

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 739

Araştırma Makalesi - Research Article

Bilgiyi Matematiksel İfadeye Gizlemek İçin Yeni Bir
Yaklaşım

Muhammed Milani1*

Geliş / Received: 18/10/2019 Revize / Revised: 07/06/2020 Kabul / Accepted: 22/06/2020

ÖZ

Bilgi gizleme son zamanlarda çok ilgi gördü. Steganografi için çeşitli yöntemler geliştirilmiş ve aynı zamanda
gizli verileri tespit etmek için uygun steganalizler tasarlanmıştır. Bununla birlikte, steganaliz tarafınden dikkate
alınmamasi için yeni bir kapak türünde sunulan bir yaklaşım daha az şüpheli olabilir. Bu makale bir mesajı
matematiksel ifadeye dönüştürebilen bir yöntem önermektedir. Oluşturulan matematiksel ifade, oldukça güvenli
bir metinle birlikte mesajı iletmek için bir kapak olarak kullanılabilir. Önerilen yöntem, uygun bir stokastik
dilbilgisi kullanarak, belirli bir metne dayalı matematiksel bir ifade oluşturma yeteneğine sahiptir. Dilbilgisi
kurallarının olasılığı, taşıyıcı metne göre ve matematiksel ifadelerin türüne göre belirlenebilir.

Anahtar Kelimeler- Bilgi Gizleme, Steganografi, Steganaliz, Matematiksel İfade, Stokastik Dilbilgisi

1*Sorumlu yazar iletişim: mmilani@bandirma.edu.tr (https://orcid.org/0000-0003-2450-0280)
Bilgisayar Mühendisliği, Bandırma Onyedi Eylül Üniversitesi, Balıkesir/Bandırma - Türkiye

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 740

A Novel Approach for Hiding Information into Mathematical
Expression

ABSTRACT

Information hiding has received a lot of attention recently. Various methods have been developed for
steganography, and at the same time, proper steganalysis has been designed to detect hidden data. However, an
approach that is introduced in a new type of cover can be less doubtful due to the lack of attention to steganalysis
analyses. This paper proposes a method that can convert a message into a mathematical expression. The generated
mathematical expression can be used as a cover to transmit the message along with a highly secure text. The
proposed method, using a suitable stochastic grammar, has the ability to create a mathematical expression based
on a given text. Probability of grammar rules can be determined in accordance with the carrier text and based on
the type of mathematical expressions.

Keywords- Information Hiding, Steganography, Steganalysis, Mathematical Expression, Stochastic Grammar

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 741

I. INTRODUCTION

Cryptography is a widely used technique for secret communication [1] and is applied by various
encryption and decryption methods. However, cryptography alone is not enough for secure information
transmission because the encrypted text may attract attention. To address this problem, steganography is one of
the ways proposed to send information securely using stego-texts that cause the slightest doubt. Typically, in these
systems, texts can be concealed as messages in a variety of covers. An inserted message should only cause subtle
changes in the covers. Generally, the covers can be classified in four categories: text, image, video, and audio [2].
Of course, there may be other covers that are not included in these four categories, such as executable files [3].
Among these categories, image-based steganography has been used more widely and data is included in parts of
the image that is less recognizable [4].

Video is also known as a cover that requires a large number of operations to insert the message [5]. But,
because of the ability to insert a large volume of messages, they have attracted attentions [6]. Inserting a message
in audio is also possible. Usually, the human ear can comprehend sounds that range from 20HZ to 20KHZ [7]. So,
in some audio-type covers, this feature is used to insert data in an unrecognizable manner [8]. Texts have also been
used as a cover in some steganography methods [3]. Although the number of text-based methods is less than other
methods, the large volume of text data-type in these methods has made them attractive.

In contrast to steganography, steganalysis [9] is the science of unauthorized extraction of the inserted
message. It can be said that steganalysis and steganography are similar to a hide-and-seek game [10]. With the
development of a variety of methods for steganography, several methods have been developed for Steganalysis
[11]. Obviously, the new methods are more reliable in secure information transmission as the steganalysis has not
focused on new covers yet.

In this paper, a method for the steganography of data in mathematical expressions is proposed as a new
cover generation method. In terms of the characteristics and nature of mathematical expressions, they can be a
good place to hide information. Efforts have been made to produce texts that seem real [12]. With the same view,
it is possible to propose ways to generate mathematical expressions that are not ambiguous.

Mathematics has an important root in human evolutionary history. Computers are very good at solving
problems if correct commands are used. Symbolic computation or algebraic computation refers to the development
and evaluation of mathematical expressions. Computer applications that can conduct symbolic calculations are
called Computer Algebra Systems (CAS) or symbol manipulation systems. The increasing use of CAS systems
has enlarged the rule of computer systems in the various areas. For example, computer algebra has an important
role in designing and experimenting formulas that are required in numerical programs.

