 
will also overlap. To overcome this problem, the 
initialization strategy is updated: The search space is 
divided into regions, and the number of regions is 
equal to the number of food sources. In this way, the 
distance between sources is equal. For the feature 
selection problem, the size of the search space is 
equal to the feature size of the dataset. Consequently, 
the distance between any two sources is determined 
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by using equation (9). Each employed bee is 
responsible for a single specified region when 
iterations are initiated. 
 

 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒

#𝑠𝑜𝑢𝑟𝑐𝑒𝑠
  (9) 

 
The roulette-wheel method used in the onlooker bee 
phase directs more bees to better sources. However, 
this strategy may cause a decrease of diversity over 
time. Since the proposed method performs a 
comprehensive local search around each source, the 
proximity of sources leads to searching in the same 
regions. To overcome this problem and to increase 
diversity, a re-population strategy is applied. At the 
end of each iteration, the Hamming distances 
between the sources are calculated.  If the distance 
between two sources is less than d (the predefined 
maximum Hamming distance value that mentioned 
above), the one with better fitness is kept, and the 
other is re-initialized.  In this way, premature 
convergence is prevented and diversity is increased. 
Also, this algorithm supports our more 
comprehensive local search strategy without 
decreasing global search. 
 
3. Results 
 
To show the effectiveness of our method, 14 
benchmark datasets with different sizes were 
selected from the UCI Machine Learning Repository, 
and a binary particle swarm optimization method 
(BinPSO), genetic algorithm (GA), a binary ABC 
algorithm (BitABC), and the proposed algorithm were 
applied on these benchmarks. We did not need to 
reapply the other binary ABC variants in the 
literature since we have previously examined these 
[41]. To prove the effectiveness of feature selection, 
the benchmark data were classified by using 5-NN 
without feature selection. Table 1 summarizes the 
number of features, the number of classes, and the 
sizes of the datasets selected for the benchmark 
testing. During the experiments, all datasets were 
randomly divided into three parts. The first part 
includes approximately 60% of each dataset as the 
training set, 20% of each dataset as the test set and 
the remaining data are used as the validation set. The 
validation data is never used in the feature selection 
process. During the feature selection, a 5-NN is 
trained with the training set by using the selected 
subset of features, and then its effectiveness is 
measured by using the test set. Once the best subset 
is determined, its performance is measured by using 
validation set. 
 
The initial population was generated by using a 
threshold value of 0.85, i.e. any bit of xi set to 0 with a 
probability of 0.85. Since these algorithms include 
non-deterministic operations, all of the experiments 
were repeated 30 times, and the results were 
averaged to confirm the results statistically. The 

distance parameter of exBitABC (d) was set to 15. 
The number of the trials value for the scout bee was 
set to 50. All of the parameters were chosen by trial 
and error. For the BinPSO, learning factors c1 and c2 
were selected as 2, the initial weight (w) was set to 
0.9, and the maximum speed (Vmax) for particles was 
selected as 0.6, as stated in [43]. For the GA, the 
crossover and mutation rates were set as 0.8 and 0.2, 
respectively, as reported in [44]. BinPSO and GA were 
implemented according to the suggestions of the 
authors of [43, 44]. 
 
Table 1. The datasets consider in this work 

Dataset Name #Features #Classes #Samples 
Hill-Valley 100 2 606 

UrbanLandCover 148 9 168 
Musk-I 166 2 476 

Arrhythmia 279 16 452 
LSVTVoice 

Rehabilitation 
309 2 126 

Madelon 500 2 2600 
Secom 591 2 1567 

Malacious 513 2 373 
Isolet5 617 26 1559 

Multiple 
Features 

649 6 2000 

CNAE 857 9 1080 
Micromass 1300 9 931 

Gisette 5000 2 6000 
Arcene 10000 2 200 

 

In a feature selection problem, the quality of the 
selection method is determined by the accuracy and 
the number of the selected features. Since the 
accuracy is more important than the number of the 
selected features, the fitness and accuracy values are 
determined as in equation (10) and (11) respectively, 
where c=0.9995. 
 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑐 ∗ 𝑎𝑐𝑐) + ((1 − 𝑐)
#𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
) (10) 

 

 𝑎𝑐𝑐. =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (11)    

 

