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Abstract: Fractional order circuit elements have been started to model different types of circuit elements, circuits and systems in the 

last decades. There are different types of fractional derivatives. Recently, a new simple fractional derivative method called 

“conformable fractional derivative” has been brought out. It is simpler than other fractional derivatives and has already been used to 

model supercapacitors. It is important to model the new circuit elements and analyze the circuits containing them so that they can be 

exploited at their full potential. Two capacitor problem is a famous problem in physics and circuit theory. In this study, a new two 

capacitor problem a circuit which consists of an LTI capacitor and a supercapacitor which has been modelled with conformable 

fractional derivative have been examined. The differential equations which describe the circuit have been derived. The circuit current 

is found explicitly however the voltages of the capacitors do not have analytical solutions. That’s why they are solved numerically. 

 

Keywords: Circuit Analysis, Circuit Modelling, Circuit Theory, Energy Analysis, Fractional Order Derivative. 

LTI Kapasitor ve Konformal Kesirli Mertebeden Türev Kullanılarak Modellenmiş Kapasitör ile İki Kapasitör 

Problemi 

Özet: Kesirli mertebeden devre elemanları, son yıllarda farklı tipteki devre elemanlarını, devreleri ve sistemleri modellemeye 

başlanmıştır. Farklı kesirli türev türleri vardır. Son zamanlarda, "uyumlu kesirli türev” adı verilen yeni bir basit kesirli türev yöntemi 

ortaya çıkmıştır. Diğer kesirli türevlerden daha basittir ve süperkapasitörleri modellemek için zaten kullanılmıştır. Yeni devre 

elemanlarını modellemek ve onları içeren devreleri analiz etmek, böylece tam potansiyellerinde kullanılabilmeleri için önemlidir. İki 

kapasitör problemi, fizikte ve devre teorisinde ünlü bir problemdir. Bu çalışmada, bir LTI kondansatör ve bir süperkapasitörden 

oluşan ve uyumlu fraksiyonel türev ile modellenen yeni bir iki kondansatör problemi incelenmiştir. Devreyi tanımlayan diferansiyel 

denklemler türetilmiştir. Devre akımı açıkça bulunur, ancak kapasitörlerin voltajlarının analitik çözümleri yoktur. Bu yüzden sayısal 

olarak çözülürler. 

Anahtar Kelimeler: Devre Analizi, Devre Modelleme, Devre Teorisi, Enerji Analizi, Kesirli Mertebeden Türev 

 

1. Introduction 

Fractional derivatives (FDs) have first been considered by 

L’Hospital [1]. It has become a branch in applied 

mathematics  [2]. The self-taught Oliver Heaviside used FDs to 

analyze electrical transmission lines circa 1890 [3]. Since the 

last half of the 20th century, the fractional Calculus has found 

applications in many different fields [4-5]. The FDs have been 

used to model circuit elements such as capacitors, inductors and 

memristors [6-10]. Analog applications such as filters, 

controllers and oscillators which are based on the fractional 

order circuit elements do exist in the literature [4-5, 8-9, 11-14]. 

Such circuit elements have also been used to model systems [4-

5, 8-9, 11-14]. There are different types of FDs [15]. In [16], a 

new and simpler FD called “the conformable fractional 

derivative” (CFD) have been suggested. The CFD can be 

expressed using the familiar limit definition of the derivative of 

a function and it is simpler than the other FD definitions and it 

https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Applied_mathematics
https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Fractional_calculus#cite_note-5
https://orcid.org/0000-0003-4579-0424
https://orcid.org/0000-0003-0030-7136
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has a different description [16]. A conformal fractional 

derivative is actually not a fractional derivative when the other 

FDs are considered: it is simply a first derivative multiplied by 

a fractional power of the independent variable. This new theory 

is improved in [17]. This new definition is a natural extension 

of the classical derivative and it has also the advantage of being 

different from other FDs. For example, many classical theorems 

of calculus can be easily used to analyze the systems which are 

based on the CFDs. The CFD has a very important property: 