To hide sensitive data, we can also use the techniques that are proposed in CAS and provide a suitable
platform for steganography systems. In this paper, using the concept of CAS, an efficient method of Cover
Generation is proposed. The proposed method generates mathematical expressions using the rules that are chosen
by the message. The generated expression is the cover that carries the message. Because math phrases have not
yet been used to insert the message, it can cause the least sensitivity to steganalysis systems.

In Section 2, Cover Generation Steganography systems are expressed, and then the mathematical
expressions and the operations that are applicable to them are described. These operations involve producing,
parsing, and displaying math phrases. Also, in this section we will propose a new method for insertion and retrieval
of a message. Finally, we evaluate the proposed method and conclude in Section 3.

II. MATERIALS and METHODS

A. Cover Generation Steganography

Steganography involves hiding information in cover objects; be it video, audio, image or even text. Unlike
other steganography methods in which we decide which cover object (audio, video, text or image) to hide secret

https://en.wikipedia.org/wiki/Steganalysis

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 742

message in, the cover generation technique does the opposite. In the cover generation technique, the steganography
system generates the cover object.

Instead of embedding information into a cover, it is possible to generate the cover based on the message
by using rules of a proper grammar. Thus, the generation cover can be sent as destinations for message carriers. If
the natural cover is produced, this method can be transmitting data with higher confidence. Because general covers
are mostly checking by steganalysis.

A well-known method in linguistic steganography is mimic functions [12]. Mimic functions are used to
generate cover text using statistical methods which can somehow make sure that the generated message cannot be
detected by computers outfitted with statistical profiles as humans cannot read the huge traffic of information
passing through networks. The mimic function is built from a function called Huffman compression, and used to
make the machine crazy of fool so that the mimic texting will be looking completely meaningless or like nonsense
text, just because of the error of a grammar created to fool the machine. In automated generation with the help of
style source and large and well-organized dictionary of words, secret message bits can be transformed into stego-
text which cannot be detected easily by the adversaries [13].

On the other hand, there are a variety of algorithms which can implement cover generated audio
steganography like the one proposed in [14]. In this method, the sender establishes the vital basic rules (i.e.
amplitude, scale to be used and sampling rate) of the communication. Furthermore, as proposed in [15], a cover
image can be generated from text using an immature technique. The technique can be implemented in both gray
scale and RGB images. In this paper, the production of mathematical expressions as a new medium has been taken
into consideration, and a method has been proposed using proper grammar rules to embeda message into a
mathematical expression.

B. Mathematical Expressions

Mathematical expressions are held in different forms according to the special structure. One of the most
common methods is the tree structure. The relationship between the operators and operands of an expression and
its structure can be shown graphically by using expression trees. Each operator is represented by a node. Operators
with the lowest precedence appear at the top of the tree, whereas the operators with higher precedence are put at
the bottom of the tree. Each level shows the connection between an operator and its operand or operands.

Processes such as production, traversing and conversion into readable forms can be performed on
expression trees. However, a proper grammar is required to work with this structure. Context Free Grammars
(CFG) is used to parse and produce mathematical expressions. Input string passes through a parser which verifies
the syntax of that input. At the same time an Abstract Syntax Tree (AST) which is a suitable structure to work with
mathematical expressions is created. This tree serves as the main core part of the proposed methodology to apply
various improvement algorithms on input data. The next section will address the development of an appropriate
grammar for the proposed approach.

1) Grammar Definition: In this paper, we will focus on mathematical rules and introduce some grammars
to work with them. Backus-Naur Form (BNF) grammar is useful to define context-free grammars in programming
languages as it has simple notations; recursive structures, and widely available. We use this type of grammars
because BNF is supported by many compiler generation tools such as YACC [16], LEX [17], and JavaCC[18].

Each rule in this grammar has a non-terminal on the left side and a collection of terminals and non-
terminals on the right. During the language generation, depending on the top-down or bottom-up parsing method,
a rule will be expanded or collapsed.

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 743

List 1. An E-BNF grammar for mathematical expressions

G = {Σ, T, V, P, S}
V = {expr, op, func, var, number, digit}⊆ Σ
T = {x, Sin, Cos, Tan, Log, Exp, Sqrt, +, -, *, /}⊆Σ
Σ = T ∪ V
S = { expr }
Production :
<expr>::= <expr><op><expr>
 |(<expr>)
 |<func>(<expr>)
 |<var>
 |<Number>
<op>::='+' | '-' | '*' | '/' | '^'
<func>::= 'Sin' | 'Cos' | 'Tan' | 'Log' |'Exp' | 'Sqrt'
<var>::='x'
<number>::= '-' ? <digit> + ('. ' <digit> +)?
<digit>::=[' 0'-'9']

Mathematical expressions as mentioned in this paper can contain operations such as addition or
subtraction, functions such as sin or cos, special symbols such as integral, etc. Given a grammar developed for a
particular mathematical expression, all operators, functions, and symbols, variables and numbers will be members
of the terminal set. The non-terminal set will be determined based on the production rules of the grammar. The
designed grammar must generate arithmetic expressions with an operator and its operands, or a mathematical
function with arguments. The operand or argument itself might be a number, a variable, or another mathematical
expression.

