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 Flight safety and reliability improvement is an important research issue in aerial applications. 
Multi-rotor drones are vulnerable to motor failures leading to potentially unsafe operations 
or collisions. Therefore, researchers are working on autonomous landing systems to safely 
recover and land the faulty drone in on a desired landing area. In such a case, a suitable landing 
zone should be detected rapidly in for emergency landing. Majority of the works related with 
autonomous landing utilize a marker and GPS signals to detect landing site. In this work, we 
propose a landing system framework that involves only the processing of images taken from 
the onboard camera of the vehicle. First, the objects in the image are determined by filtering 
and edge detection algorithm, then the most suitable landing zone is searched. The area that 
is free from obstacles and closest to the center of the image is defined as the most immediate 
and suitable landing zone. The method has been tested on 25 images taken from different 
heights and its performance has been evaluated in terms runtime on a single board computer 
and detection precision and recall values. The average measured runtime is 2.4923 seconds 
and 100% of precision and recall values are achieved for the images taken from 1m and 2m. 
The smallest precision and recall values are 79.1% and 81.2%, respectively. 

 
 

 
 
 

1. INTRODUCTION  
 

The use of Unmanned Aerial Vehicles (UAV) has 
increased at an unpredictable rate in recent years. 
Although these devices have been used particularly in 
military applications for a long time, their use in non-
military applications such as fire extinguishing (Aydin et 
al. 2019), meteorological research (Martin et al. 2010; 
PropotoUAV 2019), exploration (Jakob et al. 2016; 
Heincke et al. 2019) and agricultural activities 
(Veroustraete 2015) have become very widespread 
nowadays. Quadrotors are the most common devices to 
use among UAV types due to their uncomplicated 
mechanical structures. Quadrotors can fulfill 3D motion 
tracking requirements with various technical systems 
such as Global Positioning System (GPS), ultrasonic 
detection, angular velocity sensors and linear 
accelerometers (Zhao and Wang 2012). Despite the use 
of these integrated systems and sensors, the control of 
the quadrotors is still one of the most difficult issues, but 

research and development activities continue in many 
research centers (Hoffmann et al. 2007; Zhao and Wang 
2012). The vast majority of research activities address 
control issues during flying. The ultimate goal of UAV 
systems is to reach fully autonomous operations (Kim 
and Sukkarieh 2002). 

One of the most important issue for UAV is 
autonomous landing in motion. Meanwhile, demands for 
automatic landing of drones on a defined position, safely, 
accurately, and without human’s intervention, increase 
every day. It is always possible for a UAV to unavoidably 
face emergencies during flight, such as engine failure, 
interruption of data link from the ground and other 
unexpected accidents (strong wind, rain, etc.). Thus, 
forced landing measures should urgently be adopted in 
such situations. Methods of forced landing such as 
parachute and other flight termination systems can cause 
damage on the body of the multi-rotor (Fitzgerald et al., 
2005). In addition, GPS signals are highly susceptible to 
be interrupted especially at lower altitudes (Lee et al. 
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2012; Ho 2017), and in indoor environments. 
Furthermore, GPS signals are controlled by other nations, 
which causes vulnerability issues. For instance, in 29th 
October 2018, the GPS jamming that caused 46 drones to 
plummet during a display over Victoria Harbour caused 
at least HK$1 million (US$127,500) of damage, according 
to a senior official from the Hong Kong Tourism Board 
(Liteye 2018). As a result, some alternative methods 
were adopted to minimize the damage on that UAVs by 
enabling them to autonomously find a safe area suitable 
for landing. Some studies about forced landing in 
emergency situations for UAVs were presented in indoor 
environment without using GPS (Nemati et al. 2015). 

In the past years, in design of emergency landing 
systems, effective algorithms of machine learning such as 
Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN) were utilized in combination with 
digital image processing techniques for selection of 
appropriate landing site (Guo et al. 2014, Lunghi et al. 
2015). It is observed that the above mentioned machine 
learning algorithms have different performance 
constraints, e.g. SVM is complex and requires huge 
computational power, whereas, ANN requires large 
training data set which corresponds to greater training 
time. Due to these constraints, both algorithms cannot 
meet the rapidly changing requirements for landing area 
selection in emergency flight conditions. For instance, in 
a previous study about detection of forced landing sites, 
901 images were used to train and test of an ANN model 
(Fitzgerald and Walker 2005). Because the images fed to 
the ANN model were not representative of the training 
set, the final classification accuracy is very low when 
compared to training accuracy (Lu et al. 2013). Thus, that 
situation prevents it from being completely reliable. 

