
 

 

PRECISION EVOLUTIONARY OPTIMIZATION 
PART I:  NONLINEAR RANKING APPROACH 
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Theoretical foundations of a robust approach for multiobjective optimization by evolutionary algorithms are introduced. The 
optimization method used is the conventional penalty function approach, which is also known as bi-objective method. The novelty of 
the method stems from the dynamic variation of the commensurate penalty parameter for each objective treated as constraint. The 
parameters collectively define the right slope of the tangent as to the optimal front during the search. The slope conforms to the 
theoretical considerations so that the robust and fast convergence of the search is accomplished throughout the search up to micro 
level in the range of 10-10 or beyond with precision as well as with accuracy thanks to a robust probabilistic distance measure 
established in this work. The measure is used for nonlinear ranking among the population members of the evolutionary process, and 
the method is implemented by a computer program called NS-NR developed for this research. The effectiveness of the method is 
exemplified by a demonstrative computer experiment minimizing a highly non-linear, non-polynomial, non-quadratic etc. function. 
The algorithm description in detail and further several applications are presented in the second part of this research. The problems 
used in computer experiments are selected from the existing literature for comparison while the experiments carried out and reported 
here to demonstrate the simplicity vs effectiveness of the algorithm. 

I n d e x  T e r m s — Evolutionary algorithm, multiobjective optimization, constraint optimization, probabilistic modeling.

I .  I N T R O D U C T I O N  

VOLUTIONARY computation is ubiquitous, due to its 
effectiveness in many multi-objective optimization 

problems, spanning all engineering disciplines and the 
cognitive science. Because of its heuristic nature, and therefore 
simplicity, it can easily be implemented. Evolutionary 
computation implies a series of heuristic algorithms which are 
subject to modification during the search to enhance their 
effectiveness in a problem solving situation. A very effective 
heuristic search algorithm known as genetic algorithm (GA) is 
a special form of evolutionary computation having its search 
parameters fixed. In this context there are new evolutionary 
computation methods, which are trying to be competitive with 
the existing ones, such as differential evolution [1, 2]. Due to 
the random search mechanism in heuristic optimization 
algorithms, the exact tracing of convergence of the algorithm 
to a minimum or maximum, is not possible. However, they are 
remarkably fast and robust to find a minimum or maximum 
due to effective search rules embedded in the algorithms. For 
detailed description for such algorithms mention can be made 
of some text books [3-5].  

Again, because of the heuristic nature of such search 
algorithms, there are continuous improvements on the 
heuristics and they are regularly reported in the literature, e.g. 
[6, 7]. Multi-objective optimization problems may involve 

plain multi-objectivity, as well as multi-objectivity with 
constraints. In particular, a single-objective problem with 
several constraints can be cast into a bi-objective optimization 
problem. One effective method to deal with single objective 
and constraints imposed on it is known as penalty function 
method. In this method the penalty function is simply a 
function representing the constraint violation, and this 
function is added to the single objective function that the 
summation is subjected to minimization. Here there is also a 
penalty parameter, which determines the appropriate 
proportion of the violation during the search. The appropriate 
proportion here is dependent on the progress by the search 
algorithm, and the nature of the problem. Therefore, the 
penalty parameter can be considered constant, but in an 
evolutionary sense it can be adapted during the search. 
Although the adaptation of the penalty parameter is an 
appealing concept, an effective method dealing with adaptivity 
is an issue, and it is subject to investigation in general. [8, 9]. 

The subject matter of this work is an optimization dealing 
with a single objective with constraints using the penalty 
function method, proposing a new effective approach for 
convergence. In the approach, the random solutions are 
modelled using probabilistic considerations, to establish a 
nonlinear distance measure. It is used for effective, i.e. robust 
ranking of genetic population members and efficient, i.e. fast 
converging, and stable solutions. The measure is used for 
nonlinear ranking of the population members during the 
evolutionary process, and the method is implemented by a 
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computer program called NS-NR (nondominated sorting-
nonlinear ranking) algorithm developed for this research. 