The production rules of a grammar might be recursive since there are operands of the expression type.
For various types of mathematical expressions, different grammars can be used. In this section, a derivative system
for mathematical expressions with some modifications to a grammar mentioned in [19] is developed. This grammar
is called Extended-BNF grammar and shown in List 1.

The extended-BNF in List has five operators and six functions. A simple mathematical expression usually
contains these operators. However, it can be modified with the insertion of some other operators, various functions,
and particular symbols.

2) Grammar Conversion: The grammar defined in the previous section is general and can generate any
math expressions. However, this grammar has a problem of generating more than one expression tree for a given
expression. As a simple example, two different expression trees for "7 + 2 + 5" are given in Figure 1.

Figure 1. Two deferent ASTs for the "7+2+5" expression

This situation may cause major problems for the proposed method in this paper even if there are no
problems with some systems. In steganography, this can lead to the extracting of a different message from the
embedded message. Therefore, there is a need to develop the grammar appropriately.

Plus

Num (5) Plus

Num (7) Num (2)

Plus

Num (7) Plus

Num (2) Num (5)

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 744

The basic problem of the grammar presented in List 1is the existence of left recursive rules. This type of
rules creates ambiguity in generated mathematical expressions. Therefore, the grammar that has been used must
be developed in a way that the rules do not have this property. In the production of the terms discussed in this
article, there is no need to observe the priority of the operator. Because the main purpose is the production of the
expression, the evaluation is not intended. In addition, the rules written for a non-terminal must be numbered in
order to use at the time of execution of the algorithm based on these numbers. Accordingly, the desired grammar
is developed in List 2.

List 2. Modified grammar for mathematical expressions

G = {Σ, T, V, P, S}
V = {E, C, Num, Digit, Var}⊆ Σ
T = {x, Sin, Cos, Tan, Cot, Log, Exp, Sqrt, +, -, *, /}⊆Σ
Σ = T ∪ V , S = { E }
Production :

< E >::= < C > '+' < E >
< E >::= < C > '-' < E >
< E >::= < C > '*' < E >
< E >::= < C > '/' < E >
< E >::= 'Sin (' < E > ')'<T>
< E >::= 'Cos (' < E > ')'<T>
< E >::= 'Tan (' < E > ')'<T>
< E >::= 'Cot (' < E > ')'<T>
< E >::= 'Log (' < E > ')'<T>
< E >::= 'Sqrt (' < E > ')'<T>
< E >::= 'Abs (' < E > ')'<T>
<T>::= '+'< E > | '-'< E > | '*'< E > | '/'< E > | < E >
< C > ::= < Var > | < Num >< Var > | < Num >
< Var >::='x'
< Num >::= '-' ? < Digit > + ('. ' < Digit > +)?

< Digit >::=[' 0'-'9']

3) Generating Mathematical Expressions: Based on the proposed method, it is necessary to generate
mathematical expressions using the grammar. Generating phrases should be such that the numbered rules are
chosen based on the message data. It is also possible to include a part of the data in numbers that are assumed as
a coefficient in the mathematical expressions. The methodology for generating mathematical expressions in
accordance with the proposed methodology is presented below.

Generating AST via Grammar

The binary tree is a suitable data structure that supports the inclusion of algebraic operators and single
parameter functions. It provides a simple way to represent operator precedence. Besides, it is easy to convert the
tree structure to other data formats for the requirements of document formatters. Another advantage is about the
development of formal grammars because each node of the tree suggests a recursive invocation among parent and
child ones constructed by a grammar rule.

Figure 2 shows a block diagram of mathematical components required to create a mathematical
expression using trees.

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 745

Figure 2. The methodological components for tree-based generation of expressions

In Figure 2, The "Generator" first places the beginning rule of a grammar into an AST and then recursively
expands the non-terminals in that rule replacing them with the other rules according to input data.

Note that the rules presented in List do not consider the precedence of operators because it is not matter
for the proposed method. List 3 displays the main algorithm of the methodology performed by the Generator
component of Figure 2.

List 3. The expression-generating algorithm

AST ← Start symbol E
While exists any data in input stream
 N ← Get a data from stream
expr ← Select Nth rule
AST ← Replace E with expr in AST
In-order traverse the AST and print mathematical expression

The mathematical expressions generated using the method presented in List 3 are distributed uniformly
and based on input data. Mathematical expressions that are commonly used in resources have different
distributions. For example, there are usually more operators than the Cot function in the expressions. Stochastic
Grammars [20] can be used to control the status of the invoked rules. Initializing an invocation probability for each
rule in the algorithm, controlled through the expression steps, we can create mathematical expressions that are
more realistic. In List 4, the grammar of List 2is represented by hypothetical possibilities.