Population size is one of the important parameters 
for swarm intelligence algorithms, and generally it is 
problem dependent. To determine the size of a 
population, the colony sizes 30, 40, and 50 were 
compared according to consumed fitness number as 
shown in Figure 2. There is a general opinion that the 
error decreases as the size of the population 
increases. However, our results did not support this 
idea. For all other datasets, after the algorithm 
consumed 1000 fitnesses, the system became stable. 
Although the increase of the population size for some 
datasets reduced the error, we can see that 40 bees 
are sufficient for the system for the majority of 
datasets. A much larger population is needed for hard 
optimization, problems but it is clear that after 
reaching a sufficient population size, increasing the 
population size only increases the execution time. As 
shown in the convergence graph, generally train set 
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Figure 2.  Convergence graph according to the consumed fitness number 

 

 
Figure 3.  Convergence graph according to iterations 
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error differences are very small for different 
population sizes, but we saw that the difference 
between the execution times is quite high. For LSVT 
and Secom datasets, the curves for sizes 30 and 40 
overlap. Also for Malacious, Multiple Features, and 
Madelon datasets the curves for sizes 40 and 50 
overlap. Therefore, for our datasets population size 
was set as 40. In ABC algorithms, the sources are 
being improved in both the employed bee and 
onlooker bee phases. Namely, the total population 
size is the sum of the numbers of employed and 
onlooker bees. However, in GA and PSO, each source 
can be improved in only one phase in a cycle. 
Therefore there are 20 employed and onlooker bees 
for exBitABC and BitABC, 40 individuals for GA and 
40 particles for PSO. 
 
To compare different algorithms with each other, the  
maximum number of iterations is typically used. 
exBitABC consumes more than one fitness for each 
resource. According to [45-47], to make a fair 
comparison in such situations, it is more suitable to 
use execution time or number of consumed fitness. 
Background applications, updates, etc. affect the 
running time of the PC; therefore, the consumed 
fitness number is selected as the stopping criterion 
and this is based on the dataset.  The consumed 
fitness number is calculated by counting the number 
of new sources that produced by the algorithm and 
setting this as the stopping criterion for BitABC, GA, 
and Bin PSO. 
 
ABC is an iterative algorithm. At the end of any 
iteration, if the algorithm converges to an optimum, 
the algorithm stops to improve, and the fitness value 
remains constant after this point. Subsequently, 
continuing the iterations usually does not improve 
the result but increases the execution time. It is 
important to find the optimum iteration number to 
reduce the time complexity. The convergence graph 
related to iteration number and test set error is 
shown in Figure 3. The number of max iteration is 
chosen by trial and-error and is set as 50 for 
exBitABC. It is clear that for all datasets, 50 iterations 
are sufficient, and all of them became stable after 
reaching an optimum point. 
 
At our previous work [41], we implemented, different 
binary ABC variants to feature selection problem. We 
saw that, BitABC got better results according to other 
binary ABC variants. Therefore in this study, we did 
not apply again other binary ABC algorithms. Since 
the proposed methods are derived from BitABC, we 
first compared the performance of the proposed 
method with respect to BitABC. However, we also 
compared our results with other well-known meta-
heuristic algorithms such as Genetic Algorithm (GA) 
and Binary Particle Swarm Optimization Algorithm 
(BinPSO). In order to test the usefulness of the 
feature selection process, the 5-NN classifier was 
applied to datasets without any feature reduction. 

Table 2 summarizes the classification errors; these 
are shown in terms of mean and standard deviation 
in percent. If two methods have the same 
classification error, the one that selects fewer 
features is considered as better. In Table 2, the 
results of exBitABC and the results of other meta-
heuristic methods are compared and the best results 
are shown in bold text. The results of 5-NN is given to 
show the usefulness of the feature selection process. 
It is not included in comparison. The ‘Sig’ row shows 
statistically significant differences obtained by 
Wilcoxon Rank Sum Test between the algorithms. "+" 
indicates that exBitABC is significantly better than 
the compared algorithm. "-" shows that exBitABC is 
significantly worse than the compared algorithm. If 
any other algorithm produces a significantly similar 
result relative to exBitABC, the compared algorithm 
is labelled with the "~" symbol. 
 