The research is organized in two parts. In the first part, 
namely in this work at hand, the theory of the approach is 
presented with a demonstrative example afterwards. In the 
second part  [10], based on the theoretical considerations, the 
development of the algorithm is given in detail and some 
demonstrative optimization problems are presented as 
applications. The organization of the paper is as follows. In 
section two, formulation of general multiobjective 
optimization problem as constraint single objective problem 
and probabilistic constraint handling are presented. In section 
three, implementation of the probabilistic constraint handling 
by means of evolutionary algorithm is given. In section four, 
the important implications of the probabilistic modeling are 
highlighted. In section five a demonstrative computer 
experiment is given and it is followed by discussion and 
conclusions. 

I I .  M U L T I O B J E C T I V E  O P T I M I Z A T I O N  
B Y  W E I G H T I N G  M E T H O D  

 PR O BL E M  S T A T E M E N T  A.
Weighting method is a known approach for multi-objective 

optimization problems [11-13]. In this method each objective 
has an associated weighting coefficient, and the weighted sum 
of the objectives is minimized. By doing so, the multiple 
objective functions are rendered to a single objective function. 
We assume that the weighting coefficients wi are real numbers 
such that 0 ≤ wi for all objectives i=1,….,k , so that a weighting 
problem can be stated as 

1
min ( )

k

i i
i

w f subject to S
=

   ∈∑ x x
 

(1) 

Referring to the optimization involved in this work, there is 
one objective with some constraints. Therefore the problem 
can be written of the form  

1 2min ( ) ( [ ( ), ( ),..., ( )]T
mf subject to g g x g x g x  x x) =

 
(2) 

The feasible region is assumed to have the form 

1 2{ | ( [ ( ), ( ),..., ( )] 0}n T
mS x R g g x g x g x= ∈ ≤x) =  (3) 

Considering that, the summation of the constraint violations is 
as another objective subject to minimization, the problem 
formulation becomes a problem of two objective functions 
subject to minimization. The formulation of the problem in 
this case becomes 

1 2min ( ) (w f w G+x x)  (4) 
where  

 
(5) 

From above we write 

1

1 2

min ( ) ( ) ( ) ( )

{ | ( [ ( ), ( ),..., ( )] 0}

m

i i
i

n T
m

f g f G

S x R g g g g

m
=

+ = +

= ∈ ≤

∑x x x x

x) = x x x  

(6) 

where w1=1, w2i=mI . In this problem formulation it is clear 
that the optimization problem turns out to be a constraint 
optimization with single objective f(x), and the constraints 
denoted by gj(x), where the index j is connected to the 
associated constraint. This approach is known as ε-Constraint 
method [13, 14]. One of the objective functions is selected to 
be optimized and all the other objective functions are 
converted into constraints by setting an upper bound to each 
of them. Hence, the problem is converted to be of the form 
minimize   fl(x);  subject to fj(x)≤ εj for all j=1,2,….,k, j≠l; x∈S 
where l∈{1,…,k}. Naturally, inequalities can be converted to 
equalities by taking εj=0 for all j=1,2,….,k, j≠l. 

 PE N A L T Y FU N C T I O N  M E T H O D  B.
Referring to (6) we can write 

1
min ( , ) ( ) ( )

J

j j
i

P R f R g
=

= + ∑x x x
 

(7) 

where function gj(x) is the penalty function, and the 
parameters Rj are the associated penalty parameters, which are 
not known. If we define a representative penalty parameter, 
(R) representing all the penalty parameters, then (7) turns out 
to be 

1
min ( , ) ( ) ( )

J

j
i

P R f R g
=

  = + ∑x x x
 

(8) 

or taking f1(x) =f(x) and the summation of the gj(x) functions as 
f2(x), (8) becomes 

1 2min{ ( ) ( )}optP f R f= +x x  (9) 
In order to solve the optimization problem (9) by means of 

the weighting method, there are some options, as given below. 

• R is constant. In this case the development of the optimal 
front is illustrated in figure 1. The optimal point is denoted 
by Popt subject to obtain by the final development. A 
solution during the optimization process is denoted by T 
which is far from the Popt. It is to note that T is on a Pareto 
front, and the tangent passing from the point T intersects f2 
indicates that indeed, T is far from Popt.. Seeing  

 
 A p p r o ac h  to  th e  f i n a l  o p t i m a l  s o l u t i o n  b y  m e an s  o f  Fig. 1. 

c o n s t an t  p en a l ty  p ar am e t er  R .   