List 4. A stochastic grammar with probabilities placed next to each production rule

1. < E >::= < C > '+' < E > (.17)
2. < E >::= < C > '-' < E > (.17)
3. < E >::= < C > '*' < E > (.12)
4. < E >::= < C > '/' < E > (.12)
5. < E >::= 'Sin (' < E > ')'< T > (.06)
6. < E >::= 'Cos (' < E > ')' < T > (.06)
7. < E >::= 'Tan (' < E > ')' < T > (.05)
8. < E >::= 'Cot (' < E > ')' < T > (.04)
9. < E >::= 'Log (' < E > ')' < T > (.05)
10. < E >::= 'Sqrt (' < E > ')' < T > (.10)
11. < E >::= 'Abs (' < E > ')' < T > (.06)
1. < T > ::= '+' < E > (.2)
2. < T > ::= '-' < E > (.2)
3. < T > ::= '*' < E > (.2)
4. < T > ::= '/' < E > (.2)
5. < T > ::= < E >(.2)

< C > ::= < Var > | < Num >< Var >
< Var >::='x'
< Num >::= '-' ? < Digit > + ('. ' < Digit > +)?

< Digit >::=[' 0'-'9']

E-BNF Grammar Generator

AST Output expression Pretty printer

The stream of data

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 746

Wayner has proposed a method for using probabilistic grammars using Huffman coding [12]. We can
also act in the same way in our proposed method. For this purpose, we can consider the probability of each rule as
the frequency of that rule and obtain a unique code by using the Huffman tree for each rule. List 5 shows the
grammar of List 4 using the Huffman algorithm.

List 5. A stochastic grammar with Huffman code placed next to each production rule

1. < E >::= < C > '+' < E > (000)
2. < E >::= < C > '-' < E > (001)
3. < E >::= < C > '*' < E > (010)
4. < E >::= < C > '/' < E > (011)
5. < E >::= 'Sin (' < E > ')' (1000)
6. < E >::= 'Cos (' < E > ')' (1001)
7. < E >::= 'Tan (' < E > ')' (1010)
8. < E >::= 'Cot (' < E > ')' (1100)
9. < E >::= 'Log (' < E > ')' (1101)
10. < E >::= 'Sqrt (' < E > ')' (111)
11. < E >::= 'Abs (' < E > ')' (1011)
1. < E' > ::= '+' < E > (00)
2. < E' > ::= '-' < E > (010)
3. < E' > ::= '*' < E > (011)
4. < E' > ::= '/' < E > (10)
5. < E' > ::= < E > (11)

< C > ::= < Var > | < Num >< Var > | < Num >
< Var > ::= 'x'
< Num > ::= '-' ? < Digit > + ('. ' < Digit > +)?
< Digit > ::= ['0' – '9']

Expressions generated from the grammar of Table 5 will have a more realistic distribution. Of course, the
grammatical probabilities must be determined depending on the covers which the mathematical expressions will
be placed in. For this purpose, it is easy to calculate the probabilities by examining the actual mathematical
expressions and determining the number of repetitions of each of the rules.

Representation of Mathematical Expressions

Similar to programming languages, there are various mathematical languages to describe mathematical
expressions. Three most well-known mathematical languages are discussed below: MPL, MathML, and LaTex. If
the result of the syntax tree is a mathematical expression, e.g. derivation, then we will need to display it properly.
AST has a tree form and therefore, it has to be converted into one of human-readable, LaTex, or MathML form.
Traversing AST in infix technique will allow us to get the proper terms to construct the desired output. Figure 3
shows the AST of "(3cos (x + 1)) / 2".

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 747

Figure 3. An example of a mathematical expression in AST

The result of infix traverse or simply syntax tree of Figure 3 is:

Divide (Times(Num(3), Cos(Plus(Var() , Num(1)))) , Num(2))

By applying output commands to each class in traversing code, required output format can be generated.

4) Parsing and interpreting of Mathematical Expression: For automatically generating parsers, there are
many different generator tools that can create source codes in various languages. Typically examples of these tools
are YACC [16]and bison [21], for imperative languages, ml-yacc[22], and happy [23] for functional languages,
JavaCup [24], and JavaCC [18] for object-oriented languages. They require a special type of grammar as input,
and generate either LL(k) or LR (k) parsers. Therefore, after choosing a parser generator, a proper grammar must
be described according to the specifications of that generator.