As seen in Table 2, the proposed method outperforms 
the other three methods both in terms of validation 
error and of the number of selected features.  With 
the exception of Isolet, the improvement of test set 
errors is meaningful. In addition, it is clear that the 
size of the feature subsets selected by exBitABC is 
much smaller than the size of the feature subsets 
selected by the other methods. The Secom, Malacious, 
Multiple Features, and Gisette datasets are classified 
with very small error. Consequently, there is no 
significant difference between the methods in terms 
of validation set error. For these datasets, success is 
determined by the number of selected features. It is 
clear that exBitABC achieves the same error, but 
using fewer features than other algorithms. Hill 
Valley and Micromass are difficult datasets: Even if 
they are classified with 5-NN by using all features, the 
error rate is very high. Unlike the other methods, 
exBitABC decreased the error rate for Micromass 
using fewer features, and the error difference with all 
features-5NN is small for Hill Valley. When the results 
of exBitABC are compared with 5-NN, by using 
feature selection, it is possible to achieve lower or 
similar test errors by using fewer features. If 
exBitABC was excluded, BitABC generally produced 
better test error results than GA and BinPSO. Among 
these, the smallest subsets were always selected by 
using BitABC. According to standard deviation values, 
GA and BinPSO cannot produce stable results for 
feature subset size. The significance test is applied to 
show statistically significant differences in terms of 
only validation set errors.  The significance test 
performance of exBitABC is statistically worse than 
BinPSO, GA, and BitABC for the Isolet and Musk 
datasets.  For Secom, Malacious, and Multiple 
Features datasets, no statistically meaningful 
difference is observed between methods, but it is 
clear that for these datasets there is no significant 
difference between validation error results. 
 
Computation time of the algorithms is shown in Table 
2. The algorithms were executed on a server with 32  
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GB RAM and an Intel Xeon E5 2.6 GHz CPU by using 
MATLAB 2016b. In the case of computational cost, 
the size of the dataset is evaluated according to the 
number of cells (\#features x \#samples). Generally, 
the execution time of exBitABC is shorter than that of 
other methods. Regarding Table 3, for small datasets 
no substantial difference is observed between 
methods. However, when the larger datasets like 
Gisette are considered, exBitABC is faster than the 
others. 
 

4. Discussion and Conclusion 
 

The aim of this study is to develop a binary ABC 
algorithm. Within this scope, existing binary ABC 
algorithms are examined for strengths and 
weaknesses. When the performances of these 

variants are compared, it is clear that, using bitwise 
operators are successful in binarization process [41]. 
Therefore, at the proposed method, binarization 
process was carried out using bitwise operators.  

 
It is also investigated that is it possible to make a 
limited local search around good sources that have 
already been discovered without falling local optima. 
After some research, adding a local search procedure 
was performed using Hamming distance 
measurement. So, promising results are obtained 
when the proposed method applied to feature 
selection problem. Because of local search strategy, it 
was consumed multiple fitness at each iteration. For 
all that, the computational costs did not exceed other 
algorithms. 
 

Table 2. The performance comparison of the algorithms 
  BitABC GA BinPSO exBitABC 5-NN 