( ( )i iG gm∑
k

i=1
x) = x
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the problem of convergence to Popt, is a real one, an effective 
method other than slope of the tangent R=w1/w2 should be 
developed. This is because otherwise evolutionary 
computation needs to be tailed-up by some gradient-based 
local search algorithm to reach the optimal point. In this case 
the convergence is essentially due to the constraints and not 
due to the single objective, leaving the objective in a marginal 
position with respect to the constraints. Such a case makes the 
penalty parameter R critical and unpredictable. 

+ To determine the penalty parameter with adaptation by 
means of an extrapolation polynomial. In this case a 
polynomial is fitted to the optimal front and its 
extrapolated intersection with the objective function axis is 
used for the slope of the tangent which is the reasonable 
estimation of the penalty parameter R. However, in this 
case, search algorithm tends to move to the straightforward 
solution, which is the gradual diminishing of the slope as 
illustrated in figure 2. As result of this option the penalty 
parameter takes smaller values during the search and may 
eventually vanish. In the extreme, R goes to zero and 
problem turns out to be a single objective optimization 
omitting the constraints.  

 
 Approach to the final optimal solution by means of penalty Fig. 2. 

function approach, where R is the penalty parameter being estimated 
through curve fitting 

 PE N A L T Y PA R A M E T E R  C.
In this subsection, it is aimed to establish the penalty 

parameter by approximating the Pareto front with respect to 
f1(x) and f1(x), and to determine the penalty parameter as a 
slope of a tangent line, the envelope of which is the Pareto 
front. The parametric representation of the tangent is given by 

2 1( ) ( ) 1
opt

f f
t P t

+ =
−

x x

 
(10) 

where t is the parameter. In (10), Popt is the optimum solution 
where  f2(x )= Popt and  f1(x ) =0. From (10), we write 

2 1( ) ( )
( )opt

tf f t
t P

= +
−

x x
x

 
(11) 

The slope in (11) is given by 

( )opt

tr
t P

=
− x  

(12) 

as a new penalty parameter, whose variation is shown in figure 
3a. The envelope, which approximately represents the Pareto 
front, is shown in figure 3b. 

 
 (a) (b) 

 The variation of the new penalty parameter r=(Popt-T)/T where Fig. 3. 
T=Popt-t (a); The envelope of tangent and the new penalty parameter r (b). 

Explicitly, r is the gain in f1(x) per unit decrease in f2(x) at the 
point of tangent F and within infinitesimally small interval of 
f2(x). The Pareto front is to obtain by arranging (11) with 
respect to t and admitting a single solution for it; namely, 

2
1 2 2[ ( ) ( ) ( )] ( ) ( ) 0opt optt f x f x P x t f x P x+ − − + =

 
(13) 

 
 NS-NR approach to the final optimal solution by means of penalty Fig. 4. 

function approach; r is the penalty parameter. 

then, the optimal front is obtained by equating the 
discriminant to zero that gives the envelope of the tangent as 
the optimal front. 

2
1 2 2[ ( ) ( ) ( )] 4 ( ) ( ) 0opt optf x f x P x f x P x− − − =

 
(14) 

The new penalty parameter is zero for t=0 and it 
monotonically increases as t increases. For t=Popt the penalty 
parameter r goes to infinity. This is sketched in figure 4.  

The convergence approach conforming to (12) presents two 
insights: 

+ Approach to optimum is systematic and therefore robust 
without precarious tangent slope computations 

+ No local search for Popt is necessary. 