JavaCC is a java-based parser generator that generates a top-down parser. Top-down parsers or recursive
decent parsers allow the use of more general grammars. The only limitation of these parsers is that left recursion
is not allowed because this may lead to infinite recursion. Top-down parsers have a structure identical to the
grammar specification and are thus easier to debug. Embedding user code to generated abstract syntax tree in a
top-down parser is simple due to the easiest of passing arguments and values across the nodes of the parse tree.

Figure 4. Parser generation with JavaCC

Converting Math Expression into AST

Converting a string into another model or data structure requires a converting process called translation.
In an input string representing a mathematical expression, each operator has a rule that indicates the number of
operands and the precedence of that operator to others. Such a translator which operates on mathematical
expressions should keep these rules in a converted model, too.

The string form of mathematical expressions requires to be converted into mathematical tokens by a lexical
analyzer. An example is shown below to demonstrate the input string and its token stream.

Divide

Num (2) Times

Plus

Var() Num (1)

Num (3) Cos

Token and
grammar

description
JavaCC Java code

Java
compile

Bytecode

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 748

Table 1. Input string and its token stream

Input string Token Stream

3x2+2(x-12) Num(3) Var Power Num(2) Plus Num(2) LPR Var Minus Num(12) RPR

In Table 1 the terms used to describe the token stream are for presentation purposes.

The token stream should be handled by mathematical rules which check if for example parentheses are in
pair, and each operator has enough operand. These rules will be applied by a mathematical grammar.

The token stream will be analyzed to see whether it satisfies all rules defined by a mathematical grammar.
According to the need, the syntax analyzer can report true or false for correct structure of the input stream, or
generate a parse tree as an input to the next steps.

The parse tree is generated by a unit called parser. The leaves in the parse tree are terminals, and other
nodes are non-terminals. However, it is appropriate to use another kind of tree called syntax tree. The main
difference is that leaves are operands and nodes are operators. Besides, it offers a simple and efficient tree to work
with mathematical expressions. The syntax tree is also called Abstract Syntax Tree or shortly AST. Figure 5 shows
the steps to generate AST from an input string as a mathematical expression.

Figure 5. The steps to generate AST

Type inconsistency does not occur in mathematical expressions. Therefore, we will not use a semantic
analyzer. Compiler-compiler tools can be used for convenience. Figure 6 demonstrates the steps required to
produce the AST for our mathematical grammar using compiler-compiler tools.

Figure 6. The steps required to produce the AST for the mathematical grammar

C. Embedding Message

In this section, the proposed method will be described. One of the parts of the steganography is to insert
a message in a cover. Since the proposed method is a kind of cover generation, the message should be converted

Lexical Analyze (Scanner)

Token Stream

Syntax Analyze (Parser)

AST

Math
Expression

BNF LL / LR
Compiler-Compiler Tool

Scanner + Parser Math Exp AST

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 749

into a cover of the type of mathematical expression. For this purpose, we will use the production method as
presented in the previous section. Figure 7 shows the steps of the proposed methodology.

Figure 7. Components of the proposed methodology

As mentioned in the section on generating mathematical expressions, to generate mathematical
expressions, you need an input through which the rules are selected for production. This entry is provided via the
bit stream that is created from the message. Also, to increase the capacity of an insert message in a mathematical
expression, instead of using the Num ->Digit rule, we can use a 3 or 4 bit number directly. Bits taken from the
input are evaluated in sequence and selected by the Huffman codes assigned to each desired grammar rule. In cases
where the rule has non-terminal Num, another part of the input is used as Num at the rule. This operation is repeated
until all the input bits are completed. The Embedding algorithm is as List 6:

List 6. The embedding of a message

Convert message into binary as input bit stream
AST ← start symbol E
While exists any data in input stream
 expr ← Select a rule according to bits in stream and Huffman codes of rules
 if exist T rule then
 get 2 or 3 bit of stream, select a rule and replace it with T
 if exist Num in rule then
 get another 4 bit of stream and replace it with Num
AST ← Apply expr in AST
Represent AST as mathematical expression

D. Extracting Message

A grammar-based methodology to parsing and extracting the message from mathematical expressions is
proposed. A multi-party system is used to perform required operation for the proposed methodology. Input data is
parsed using an extended grammar for a mathematical expression. The output of the parser is a tree data structure
where it models the input data in a way that it can be used for data extracting. Each node of this tree represents a
symbol or part of the input data, and its connection with other symbols where symbols can be operators, numbers,
etc. The steps of our methodology are shown in Figure 8.

Grammar Description

Class
Definition

Bit Stream

Expression
Generator AST Pretty Printer

Mathematical
Expression

Message Convert to
Binary

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 750

Figure 8. Phases and steps of the proposed methodology

Using these steps, one can implement a framework to work and extract the message from mathematical
expressions. The operation of extraction of message bits can also be done at the time of AST production. In this
case, at the time of parsing, when the parsing tree is created, in accordance with the rule used in the grammar, the
corresponding Huffman code is extracted. There are several ways to create AST, one of which is the use of the
compiler-compiler tool. In this paper, as an example, JavaCC is used to generate AST. For this purpose, in
accordance with the proposed grammar, functions are developed.