while the Riemann-Liouville FD of a constant is not zero, the 

CFD of a constant is zero. Due to these important and unusual 

properties compared to the other FDs, the CFD has emerged as 

a hot research area. The CFD is also physically interpretable 

while the other FDs are not [18]. Usages of FDs in electrical 

circuits have been inspected in [19]. Analytical solutions of 

electrical circuits have been examined in [20-22]. FD-based 

supercapacitor models do exist in literature [23-26]. An electric 

circuit containing a supercapacitor modeled with the CFD has 

been inspected in [27]. Analysis of a parallel resonance circuit 

with a CFD capacitor is made using Simulink in [28]. 

Two capacitor paradox is an interesting problem and it is given 

in many remarkable course books and articles which are based 

on the basic electrical principles and applications [29-30]. 

Unlike some other paradoxes in science, this paradox is 

commonly revisited and examined in circuit theory [29-31]. The 

total energy and charge for two capacitor paradox is detailed in 

[32]. It is regarded as a missing parameter problem [30]. It is 

examined to find where the missing energy has disappeared 

[32-33]. There are different approaches to the problem [34]. 

Even the radiation from the two-capacitor problem has been 

examined in [35]. A two capacitor problem has been examined 

in [36] when one of the capacitors is replaced with a 

memcapacitor. To the best of our knowledge, a CFD capacitor 

and an LTI capacitor have not been examined in the literature 

yet. In this study, a CFD capacitor, an LTI capacitor and a series 

resistor without a power supply have been examined together. 

The differential equation which describes the circuit is given 

and it is examined whether it has an analytical solution or not. 

The circuit waveforms are drawn with MatlabTM.  

The paper is arranged as the follows. The definition of the CFD 

and a CFD based-capacitor model is given in the second 

section. The analysis of the two-capacitor problem without loss 

and when one of the capacitors is replaced with a CFD-based 

supercapacitor is done in the third section. The analysis of the 

two-capacitor problem with a series resistor added is done in 

the fourth section. The paper is finalized with the conclusions 

section. 

2. The Conformal Fractional Derivative and the CFD 

Capacitor Constitutive Law 

For            and t > 0, the Conformal Fractional Derivative 

(CFD) is described by Khalil et al as the follows [16]: 

           ' 1 1( ) ( )
( ) ( )

d f t df t
D f t f t t t

dtdt


 

 

               (1)

  

More information about CFD can be found in conformable 

fractional calculus [15-18].  

If a capacitor can be modeled using CFD [27], its constitutive 

law can be expressed as:  

    
( )

( ) C

C

d v t
i t C

dt



 
                 (2)  

Where ( )Ci t , ( )Cv t and C  are CFD capacitor current, CFD 

capacitor voltage and CFD capacitor coefficient, respectively. 

3. Two Capacitor Problem with a CFD Capacitor an 

LTI Capacitor 

One of the two capacitor problems, often given in the 

textbooks, consists of just two LTI capacitors without a 

capacitor. A circuit which consists of only an LTI capacitor and 

a CFD capacitor is shown in Figure 1. The circuit is lossless 

since it has no resistance.  Such a circuit can be thought as a 

modified two capacitor problem. 

 

Figure 1. The CFD capacitor connected to a parallel capacitor 

When Kirchhoff’s laws are used for the circuit shown in Figure 

1, the following equations are obtained:  

                           ( ) ( ) 0c ci t i t


   and ( ) ( )c cv t v t


           (3)            

           1 1( ) ( ) ( )
( ) 0c c cdv t dv t dv t

C C t C C t
dt dt dt

 

 

     (4)  

                                     
( )

0cdv t

dt
                     (5)                 

By taking integration of each side, the CFD capacitor voltage is 

found as: 

( ) 0cdv t dt                                (6)                     

    ( )Cv t K                                        (7)  

Where K is the integration constant.                                                    

If the initial condition (0)Cv is used at t=0, the integration 

constant is found as 

         (0)cv K                                       (8)                                           

The CFD capacitor is found as 

                                      ( ) (0)c cv t v                                  (9)                

This means that there is no current flowing in the circuit while 

it was not the case with a memcapacitor and an LTI capacitor in 

[36]. 