Implementation of the approach is due to a probabilistic 
modeling of the random solutions in the evolutionary 
computation and ensuing nonlinear ranking, which are 
presented in the following section 
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I I I .  N O N L I N E A R  R A N K I N G  B Y  
P R O B A B I L I S T I C  M O D E L I N G  

A general constrained optimization problem can be 
formulated as  

1
min ( ) ( ) ( )

J

j j
i

P f gm
=

  = + ∑x x x
 

(15) 

considering (6). Above f(x) is the single objective function to 
be minimized; g(x) is the violation of the gi-th constraint, 
namely penalty function, µi is the associated parameter of the 
penalty function. At each generation, the evolutionary 
algorithm tries to make vanish gj(x) during the evolutionary 
minimization process. Regarding the population density of 
solutions during the search, the probability density of gj(x) is 
highest about zero violations, and its value gradually 
diminishes proportional with the degree of violation. Based on 
the randomly generated population of the evolutionary 
algorithm, we can model the violations as a random variable, 
where the violations are independent due to random 
population formation by the random composition of 
chromosomes at each generation. The number of violations 
per unit violation gradually decreases with the degree of 
violation conforming to the commensurate number of 
chromosomes created by the elitism and sorting strategy in the 
genetic algorithm. This probabilistic pattern continues in the 
same way without change throughout the generations. The 
probabilistic description of this process can be modeled by the 
exponential probability density (pdf), because of its 
memorylessness property. The property of being the 
exponential pdf remains the same during the search, being 
independent of the progress of search process. The 
exponential pdf is a unique density having this property. 
Therefore we model the constraint function g(x) having an 
exponential pdf, which is given by 

( ) yf y e λ
λ λ −=

 
(16) 

where λ is the decay parameter. Denoting  

( )jy g x=
 

(17) 

the pdf in (16) can be written as 

( ) j j

j

g
g j jf g e λλ −=

 
(18) 

The mean value of the exponential pdf function is equal to λj
-1. 

During the evolutionary search gi(x) is a general form of 
violation which applies to any member s of the population 
although s is not explicitly denoted. However, in explicit form, 
we can write 

,
,( ) j j s

j

g
g j s jf g e λλ −=

 
(19) 

where s denotes a population member. We can characterize 
the exponential pdf function according to the constraint j 
simply by equating the mean value of the violations gj to the 
mean of the exponential pdf, namely  

1/j jgλ
−

=
 

(20) 

One should note that the mean of the exponential probability 
density of gj is equivalent to the mean of a uniform probability 
density applied to the violations gj. Therefore the mean of the 
exponential density function is estimated by taking the mean 
of the violations which are from a uniform probability density 
and they are independent. Variation of the exponential pdf for 
different decay parameters is shown in figure 5a. 

 
 (a) (b) 

 Plot of exponential pdf for different decay constants vs j-th Fig. 5. 
violation gj (a); p(gj) vs gj (b) 

Since a violation gj spans all the violations starting from zero 
up to the point gj, the probability of the violation is expressed 
as cumulative distribution function whose implication is easy 
to comprehend by considering the extremes. The cumulative 
distribution function of (16) is given by 

0

1( ) 1
jj

j j j

gg
g gg

j j
j

p g e dg e
g

−−

= = −∫
 

(21) 

The variation of p(gj) vs gj with respect to the mean of gj is 
shown in figure 5b. For gj=0 violation is zero and for gj=∞, 
violation is 1, i.e., 100%. Explicitly p(gj) is the probability of a 
violation in the range zero and gj. It is monotonically 
increasing function complying with the boundary conditions 
of gj(x) which varies between zero and infinity. It is interesting 
to note that, from the figures, for zero constraint violation the 
exponential probability density is maximum and probability of 
violation is minimum. 

The probability p(gj) is an appropriate measure for the 
magnitude or effectiveness of a violation, and it can be 
considered as a probabilistic distance function or a metric  

measuring the distance from the zero violation fulfilling all the 
conditions to be a distance measure [15, 16]. Therefore in this 
work, in (6), mj is replaced by Crj(gj) in the form  

( ) ( )j j j jC r g gm=  (22) 
So that (21) becomes 

1
( ) ( ) ) ( )

J

j j j
i

P f C r (g g
=

= + ∑x x x
 

(23) 

where C is constant common for all the constraints which is 
called as convergence parameter as it is related to the 
convergence properties of the search; rj is a new penalty 
parameter which is a function of gj, in general, and therefore 
we denote it as 
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( )j jr f g=
 

(24) 