Within each method, the corresponding operation is performed on expressions, and the result is returned,
which is a string. List 7 shows some of the methods in JavaCC.

List 7. Some JavaCC functions for string-based message extraction

string parse() : { string a; }{
 a = expr(x) (<EOF> | <EOL>) { return a; }
}
string expr() : { string a, b; }{
 a = coef() <PLUS> b = expr() { return "000"+binary(a)+b; }
 | a = coef() <MINUS> b = expr() { return "001"+binary(a)+b; }
 | a = coef() <MUL> b = expr() { return "010"+binary(a)+b; }
 | a = coef() <DIV> b = expr() { return "011"+binary(a)+b; }
 | <SIN><LPR> a=expr() <PPR><PLUS> b = expr()
{ return "1000"+"00"+a+b;}
| <SIN><LPR> a=expr() <PPR><MINUS> b = expr()
{ return "1000"+"010"+a+b;}
| <SIN><LPR> a=expr() <PPR><MUL> b = expr()
{ return "1000"+"011"+a+b;}
 ...
}
string coef() : { Token t; }{
 t = <NUMBER><X> { return t.image; }
 | <X> { return ""; }
}

The parse function output in Table 8 is a string of extracted bits. By splitting the string into 8-bit strings
and converting each one to the number representing the ASCII code of the message, the message can be obtained.

III. EVALUATION and RESULTS

In this paper, the text or any type of data is converted into a mathematical expression using grammatical
rules, and somehow the data is hidden by the cover generation method. To evaluate the efficiency of the proposed
system, we have implemented the proposed method using the Java programming language. Based on the random

Math
Expression

Lexer &
Parser

Token & Grammar
description

Interpreter Output bitstream
Original
Message

AST

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 751

structure presented in the proposed schema, a different mathematical expression is generated to conceal a specified
text in every execution time. Table 2 shows the production samples for some of data in different performances.

Table 2. Some of sample texts and their production expressions

Secret Message Generated Expression

steganography tan(cot(�𝑥𝑥 + �cos
𝑥𝑥

37
− 𝑥𝑥 + 𝑥𝑥� + 13𝑥𝑥 − 𝑥𝑥) + 16𝑥𝑥 − 𝑥𝑥)

 tan(cot(|𝑥𝑥 + 36| + �cos
5𝑥𝑥
26

− 𝑥𝑥 + 22) +
𝑥𝑥

21
)

Math steganography ��
15𝑥𝑥
𝑥𝑥

∗ tan
𝑥𝑥

17
+ 𝑥𝑥 ∗ 19� −

cot (4𝑥𝑥 − �√16𝑥𝑥 ∗ 𝑥𝑥 ∗ �7𝑥𝑥 − (𝑥𝑥 − 𝑥𝑥)�)
log (cos (cot3𝑥𝑥𝑥𝑥

𝑥𝑥
−cot 𝑥𝑥33))

cotcos𝑥𝑥𝑥𝑥

+ 𝑥𝑥

 ��
15𝑥𝑥

tan 7𝑥𝑥
25

+ 32 ∗ cos(7𝑥𝑥 ∗ 𝑥𝑥) + 𝑥𝑥� − log(�
|17𝑥𝑥 − 𝑥𝑥|

15𝑥𝑥 − tan (√𝑥𝑥 ∗ 𝑥𝑥 + 𝑥𝑥) ∗ 𝑥𝑥
) +

3𝑥𝑥
𝑥𝑥
𝑥𝑥

The weather is very good today

tan(13𝑥𝑥 + log(cot(tan sin(log
�log𝑥𝑥𝑥𝑥

𝑥𝑥

31
+ 𝑥𝑥) − log(𝑥𝑥 ∗ 𝑥𝑥) ∗

4𝑥𝑥
27

)))

𝑥𝑥 − ��
𝑥𝑥

�√10𝑥𝑥 ∗ 𝑥𝑥 − �cos(|𝑥𝑥−21|∗𝑥𝑥)
26

+ �cot
cot�|𝑥𝑥 + 38| ∗ 𝑥𝑥

𝑥𝑥
+ 𝑥𝑥 − (12𝑥𝑥 ∗ 33)��

The manufacturing samples given in Table 2 show that the proposed method is suitable for concealing a
short text. If the text lengths are acceptable, the generated mathematical expressions look very natural. To test the
capacity of the proposed method, we have experimented some of text instances in the implemented system and the
results are shown in Table 3.