Image processing is an appropriate and reliable way 
to find safe landing sites in case of an emergency. This is 
generally accomplished by detection of objects in the 
images taken from UAVs. Most of the related studies are 
about detection of some “marker” in an image (Barták et 
al. 2014; Cabrera-Ponce and Martinez-Carranza, 2017; 
Sani and Karimian 2017) which represents the desired 
landing spot. Utilization of a marker may not be a feasible 
way for emergency landing conditions. Since markers 
can be far from the UAV then it will take time to find the 
markers. For instance, the recent demonstration of 
package delivery using an UAV by Amazon shows the 
feasibility of an UAV sending a package to its consumer 
(AMAZON 2017). A marker which is placed by the 
consumer on the ground is used to allow the UAV to land 
safely. In some circumstances where the marker is 
unavailable or inappropriately placed, these vehicles 
need to be able to sense and avoid the surrounding 
objects in the environment and perform a smooth 
descent automatically. Without this capability, the safety 
of the surrounding animals, humans, and property 
cannot be ensured. Additionally, in some emergency 
situations, the UAV needs to land as quickly as possible. 
Therefore, it is essential to select a safe landing spot 
automatically and emergently, without depending on 
external systems. 

Motivated by the above reasons, in this paper, an 
image processing method for object detection is 
proposed. The method is developed to work on the 

images taken from a drone’s onboard camera. The aim is 
to rapidly detect a suitable landing zone in an 
unstructured and unknown environment. The method 
initially proposes a candidate landing zone at the center 
of the image. If the initial proposal is not suitable then 
new candidates in the neighboring area are evaluated 
until an available spot is detected (Fig. 1). The suitability 
of a spot is determined by existence of an object inside it. 
The object detection is accomplished by means of several 
image processing methods including edge detection, 
color processing, morphologic operations and 
thresholding. The major advantages of the method are (i) 
no requirement for a marker and (ii) no need for huge 
amount of data for training a model. 

 

2. METHOD 
 

2.1. The Landing System Framework 
 

The use of multi-rotor drones has undeniably 
increased in the past decade, both in the military and 
civilian applications, thus raising a number of vital 
unsolved issues including safety and reliability. Engine 
malfunction or failures are among the common faults in 
multi-rotor drones, which apparently endanger the 
drone and the people's safety on the ground. In order to 
increase flight safety and reliability of drones, 
researchers are working on automation enhancement to 
safely recover the impaired drone (Lopez-Franco et al. 
2017; Mazeh et al. 2018; Nguyen et al. 2019). 

There are several challenges related with safe 
recovery or landing of impaired aerial vehicles. Majority 
of these challenges are about obstacle detection, suitable 
landing site detection/selection, fault detection and 
identification, characterizing the aircraft’s new 
kinematic constraints, trajectory planning, and control of 
the faulty aircraft on the landing trajectory. To cover 
these challenges, an emergency landing system has been 
proposed according to Fig. 1. In fault or failure scenarios 
where continuation of flight is not possible or endangers 
the flight safety, the emergency flight system is triggered 
to recover drone’s stability and safely land the drone on 
a suitable landing site. 

The emergency landing system is translated to an 
architecture consisting of various subsystems that are 
capable of landing a faulty drone to a desired landing site 
along a designed trajectory without colliding to any 
human or animal. The architecture autonomously 
detects objects as well as possible landing sites, 
determines the most suitable landing site, develops the 
landing trajectory based on new kinematic and dynamic 
constraints of impaired drone, and controls it to the 
landing site, using onboard camera data and other 
common sensor information like IMU (Inertial 
Measurement Unit). 