In (23), rj(gj)gj is replaced by p(gj), in the form  

( ) ( )j j j j jr g g p g=
 

(25) 

so that (23) becomes  

1
( ) ( ) ( ))

J

j j
i

P f C p (g
=

= + ∑x x x
 

(26) 

In view of (25), rj is given by  

( ) ( ) /j j j j jr f g p g g= =
 

(27) 

The new formulation (26) yields favourable, far reaching 
implications which are presented below.  From (6), we define  

1 1
( )

J J

j j jg G C p gm = =∑ ∑
 

(28) 

where J is the number of constraints; C is a common constant. 
The probability p(gj) controls the penalty parameter ri, which 
is absorbed in p(gj) in the form of mi. The parameter ri varies 
theoretically between zero and infinity, while p(gj) varies 
between zero and unity. This nonlinear function 
transformation p(gj) plays important role, as it is used for 
ranking the population members during the genetic search. 
We can interpret p(gj) (28) in several ways as follows. 

+ On one hand it is a penalty function obtained by a 
nonlinear interpolation applied to gj. In this process, the 
probabilistic considerations apparently are exercised as a 
nonlinear transformation to the penalty function g(xj) to 
obtain another penalty function p(gj) in order to bring g(xj) 
from an infinite range to a finite range namely, between 
zero and unity. 

+ As another interpretation, the penalty function p(gj) is the 
probability of a random variable Gj, namely cumulative 
probability of an exponentially distributed random 
variable.  

+ Yet another interpretation is to consider p(gj) as another 
stochastic variable Yj obtained from a function of 
stochastic variable Xj. 

The last interpretation is highlighted in this work so that 
several essential implications can be derived. For this aim let 
us define 

( ) ( )j jp g H g=
 

(29) 

where gj is a random variable. The probability density of this 
random variable is exponential density function given by (16). 
According to (29), the new random variable p(gj) is given by  

0

( ) ( )
j

j

g
g

j j jp g H g e dgλλ −= = ∫
 

(30) 

which gives 

( ) ( ) 1 jg
j jp g H g e λ−= = −

 
(31) 

where H(gj) is the function of random variable gj. The 
probability density fp(p) of the new random variable p is given 
by 

1 ( )

( )
( ) ( )

| |

j

j

g j
p

j
g H p

j

f g
f p dH g

dg −=

=

 

(32) 

that gives 

( ) 1pf p =
 

(33) 

which is a uniform pdf. This surprising result has far reaching 
implication as this will be seen shortly afterwards, as this is 
presented in the following section. 

I V .  I M P O R T A N T  I M P L I C A T I O N S  O F  
T H E  P R O B A B I L I S T I C  M O D E L L I N G  

 AD A P T I V E  ZO O M I N G  FO R  RA N K I N G  W I T H  A.
PR E C I S I O N 

Adaptive zooming for ranking with precision is 
accomplished by accurate ranking the favourable solutions in 
the range zero and unity as probabilistic distances, even 
though the actual constraint values may be close to the optimal 
point as much as the computer precision can allow, say at the 
range of 10-10. To illustrate this, a sketch of the Pareto front at 
the early stage of the genetic search is shown in figure 6a. A 
sketch of the Pareto front at the last stage of the genetic search 
is given in figure 6b. 

   
 (a) (b) 

 Sketch of formation of the Pareto front at the early stage (a); at the Fig. 6. 
at the last stage of the GA search (b). 

The probabilistic distance to the minimum is illustrated as a 
typical example in figure 7a by the indicated area where the 
computation of the gray area is very precarious at the 
tournament selection process due to the issue of both exact 
parameterization of the exponential pdf in the existing range 
and the finite machine precision as well as the finite genotype  

 
          (a) (b)  

   Mathematical lense; pdf of the violations in the objective functions Fig. 7. 
space (a); in the probabilistic space (b). 
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coding. This situation is circumvented in figure 7b by taking 
simply p(gj) as the probability distance to the minimum. The 
indicated areas in figure 7a and 7b are the same and they are 
equal to p(gj). The grey area in figure 7a, is represented in 
figure 7b by the probabilistic distance function p(gj) which 
varies between zero and unity. This means if the penalty 
function to be minimized can be close to the optimal point in a 
micro scale, say in the range of 10-10, the minimization process 
i.e., tournament selection and ranking of the random solutions 
takes place in a macro scale in the probabilistic space as shown 
in figure 7b. This situation is equivalent to apply a 
commensurate magnifying glass to the space formed by actual 
objective function and the constraints functions to carry out 
the convergence process without being affected by any scale of 
convergence happening in this space. The Pareto front at this 
micro scale is shown in figure 6b. 