Hill-Valley 
Valid Error 
#Feature 
Sig 

0.481±0.044 
19.83±3.18 

+ 

0.482±0.035 
20.7±4.09 

+ 

0.495±0.004 
14.37±13.45 

+ 

0.462±0.034 
8.9±3.45 

0.44±0.034 

Urban 
Land 
Cover 

Valid Error 
#Feature 
Sig 

0.188±0.026 
43.23±29.21 

+ 

0.202±0.042 
30.07±56.62 

+ 

0.191±0.031 
48.93±13.8 

+ 

0.147±0.03 
10.2±2.22 

0.192±0.025 

Musk-I 
Valid Error 
#Feature 
Sig 

0.191±0.042 
21.37±4.05 

- 

0.179±0.047 
38.5±7.29 

- 

0.173±0.042 
57.2±12.93 

- 

0.155±0.047 
12.67±2.22 

0.147±0.021 

Arrhythmia 
Valid Error 
#Feature 
Sig 

0.337±0.047 
27.67±6.9 

+ 

0.33±0.04 
51.97±7.66 

+ 

0.351±0.045 
66.37±29.87 

+ 

0.296±0.04 
13.33±2.78 

0.375±0.035 

LSVT 
Valid Error 
#Feature 
Sig 

0.247±0.09 
30.7±6.92 

+ 

0.26±0.09 
49.1±8.1 

+ 

0.24±0.08 
83.73±44.14 

- 

0.201±0.102 
19.73±6.57 

0.33±0.062 

Madelon 
Valid Error 
#Feature 
Sig 

0.2±0.021 
51.07±14.16 

+ 

0.218±0.027 
86.57±9.05 

+ 

0.26±0.029 
155.8±37.3 

+ 

0.1±0.011 
11.3±2.13 

0.271±0.014 

Secom 
Valid Error 
#Feature 
Sig 

0.07±0.004 
72±11.42 

~ 

0.071±0.004 
90.93±9.92 

~ 

0.069±0.003 
170.9±81.74 

- 

0.069±0.004 
41.77±21.57 

0.071±0.01 

Malacious 
Valid Error 
#Feature 
Sig 

0.025±0.017 
70.6±9.77 

~ 

0.022±0.015 
75.83±7.46 

~ 

0.03±0.023 
125.3±77.9 

+ 

0.023±0.017 
24.63±1.35 

0.007±0.007 

Isolet5 
Valid Error 
#Feature 
Sig 

0.196±0.023 
50.6±5.9 

- 

0.221±0.025 
109.23±11.59 

- 

0.242±0.024 
192.73±50.95 

+ 

0.211±0.022 
44.9±9.87 

0.277±0.018 

Multiple 
Features 

Valid Error 
#Feature 
Sig 

0.032±0.009 
60.67±7.95 

- 

0.035±0.01 
109.17±11.73 

~ 

0.046±0.01 
236.5±35.88 

+ 

0.03±0.01 
44.87±14.89 

0.023±0.004 

Cnae 
Valid Error 
#Feature 
Sig 

0.31±0.041 
67.53±10.39 

+ 

0.309±0.045 
157.47±8.5 

+ 

0.285±0.047 
350.93±25.98 

+ 

0.212±0.034 
44.83±7.99 

0.129±0.015 

Micromass 
Valid Error 
#Feature 
Sig 

0.617±0.067 
58.03±11.79 

+ 

0.719±0.047 
207.03±14.18 

+ 

0.71±0.041 
164.57±169.95 

+ 

0.587±0.054 
42.9±10.02 

0.688±0.033 

Gisette 
Valid Error 
#Feature 
Sig 

0.073±0.011 
232.17±44.053 

~ 

0.102±0.011 
761.03±20.28 

+ 

0.069±0.007 
2104.2±166.21 

~ 

0.071±0.009 
146.53±20.48 

0.066±0.004 

Arcene 
Valid Error 
#Feature 
Sig 

0.247±0.06 
924.5±139.33 

+ 

0.243±0.072 
1504.4±36.13 

+ 

0.262±0.063 
3233.4±904.37 

+ 

0.182±0.076 
776.4±37.68 

0.229±0.053 
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In this article, a new binary ABC algorithm named 
exBitABC that is suitable for feature selection 
problems is proposed. The new method has strong 
local search capability and can easily escape local 
optima. To show the effectiveness of the proposed 
method, 14 benchmark datasets from the UCI 
Machine Learning Repository were processed by 
using BinPSO, GA, BitABC and exBitABC algorithms, 
and the results were compared. For all datasets, 
exBitABC produced better results than BitABC in 
terms of validation set error, and completed 
processing in a shorter time. exBitABC also selected 
fewer features in every trial. When compared with 
BinPSO and GA, exBitABC yielded better performance 
for 13 datasets, while BitABC was better for the 
remaining one dataset. exBitABC also reduced the 
features better than both BinPSO and GA. These 
results demonstrate that the increased local search 
ability of the exBitABC algorithm improves the 
performance of the algorithm in terms of validation 
set error, feature size, and running time. 
 
Results are only compared with BitABC within 
existing binary ABC methods. It is because, some 
binary variants of ABC algorithm are applied and 
compared in our previous study [41]. BitABC 
outperformed other methods, therefore this study 
focused on getting a good result from BitABC. 
Additionally, results are compared with GA and 
BinPSO because of their optimization performances. 
In our next study, we will compare our results some 

other population-based algorithms like Ant Colony 
Optimization, Bacterial Colony Optimization. 
 
The main purpose of this study is, adding a limited 
local search process to ABC algorithm. At the new 
source generation formula, ‘AND’ and ‘OR’ bitwise 
operators and two random vectors are used. With 
‘OR’ operator diversity of the selected features are 
increased. With random vectors generated from 
current source, it is ensured that the new source is in 
a certain distance to the current source. Namely, new 
sources are produced in the local area of the current 
source. Finally ‘AND’ operator used for obtaining a 
sparse vector. 
 
There are some ABC variants based on bitwise 
operators in the literature. All of these are proposed 
for some binary problems. Bitwise operators are used 
for producing neighbor source. At [21] bitwise ‘XOR’, 
‘AND’ and ‘OR’ operators are used. At [22] only ‘XOR’ 
operator is used. The ‘XOR’ operator prevents the 
new source from staying in the local area. Therefore 
it did not used. The main difference from these 
studies is the new source generation strategy ensures 
that the new source remains in the local area. 
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