Table 3. Capacity analysis for some of sample texts and their production expressions

Secret Message Size Generated expression size
(average)

Capacity Ratio

13 112.3 11.58%

18 133.3 13.50%

30 78.2 38.63%

60 147.0 40.82%

90 162.2 55.49%

120 208.4 57.58%

Average (55.17) 140.233 39.342%

For each text sample, 10 executions were performed and their average capacity was given in Table 3.
According to this table and compared with other methods of steganography, it is clear that the proposed capacity
is significantly more than other methods. Table 4 compares the proposed method with some of the other methods.

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 752

Table 4. Comparing Capacity of the proposed method with some of other methods

Method Stego Type Capacity Ratio

Kashida Technique [25] Text 1.22%

Diacritics Technique [26] Text 3.27%

Ref [27] Image ≈0.8bpp = 10%

Ref [28] Image ≈1bpp = 12.5%

Proposed Method Mathematical 39.34%

Despite the high ability offered by the proposed method in capacity, the main weakness of this approach
is that it is only suitable for short text lengths. For longer-length text, it can be included in more mathematical
expressions. One of the applications of this method is to hide private keys in cryptographic methods which must
be securely transmitted short text as a key.

IV. DISCUSSION

This paper proposes a method for hiding text in mathematical expressions. In terms of the special
structures of mathematical expressions, it is possible to produce mathematical expressions that are not doubtful,
with a returnable methodology for the message. For this purpose, a suitable grammar is designed according to the
proposed method. We transform the desired grammar into a probabilistic grammar, which can determine the
probability of each rule depending on the type of the given mathematical expressions. In this way, we can examine
a number of actual mathematical expressions with respect to the text.

To make the generated mathematical expressions more natural, we can define different classes. At
production time, we can choose one of these classes randomly or under certain conditions. This issue is presented
in the algorithm presented in the methodology in Figure 8. Table 5 shows a list of some supported forms that an
algebraic expression can have.

Table 5. Various forms of covered expressions

Cover form Cover form

exp f(x) = exp

f(exp) = exp exp = exp

f(x) = exp = exp f(exp) = exp = exp

exp , exp f(x) = exp , exp

f(x)=exp, g(x)=exp f(exp)=exp, g(x)=exp

f(exp)=exp, g(exp)=exp exp=exp,exp=exp

f(x)=exp=exp, g(x)=exp=exp

By choosing some of these classes, the generated mathematical expressions look more natural, and the
capacity of the inserted message can be increased. Other cases may also be considered for realizing mathematical
expressions. For example, the generated expressions can also be converted to the forms shown in Table 6.

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 753

Table 6. Some forms of generated expressions

Expression form Expression form

�𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑 lim
𝑥𝑥→0

𝑒𝑒𝑒𝑒𝑒𝑒

�𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 � exp𝑑𝑑𝑑𝑑

The proposed method, as a cover generation method, transforms the message into a mathematical
expression. This transformation, different from cryptography, can be regarded as a special kind of steganography
named cover generation method, and can be proposed as a new method of steganography. Because the previous
steganography methods do not use mathematical expressions as a cover, no steganalysis instances that examine
the properties of mathematical expressions are developed. This can be considered as the strength of the proposed
method because it can safely send messages through this type of data.

REFERENCES

[1] Gupta, B.B., D. Agrawal, and S. Yamaguchi. Handbook of Research on Modern Cryptographic Solutions for
Computer and Cyber Security. New York: IGI Global, 2016.

[2] Bhattacharyya, S., I. Banerjee, and G. Sanyal. "A novel approach of secure text based steganography model
using word mapping method (WMM)." International Journal of Computer and Information Engineering,
2010: Vol. 4, No. 2, pp.96–103.

[3] Lockwood, Robert, and Curran Kevin. "Text based steganography." International Journal of Information
Privacy, Security and Integrity 3-2 (2017): 134-153.

[4] Li, J., C. YU, B.B. Gupta, and X. Ren. "Color image watermarking scheme based on quaternion Hadamard
transform and Schur decomposition." Multimedia Tools and Applications, 1027: 1–17.

[5] Balaji, R., and Naveen Garewal. "Secure data transmission using video Steganography."IEEE International
Conference on Electro/Information Technology. 2011.

[6] Nikam, G., A. Gupta, V. Kalal, and P. Waghmare. "A Survey of Video Steganography Techniques." Journal
of Network Communications and Emerging Technologies (JNCET), 2017: 33-35.

[7] Cuttnel, J.D., and K.W. Johnson. Physics, 4th ed., Wiley, New York. 4th. New York: Wiley, 1998.

[8] Mishra, Shilpi, Yadav Virendra Kumar, Trivedi Munesh Chand, and ShrimaliTarun. "Audio Steganography
Techniques: A Survey." Advances in Computer and Computational Sciences. Springer, 2018: 581-589.