 EF FE C T I V E  TO U R N A M E N T   SE L E C T I O N   B.
Following the non-dominated sorting procedure as 

described in [17], an adaptive threshold of productive 
chromosomes is devised both in the non-dominated sorting 
(NS) stage as well as non-linear ranking (NR) stage of the NS-
NR algorithm. The details of the algorithm are given elsewhere 
[18]. The adaptive threshold of productive chromosomes is 
based on the sum of the mean of the constraint violations gT 
given by 

1 1

j

j

J J
b

T b
j j j

n
g n g

λ
−

= =

= =∑ ∑
 

(34) 

where nbj= ln2/λj  which is a constant. Referring to figure 8, the 
tournament selection, i.e., productive chromosomes selection 
is accomplished as follows. 

a) If the violations of a pair of population members are 
larger than the threshold, then the solution which has smaller 
violation wins the competition 

b) If the violations of a pair of population members are 
smaller than the threshold, then the solution with rank 
properties in terms of Pareto rank and crowding during the 
NS stage, or in terms of P(gj, x) rank during NR stage, wins the 
tournament. 

c) If the violations of a pair of population members are at 
either side of the threshold, then the elite population member 
that is the chromosome with violation lower than the 
threshold is selected irrespective to its rank in the NS or NR 
procedures. 

In figure 8 the horizontal axis refers to NS (nondominated 
sorting) procedures and vertical axis refers to NR (nonlinear 
ranking) procedures; nbj=ln2/λj is the median of the 
exponential pdf as shown in figure 8b. For nbj=ln2/λj, its 
counterpart in terms of the probabilistic distance is npj=0.5 
which is, in contrast to nbj, a constant. Thus, the constant 
probabilistic distance measure provides an adaptive threshold 
for productive chromosomes throughout the generations, at 
any scale permitted by the machine or genotype precision. By 

means of this particular tournament selection procedure, the 
dominance of the average violation by the stiff constraints, 
that is, by the members with high violations, is prevented; 
namely, during two consecutive generations the progressive 
diminishing of the average is aimed against the contingent 
average increase that may occur especially during the 
advanced stages of the convergence. In the tournament 
selection, the domains considered separately are illustrated in 
figure 8b. The smaller total mean of the constraint violations 
implies improved convergence to the optimum. 

Referring to figure 8b, the probability Pj of the event 
relevant to the case (c) above is given by 

2( ) ( 1 ) ( 2 ) j bj j bjn n
j j j jP P g P X P X e eλ λ− −= = = −

 
(35) 

 
  (a) (b) 

   Illustration of the threshold assessment for the tournament Fig. 8. 
selection in both NS and NR procedures. 

The variation of Pj with respect to nbj is illustrated in figure 9, 
in terms of its counterpart pj which has a maximum at npj=0.5 
for nbj=ln2/λj. It is to note that, the plot remains the same 
throughout the generations, although the same plot in the 
actual violations domain, that is, in the gj domain corresponds 
to a family of plots with respect to the parameter λj. 
Implementation of (35) in the NS-NR algorithm is as follows. 
Should the case (c) arise, the chromosome at the productive 
domain wins in the tournament selection. The details of this 
implementation is described in the second part of this sequel 
[10]. 