4. Two Capacitor Problem with a CFD Capacitor, an 

LTI Capacitor, and a Resistor 

A circuit which consists of a resistor, an LTI capacitor and a 

CFD capacitor is shown in Figure 2. The differential equation 

0 1   

(2) 

(3) 
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which describes the circuit is found and solved in this section.  

 

 Figure 2. The CFD capacitor and a series resistor, which is connected a 
parallel capacitor 

When Kirchhoff’s laws are applied to the circuit, the voltage 

and current equations are written as: 

sR ci i


 and c ci i


                     (10)
 
 

            ( ) ( ) ( )
sR C cv t v t v t


                  (11)  

( ) ( )s C C cR i v t v t
 
                  (12)  

                 
1

( )
( ) ( )

c

s c c

dv t
R C t v t v t

dt









           (13)  

If Eq. (10) and Eq. (13) are combined, the differential equation 

of ( )cv t


is written in the Eq. (15); 

             1
( ) ( )c c

dv t dv t
C t C

dt dt

 



                   (14)  

      1 1
( ) ( ) ( )c c c

s

dv t dv t dv tC d
t R C t

C dt dt dt dt

   


 
 

   
 

(15)  

2

1 1

2

( ) ( ) ( ) ( )
(1 )

c c c c

s

dv t dv t d v t dv tC
t R C t t

C dt dt dt dt

     
   
 

     
 
 

 (16)  

2

1 1

2

( ) ( )
(1 ) 1 0

c c

s s

d v t dv tC
R C t R C t t

dt C dt

   
     

     
 

(17)  

By arranging both sides, the equation is turned into the second 

order differential equation of the form ( ) ( )y p x y q x   ; 

2 1
1

2

( ) ( )1
(1 ) 0

c c

s s

d v t dv tt
t

dt R C R C dt

 








 
     
 

   (18)  

When the substitution is used as ( ) /cu dv t dt


 , the equation 

is converted into; 

       
1

1 1
(1 ) 0

s s

t
u t u

R C R C









 

      
 

              (19)  

Although Eq. (18) looks like a second order differential 

equation, actually a first order differential equation, Eq. (19), 

describes the circuit to be examined in Figure 2. 

1
1

1
1

1
(1 ) 0

1
(1 )

s s

s s

u t
t

u R C R C

u t
t

u R C R C



















 
     
 

 
     

 

                (20)  

 

By taking the integration of each side of the equation, Eq. (20) 

turns into 

1' (1 ) 1

s s

u t
dt dt

u t R C R C





  
   

 
                 (21)  

ln( ) (1 ) ( )
s s

t t
u n t A

CR R C








                        (22)           

where A is the integration constant. 

Using exponential function, Eq. (22) turns into: 

1(1 ) 1
(1 ) ( )

s s s s

t t t
dt A n t

t R C R C CR R C Au e e e

 

 






 
       

 


 

(1 ) ( )
s s

t t
n t

CR R C
u Be








  

  

Where
AB e , 

If the exponential term is arranged, the variable ( )u t is found 

as: 

1( ) s s

t t

CR R C
u t Bt e





 
                      (24)    

Then, the CFD capacitor voltage can be obtained as: 

( )
( ) ( ) ( ) ( ) ( )

c

c c

dv t
u t dv t u t dt v t u t dt

dt



 
                (25)  

1

0

( ) s s

t tt
CR R C

cv t B t e dt D









 
                           (26)  

Where D is the related integral constant. 