[9] Johnson, Neil F., and JajodiaSushil. "Steganalysis of images created using current steganography software."
International Workshop on Information Hiding. Berlin, 1998.

[10] Provos, Niels, and Honeyman Peter. "Hide and seek: An introduction to steganography." 2003. 32-44.

[11] Czaplewski, Bartosz. "Current trends in the field of steganalysis and guidelines for constructions of new
steganalysis schemes." PrzeglądTelekomunikacyjny+ WiadomościTelekomunikacyjne, 2017: 1121-1125.

[12] Wayner, P. "Mimic functions." Cryptologia 16, no. 3 (Jul 1992): 193-214.

[13] Chang, Ching-Yun, and Clark Stephen. "Linguistic Steganography Using Automatically Generated
Paraphrases." In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics. 2010. 591-599.

BŞEÜ Fen Bilimleri Dergisi
7(2), 739-754, 2020

BSEU Journal of Science
DOI: 10.35193/bseufbd.634578

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

 754

[14] Sampat, Vivek, S. Karmokar, J. Madia, K. Dave, and P. Toprani. "Audio Steganography using Dynamic
Cover Generation." IJCA Proceedings on National Conference on Advancement of Technologies. 2012. 26-
30.

[15] Seifedine, Kadry, and Sara Nasr. "New Generating Technique for Image Steganography." Lecture Notes on
Software Engineering 1, no. 2 (2013): 190-193.

[16] Johnson, Stephen C. Yacc: Yet another compiler-compiler. Vol. 32. Murray Hill, NJ: Bell Laboratories, 1975.

[17] Levine, John R., Mason Tony, and Brown Doug .Lex&yacc. O'Reilly Media, Inc., 1992.

[18] Kodaganallur, Viswanathan. "Incorporating language processing into java applications: A JavaCC tutorial."
IEEE software 21, no. 4 (2004): 70-77.

[19] Ryan, Conor, O’Neill Michael, and Collins J. J. "Grammatical evolution: solving trigonometric identities."
proceedings of Mendel, 1998.

[20] Newmeyer, Frederick J. "Grammar is grammar and usage is usage." Language 79, no. 4 (2003): 682-707.

[21] Donnelly, Charles, and Stallman Richard. "Bison. The YACC-compatible parser generator." 2000.

[22] Earley, Jay. "An efficient context-free parsing algorithm." Communications of the ACM, 1970: 94-102.

[23] Marlow, Simon, and Gill Andy. Happy: The parser generator for haskell. 2004.
https://www.haskell.org/happy/.

[24] Hudson, S. E. JAVACUP: LALR parser generator for Java. User’s manual, GVU Center, Georgia Institute
of Technology, 1996.

[25] Adnan Gutub, LahouariGhouti, Alaaeldin Amin, TalalAlkharobi, andMohammad K. Ibrahim, “Utilizing
Extension Character ‘Kashida’ With PointedLetters For Arabic Text Digital Watermarking”, International
Conference on Securityand Cryptography - SECRYPT, Barcelona, Spain, July 28 - 31, 2007.

[26] Aabed, M. A., Awaideh, S. M., Elshafei, A. R. M., &Gutub, A. A. (2007, November). Arabic diacritics based
steganography. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE International
Conference on (pp. 756-759). IEEE.

[27] K. Qazanfari, R. Safabakhsh, A new steganography method which preserves histogram: Generalization of
LSB++, Information Sciences, 277 (2014) 90-101.

[28] K. Muhammad, J. Ahmad, N.U. Rehman, Z. Jan, M. Sajjad, CISSKA-LSB: color image steganography using
stegokeydirected adaptive LSB substitution method, Multimedia Tools and Applications, (2016) 1-30

	I. INTRODUCTION
	II. MATERIALS and METHODS
	A. Cover Generation Steganography
	B. Mathematical Expressions
	1) Grammar Definition: In this paper, we will focus on mathematical rules and introduce some grammars to work with them. Backus-Naur Form (BNF) grammar is useful to deﬁne context-free grammars in programming languages as it has simple notations; recur...
	2) Grammar Conversion: The grammar defined in the previous section is general and can generate any math expressions. However, this grammar has a problem of generating more than one expression tree for a given expression. As a simple example, two diffe...
	3) Generating Mathematical Expressions: Based on the proposed method, it is necessary to generate mathematical expressions using the grammar. Generating phrases should be such that the numbered rules are chosen based on the message data. It is also po...
	Generating AST via Grammar
	Representation of Mathematical Expressions
	4) Parsing and interpreting of Mathematical Expression: For automatically generating parsers, there are many different generator tools that can create source codes in various languages. Typically examples of these tools are YACC [16]and bison [21], fo...
	Converting Math Expression into AST
	C. Embedding Message
	D. Extracting Message

	III. EVALUATION and RESULTS
	IV. DISCUSSION
	REFERENCES