 
 Plot of the probability that two solutions occur on different sides of Fig. 9. 

the thtreshold nbj vs npj 

 FA S T  A N D  R O B U S T  C O N V E R G E N C E C.
With the probabilistic distance providing nonlinear ranking 

we obtain robust progress for convergence at each generation. 
To see this, from (27) 

( ) 1 e j jg
j

j
j j

p g
r

g g
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In the limiting case, i.e., convergence to the minimum, rj 
becomes  

0 0

( )
lim lim j j

j j

gj
g j g j j

j

p g
r e

g
λλ λ−

→ →= = =
 

(37) 

p(X1)p(X2),    X2<nb<X1   

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1np

p(
X1

)p
(X

2)

06



Ö Z E R  C I F T C I O G L U  e t  a l . :  
P R E C I S I O N  E V O L U T I O N A R Y  O P T I M I Z A T I O N  P A R T  I :  N O N L I N E A R  R A N K I N G  A P P R O A C H  

 

The variation of the penalty parameter rj with gj , based on (36) 
is shown in figure 10.  In the figure the values of λj=10000 and 
Popt = 1.0. In the same figure, also plot of r=(Popt-T)/T from 
figure 3a, is also plotted for comparison. The two plots are 
remarkably almost the same, although their origins of 
definitions are totally different. 

 
 Illustration of the new penalty parameter r as to probabilistic Fig. 10. 

modeling: r=(1-exp(-λg))/g and as to bi-objective formulation: r=t/(Popt-t) 

V .  C O M P U T E R  E X P E R I M E N T  

Computer experiments have been carried out using a 
standard optimization problem from the literature. The 
following problem is due to Koziel and Michalewicz [19]. The 
problem consists of a single objective with two constraints, 
subject to minimization, as given by (38)-(40).  
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0 10 1,..., 20)iwhere x i  ≤ ≤   ( =  (40) 
The best known optimum is  
f(x*)=-0.80361910412559 [20], and f(x*)=-0.803553 [19] while 
Koziel and Michalewicz using  Evolutionary Algorithms with 
the method of homomorphous mappings report their best 
result as 0.79953 [19]. The variables for the best known 
solution are given by [20] 
x1

*=3.16246061572185; x2
*=3.12833142812967; 

x3
*=3.09479212988791; x4

*=3.06145059523469; 
x5

*=3.02792915885555; x6
*=2.99382606701730; 

x7
*=2.95866871765285; x8

*=2.92184227312450; 
x9

*=0.49482511456933; x10
*=0.48835711005490; 

x11
*=0.48231642711865; x12

*=0.47664475092742; 
x13

*=0.47129550835493; x14
*=0.46623099264167; 

x15
*=0.46142004984199; x16

*=0.45683664767217; 
x17

*=0.45245876903267; x18
*=0.44826762241853; 

x19
*=0.44424700958760; x20

*=0.44038285956317. 
The algorithm is executed with the following settings: 
population size=200; amount of generations=150; C=100; the 
ratio of NS-NR procedures=15/1; crossover probability=0.95; 
Simulated Binary Crossover parameter nc=1.0; mutation 
probability=0.05; polynomial mutation parameter nm=30. The 
results are shown in figure 11-14 using a logarithmic scale for 

the horizontal axis, which shows the total violation G. From 
the figures it is observed how the initial population gradually 
approaches towards the optimal solution. It is emphasized that 
an iteration of the algorithm consists of 15 Pareto-ranking 
based generations, followed by one probabilistic selection 
based generation. 
After 10 iterations the best feasible solution is found to be 
f(x)= -0.793613533117088 
The population is seen in figure 11. The independent variables 
of this solution take: 
x1=3.24832595081784; x2=2.94319650443766; 
x3=2.94428354644506; x4=3.02142730074793; 
x5=2.86945102101479; x6=2.96442488220189; 
x7=0.526507749698735; x8=0.429780319936723; 
x9=0.544135374090413; x10=0.540324629305664; 
x11=3.12247385164555; x12=3.04629476487622; 
x13=0.475892826530603; x14=0.400468968498461; 
x15=0.525406871697624; x16=0.363091228109451; 
x17=0.456317769218481; x18=0.413066649730819; 
x19=0.466386058423425; x20=0.536280452626657. 
The peculiarity of the problem is essentially due to being 
highly non-linear, non-polynomial, and non-quadratic, -cubic, 
-quartic etc. the case being rather unconventional as to the 
examples subjected to evolutionary optimization and reported 
in the literature. 

 
 Population after 10 iterations; horizontal axis shows the total Fig. 11. 

violation G on a log scale. 