 

2.2. Landing Zone Detection 
 

Emergency landing mode of the UAV is activated 
whenever a fault in any of the motors is detected. Then 
the onboard camera is immediately triggered to take a 
top-view photo of the ground in perpendicular direction. 
This image is the field of view (FOV) of the UAV and it 
constitutes the search space for finding a suitable landing 
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zone. In such an emergency situation, locating the 
appropriate zone in a short time is very important. 
Therefore, the algorithm starts checking the suitability of 
center of the image which denotes the closest area to the 
UAV. If the image center is occupied by an object than it 
is labelled as “negative” and a neighborhood of the image 
center checked for suitability. The distance of the 

neighborhood to the image center is gradually increased 
until a vacant spot is found and that spot is labelled to be 
“positive”. Next, the coordinates of this “positive” spot is 
sent to the flight controller to initialize the autonomous 
landing process. The steps for emergency landing are 
presented in Fig. 2.  
 

 

 
Figure 1. Emergency landing system architecture and subsystem 
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Figure 2. Suitable Landing site detection flowchart 

 

2.2.1. Object detection in FOV images 
 

The object detection starts with converting the FOV 
image into a grayscale image.  This is necessary for 
preparing the image for canny operator, which is a 
method for edge detection to find objects on image. The 

Canny edge detector is an edge detection operator that 
uses a multi-stage algorithm to detect a wide range of 
edges in images (Canny 1986). The advantage of using 
Canny edge detection technique over other well-known 
edge detection algorithms is that it gives better results 
even in noisy conditions (Kumar et al. 2015).   
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The edge detection operator has four steps.  
 Smooth an image with Gaussian filter. 
 Calculate gradient magnitude and gradient 

direction. 
 “Non - maximum suppression” to ensure the 

desired edge with one single pixel width. 
 Determine two threshold values, and then select 

possible edge points and trace edges. 
 

The first step in canny edge detector algorithm is to 
delete the noise in the frames by applying a Gaussian 
filter. In Canny algorithm, the Gaussian function is 
applied to smooth the image prior to edge detection. The 
filtering or smoothing operation actually supports two 
purposes. The first one is noise effect reduction prior to 
the detection of pixel intensity changes. The second 
purpose is setting the resolution or scale at which 
intensity changes are to be detected (Chen et al. 2014). 
These two purposes are necessary to improve the 
efficiency of edge detection method. In other words, 
Gaussian filtering helps reduction of detecting false 
edges.  

Next step is to calculate the magnitude and gradient 
of the edges in the smoothed image. This is accomplished 
by filtering the smoothed image with a Sobel kernel in 
vertical and horizontal directions.  

The complete scan of image is done after receiving 
gradient magnitude and direction, to remove any 

unwanted pixels, which may not establish the edge. In 
this step, just local maxima must be considered as edges 
through applying non-maximum suppression. Non-
maximum suppression exchanges the smoothed edges in 
the frame of the gradient magnitudes to sharp edges. This 
step is necessary to keep every local maximum in the 
gradient image, and remove any other detected edges 
which are possibly false detections. 

The final step of canny edge detector algorithm is 
hysteresis thresholding. In this step, two threshold 
values are selected. The edges with intensity gradient 
greater than the maximum threshold are labeled as 
“sure-edge”. Similarly, the edges with intensity gradient 
smaller than the minimum threshold are labeled as “non-
edge”. Other edges between these threshold values are 
labeled as “sure-edge” if they are connected to another 
“sure-edge”, otherwise labeled as “non-edge”. Obviously, 
this step removes small edges in the images that are 
possibly false detections. These threshold values are the 
only parameters of the method and are selected as 100 
and 200 in this work.  

Typically, the edge lines at the output of Canny 
method are thin lines. Therefore, dilation is applied to 
binary edge image as morphological operation to thicken 
the line of objects on image. Because thin line may cause 
errors when finding a landing zone. The binary image 
obtained after this operation is named as objects image.  
The outputs of these steps are given in Fig. 3. 

 

   
(a) (b) (c) 

Figure 3. Steps of object detection. (a) FOV image, (b) Edge detection of FOV image, (c) Morphological operations are 
applied to binary image (objects image) 
 
2.2.2. Searching for a landing zone 
 

Once the objects in the FOV image are detected, the 
next step is to find the closest available zone for landing. 
The first parameter to consider for this step is the 
minimum dimensions of the suitable landing zone. 
Obviously, this parameter depends on the altitude at 
which the FOV image is taken. As illustrated in Fig. 4, in 
order to find a relation between the dimensions and the 
altitude, a calibration procedure is carried out on the 
images taken at five different altitudes. When the altitude 
is 1 meter, the ideal dimensions are 60x60 pixels; on the 
other hand, when the altitude is 5 meters, the ideal 
dimensions reduce to 20x20 pixels. The ideal dimensions 
for suitable landing zone change linearly with respect to 
altitude. 