Using the initial CFD voltage, (0)cv


  

0

1

0

(0) 0s s

t t

CR R C

cv B t e dt D D D









 
                 (27)  

Therefore, D is found as: 

   (0)cD v


                                      (28)  

The CFD capacitor voltage turns into 

1

0

( ) (0)s s

t tt
CR R C

c cv t B t e dt v





 



 
         (29)  

The integral in Eq. (29) is not analytically solvable. Using a 

series solution such as the following, the integral can be solved 

as an infinite series given as follows.  

           
1 ( )abt ctt e     

           

1 2
1

0

( ) (2 )

(2 )!

k

k

bt ct k bt ct
t

k

 


 




   
            (30)

 However, application of such a series would not be practical. 

(23) 

(24)
 

(23)  
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To find B, Eq. (11) can be used.  Remembering that the CFD 

capacitor current is equal to the resistor current: 

      

1 1 1
( )

s s

s s

t t

CR R Cc

C

t t

CR R C

dv t
i C t C Bt e t

dt

C Be











  

 





 
      

 
   
 

 



  (31)  

Then, the resistor voltage can be expressed as:  

               ( ) s s

s

t t

CR R C

R s C sv t R i R C Be











 
   
            (32)  

When Eq. (12) is used, the LTI capacitor voltage can be solved 

in the following way: 

               ( ) ( )c s C Cv t R i v t
 

                        (33)  

                 1
( )

( ) ( )
c

c s c

dv t
v t R C t v t

dt









            (34)  

                 
1

0

( )

(0)

s s

s s

t t

CR R C

c s

t tt
CR R C

c

v t R C Be

B t e dt v

















 
   
 

 
     

 



            (35)  

The integration constant B can be found using the initial 

conditions at t=0: 

           

   

(0) (0)

(0) (0) /

c s c

c c s

v R C B v

B v v R C









 

 
               (36)  

Then, the capacitor current, the resistor voltage and the CFD 

capacitor voltage are given as:  

         ( ) (0) (0) /s s

s

t t

CR R C

R C c c si t i v v e R





 



 
   
        (37)  

Then, the resistor voltage is written in Eq. (37):  

 ( ) (0) (0) s s

s

t t

CR R C

R s C s c cv t R i R v v e





 



 
   
               (38)  

The LTI capacitor voltage is found as: 

 

    1

0

( ) (0) (0)

(0) (0) /

(0)

s s

s s

t t

CR R C

c c c

t tt
CR R C

c c s

c

v t v v e

v v R C t e dt

v





















 
   
 

 
     

  





  

 

A Matlab code has been written to calculate the capacitor 

voltages. The circuit waveforms are calculated for three 

different alpha values when (0) 1cv   V , 1sR   , 1C 

F and 1C   
1/F s 

are used. They are shown in Figures 3 

and 4. Moreover, the resistor’s voltage and current are also 

shown in Figures 5 and 6. It is interesting to note that the 

capacitor currents or the resistor current are found explicitly 

while the capacitor voltages are not.   

 

Figure 3. The CFD capacitor voltage 

 

Figure 4. The LTI capacitor voltage  

 

Figure 5. The resistor voltage 

(39)  
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Figure 6. The CFD capacitor or the series resistor current 

 

5. Conclusion 

 
Supercapacitors or ultra-capacitors are becoming cheaper and 

more common each day. They cannot be modelled using the 

same constitutive law of an LTI capacitor. Therefore, simple 

and robust models are needed for their modelling and analysis 

in the circuits they are used. Only then, such capacitors can be 

fully exploited. Some supercapacitors could be modelled using 

fractional-order derivatives. In this paper, the two-capacitor 

problem has been examined when one of the capacitors has 

been replaced with a CFD capacitor. The solution of the current 

has been found explicitly but the voltages of the capacitors are 

shown to be calculable using numerical analysis. The results 

reported in this paper may find usage in the circuits where the 

LTI and the CFD capacitors are used together. 
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