After 20 iterations the best feasible solution is found to be 
f(x)= -0.80305132174103 
The population is seen in figure 12. The independent variables 
of this solution take: 
x1=3.15502583606141; x2=3.11112176183396; 
x3=3.02496543675572; x4=2.98747208109771; 
x5=2.9515112756444; x6=2.89510918982729;  
x7=0.46796083643403; x8=0.473668811347126; 
x9=0.467568074848906; x10=0.452585498100958; 
x11=3.10462563793842; x12=3.04573276503504; 
x13=0.471862973631331; x14=0.463578991183557; 
x15=0.465680838811579; x16=0.447391069763821; 
x17=0.469506617661979; x18=0.42753345080416; 
x19=0.469472715928338; x20=0.519950183966872.  
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 Population after 20 iterations; horizontal axis shows the total Fig. 12. 

violation G on a log scale. 

After 30 iterations the best feasible solution is found to be 
f(x)= - 0.803340250367163 
The population is seen in figure 13. The independent variables 
of this solution take: 
x1=3.1696117425466; x2=3.09408201986905; 
x3=3.0172487986671; x4=2.99495708426546; 
x5=2.95102962307473; x6=2.89618000831499; 
x7=0.497409212169248; x8=0.482812017517757; 
x9=0.465996025171434; x10=0.452970326855209; 
x11=3.12293340944006; x12=3.04402593262227; 
x13=0.484686923390343; x14=0.462400174550483; 
x15=0.455413721826665; x16=0.447678701325465; 
x17=0.457424900628494; x18=0.436132029824826; 
x19=0.443064763267789; x20=0.509337332371848.  

After 60 iterations the best feasible solution is found to be 
f(x)= -0.803340250367163 

The population is seen in figure 14. The independent 
variables of this solution take the same value as after 30 
generations. 

V I .  C O N C L U S I O N S  

A new approach for constrained optimization is presented,   
where the multiobjectivity of the problem is due to the 
Constraints.  Conventionally, in a multi-objective constrained 
problem, with evolutionary search, the convergence is 
dominated by the constraints, if the number of constraints is  

 
 Population after 30 iterations; horizontal axis shows the total Fig. 13. 

violation G on a log scale. 

 
 Population after 60 iterations; horizontal axis shows the total Fig. 14. 

violation G on a log scale. 

high. This means, in the solution the optimization of the 
objective function is marginalized by the constraints. 
However, with the new method this undesirable situation is 
eliminated, and a clear improvement is achieved in a balanced 
manner. That is, during the search, both the objective and the 
constraints are equally stressed. The front is formed with 
advanced search operations, enabling a probabilistic nonlinear 
ranking, which is used for both NS and NR based tournament 
selection followed by elitism. For these operations an 
evolutionary probabilistic model of the random solutions is 
established. The model is used for an effective ranking 
procedure throughout the generations, yielding both robust 
and rapid convergence. The NR process of solutions is done 
always in a probabilistic scale, due to the adaptive feature of 
the probabilistic model, the outcomes of which are between 
zero and unity. This way the same precision is preserved, being 
independent of the level of convergence to the optimum. This 
means the method forms a dynamic “lens,” the magnifying 
power of which is commensurate with the scale of 
convergence. This way convergence is accomplished 
accurately and systematically with precision, at any range 
allowed by machine or genotype coding precision. Relative to 
the conventional approach, the method shows outstandingly 
better performance as to precision, approaching to the 
solution without recourse to auxiliary supports like local 
search, memetic algorithm etc. The theory presented in this 
work is exemplified by a peculiar, highly-nonlinear, non-
polynomial, non-quadratic etc. optimization problem for 
demonstration of the effectiveness of the methodology. This is 
a standard problem chosen from the literature for comparison 
of the results. We note that the results using the non-linear 
ranking developed in this work are very close to the best 
known optimum satisfactorily after few generations. Other 
examples are reported in the second part of this work, which is 
devoted to implementation and applications [10]. In both 
parts of the sequel, the reported results include not only the 
final outcomes but also the progress of the convergence 
throughout the optimization process, clearly showing the exact 
matching of the result with the theoretical considerations 
presented with a transparent convergence. 
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