In a typical emergency landing scenario, a maximum 
altitude of 5 meters is appropriate for initialization of 
image processing tasks (Lee et al. 2014). Therefore, we 
used the same altitude value for our analysis as well. In 
case of triggering the emergency landing at a higher 

altitude, the UAV is initially brought to 5-meter altitude, 
then the image processing is activated.  

After determining the optimal dimensions for 
landing, an available space for these dimensions is 
searched in the FOV image. The availability of a spot in 
the image is defined as the area in which no object is 
present. In order to check the availability, a binary mask 
is created. In the binary mask, an area with the optimal 
dimensions is made “1”, and all the remaining area is left 
as “0”. The area with “1” values in the binary image is the 
proposed region the availability of that region is checked. 
By observing the output of the logical AND operation 
between the binary mask and the objects image, it is 
possible to determine if a spot is available or not. If the 
logical AND operation returns “1” value, then it means 
that there is an overlap between any of the objects and 
the proposed region in the binary mask. Therefore, this 
proposed region is labeled as “negative”. On the other 
hand, if a value of “0” is returned from the AND operation, 
then no overlap is present, hence the proposed region is 
labeled as “positive”.  
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When a proposed region is labeled as “negative”, 
another region should be proposed immediately until a 
“positive” label is achieved. Since this work concerns only 
with the emergency situations, the location of the first 
proposed region is the middle of the FOV image which is 
the spot that is closest to UAV. If this spot is not available 
then a circular vicinity of the middle point is searched for 
availability, and the radius of the circle is gradually 
increased until an available spot is found. The steps of 
searching for a landing zone are given in Fig. 5.  
 

 
Figure 4. Ideal position to initialize the search of landing 
pad in different heights 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Steps of searching for a landing zone. (a) Objects image, (b) A binary mask for proposing a region, (c) Output 
of AND operation between (a) and (b): “negative” labeling, (d) Another binary mask for proposing a region, (e) Output 
of AND operation between (a) and (d): “positive” labeling, (f) Detected landing zone shown on the FOV image 
 
3. RESULTS AND DISCUSSION  
 

The method has been evaluated in terms of speed (i.e. 
runtime) and detection performance on a set of images 
taken from different altitudes. Here, we define the speed 
as the runtime of the algorithm to find a suitable landing 
zone in the image. On the other hand, the detection 
performance is defined as precision and recall values 
related with the object detection in the images.  

As explained earlier, the landing zone detection is a 
part of autonomous landing system framework for 
emergency situations. Hence, the entire detection task 
has been experimented on a single board computer, 
which may easily be involved in a UAV system. The single 
board computer used in the experiments is Raspberry Pi 
3 model B that has a Broadcom BCM2837B0 chipset, 
Cortex-A53 (ARMv8) 64-bit processor working at 1.4GHz 
frequency and 1GB of memory. Besides, all the processed 
images have dimensions of 600 x 400 pixels.  

During the experiments, it has been observed that the 
runtime of the algorithm for a particular image is 

different for consecutive runs. This may be because of the 
tasks related to operating system of the single board 
computer. Therefore, the algorithm has been run on all of 
the images for 10 separate times (i.e., 25 images x 10 
times = 250 observations) and then some statistical 
values are calculated on the observed runtimes. The 
range of the observations is [1.3940, 2.8478] seconds 
where the mean and standard deviation is calculated as 
2.4923 seconds and 0.3899 seconds, respectively.  

For calculating the precision and recall values, 
number of true detections (TP), false positive (FP) and 
false negative (FN) detections are determined. In order 
to determine these values, intersection over union (IoU) 
for all the detections are utilized. Calculation of IoU 
involves computing the overlap between the ground 
truth object and the detections. Since the purpose of this 
work is to find a suitable landing location, the threshold 
for IoU is set as 95%. It means that if the IoU for a 
detection is smaller than this threshold then it is 
considered as FP, otherwise TP. On the other hand, any 
misdetections of an object are counted as FN.  
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In the terminology of object detection, the precision is 
defined as the probability of the detected objects 
matching the actual objects. On the other hand, recall is a 
way to measure the probability actual objects being 
correctly detected.  

Once the related quantities are determined, the 
precision and recall are calculated as follows: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 
There are five test images taken from five different 

altitudes, hence a total 25 images are used for evaluating 
the performance object detection. Besides, the algorithm 
is expected to work efficiently at different times of the 
day. Therefore, the same experiments were repeated by 
changing the brightness of the test images. The added 
brightness amounts vary from -20% to 60%. The related 
results are given in Table 1.  
 

Table 1. Precision and recall for different brightness levels and altitudes 
 Altitude 
Amount of 
Brightness 
Added (%) 

1m 2m 3m 4m 5m 

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

-20 0.916 0.916 0.850 0.950 0.875 0.916 0.812 0.916 0.833 0.875 
-10 0.916 1.000 0.900 1.000 0.875 0.916 0.875 0.937 0.875 0.916 
0 1.000 1.000 1.000 1.000 0.958 1.000 0.937 1.000 0.916 1.000 
+10 1.000 1.000 1.000 1.000 0.958 1.000 0.937 1.000 0.916 1.000 
+20 0.916 0.916 0.900 0.950 0.916 0.916 0.875 0.937 0.916 0.916 
+40 0.875 0.916 0.850 0.900 0.875 0.875 0.812 0.875 0.833 0.875 
+60 0.833 0.833 0.800 0.850 0.833 0.850 0.812 0.812 0.791 0.833 

As can be seen from the Table 1 that the highest 
precision and recall values are obtained at low altitudes 
(1m and 2m) when no or +10% brightness is added to the 
images. It is also notable that the results belonging to 
brightness addition of 0 and +10% are identical for all of 
the altitudes. It means that the object detection is robust 
to addition of small amount of illumination. On the other 
hand, when the brightness or darkness of the images are 
increased, rate of FP and FN detections increase as well 
yielding decrements in precision and recall values. 
Preprocessing of the images using various filters or 
histogram equalization may be a useful step to improve 
the detection performance under different illumination 
levels.  

When the table is analyzed according to different 
altitude levels, slight decrements in performance are 
observed as the altitude is increased. Thus, it may be a 
good practice to check the object locations during the 
emergency landing so that the detected locations may be 
updated when necessary. Furthermore, the recall value is 
generally higher than the precision value for all of the test 
instances. This means that the rate of FN detections is 
smaller than FP detections. When the application area of 
the framework is considered, burden of a FN detection is 
higher than a FP detection because misdetection of an 
object (i.e. FN) may cause a crash. However, on the other 
hand, detecting an object at an available area (i.e. FP) will 
just cause the runtime of the program to increase. 

The overall accuracy of landing site detection is 
directly related with speed and performance of object 
detection step. As a result, high speed, precision, and 
recall values indicate the suitability of this method for 
autonomous landing.  
 

4. CONCLUSION  
 

An emergency landing system framework is proposed 
together with the details of the related image processing 

algorithm. The system is intended to work without any 
kind of markers showing the landing zone. Additionally, 
it does not utilize GPS signals, which may be unavailable 
under certain circumstances. It is based on direct 
detection of a suitable landing zone by processing of 
images taken from the onboard camera on the UAV. Since 
it does not involve any training and testing of a predictive 
model, the computational load is low and hence the 
corresponding response time is reasonable. On average, 
it takes around 2.5 seconds to make the detection for a 
single board computer and 100% of correct detection 
rate is achieved for the images taken from 1m and 2m. 
The smallest precision and recall values are 79.1% and 
81.2%, respectively. These results show that the method 
is suitable for real-world scenarios. In addition, higher 
detection performance at lower altitudes means that the 
algorithm should be fast enough to make a final decision 
at 2 meters. In the future, the object detection may be run 
at different altitudes of the emergency landing process 
and update the landing trajectory accordingly. Also, the 
latencies in the data transfer pipeline may be considered 
for more accurate response time. This method is 
obviously intended to work on terrestrial zones. In other 
words, it may not detect water area, which is not a 
suitable zone for landing. Therefore, the algorithm may 
be improved to work on the images involving water area. 
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